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The pin-based pointwise energy slowing-down method (PSM), which is a resonance self-
shielding method, has been refined to treat the nonuniformity of material compositions and
temperature profile in the fuel pellet by calculating the exact collision probability in the
radially subdivided fuel pellet under the isolated system. The PSM has generated the
collision probability table before solving the pointwise energy slowing-down equation. It is
not exact if the fuel pellet has nonuniformmaterial compositions or temperature profile in all
the subdivided regions. In the refined PSM-CPM, the pre-generated table is not required
for directly calculating the collision probability in all the subdivided regions of the fuel pellet
while solving the slowing-down equation. There are an advantage and a disadvantage to
the method. The advantage is to exactly consider the nonuniformity of the material
compositions and temperature profile in the fuel pellet. The disadvantage is the longer
computing time than that of the PSM when the fuel pellet has more than five subdivided
regions. However, in the practical use for UO2 pin-cells, it is still comparable for the
computation time with the PSM and the conventional equivalence theory methods. In this
article, using simple light water reactor 17 × 17 F A problems with a uniform material
composition and temperature profile, it is demonstrated that PSMs (PSM and PSM-CPM)
exhibit consistent accuracy in calculating the multiplication factor and the pin power
distribution with no compromise in the computation time. More detailed accuracy
assessments with various test cases, including problems representing the
nonuniformity, are presented in the accompanying article.

Keywords: resonance self-shielding calculation, equivalence theory, pointwise energy slowing-down method,
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1 INTRODUCTION

In reactor physics, all calculations are conducted with cross sections (XSs). The actual XSs for nuclides
describe the very detailed energy resolution. XS data are composed of hundreds of thousands of energy
points for major resonant nuclides (e.g., 238U). Even with modern computing resources, it is still time
consuming and impractical to directly utilize raw XS data in lattice physics calculations. Because of this,
XSs, especially in the resonance energy range that requires high-energy resolution, must be condensed
during neutron transport computations. A resonance self-shielding calculation (or resonance
treatment) is performed to condense a detailed XS into the multigroup level (e.g., ∼100 groups).
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Therefore, if the resonance self-shielding calculation is not accurate,
all the subsequent calculations would not be meaningful. The
resonance treatment is one of the most difficult and challenging
parts of reactor physics.

The equivalence theory has been widely used for resonance
treatment (Knott et al., 2010; Stamm’ler and Abbate, 1983). The
equivalence theory gives a reasonable solution within a short
computation time. Owing to this advantage, many lattice physics
codes adopt the equivalence theory to generate effective multigroup
XSs (Powney andHutton, 2002; Rhodes et al., 2006). There has been
much research into the equivalence theory to improve the accuracy
of effective multigroup XSs and the applicability to general
geometry (Koike et al., 2012; Godfrey, 2014; Choi et al., 2015a).
However, there are still many points missing from the resonance
calculation. The author’s previous works have determined that
resonance scattering causes the overestimation of the 238U
effective XS (Choi, 2017; Choi et al., 2017).

In one of the authors’ previous work (Choi et al., 2017), a new
resonance self-shielding method, the pin-based pointwise
slowing-down method (PSM), was developed to resolve
limitations, that is, the overestimation of 238U XS due to
resonance scattering sources, in the conventional equivalence
theory. However, the PSM has an assumption for treating with
the total XSs in the subdivided regions of the fuel pellet. As one of
the techniques for achieving high performance, the PSM
generates the collision probability of the isolated fuel pellet
before solving the pointwise slowing-down equation. The
collision probability is generated with the grid of the total XSs
that is assumed to be constant in the subdivided regions of the
fuel pellet. With the nonuniform material and temperature
distribution, the total XSs in the subdivided regions are
different from each other so that the accuracy of the effective
XSs is impeded by the constant total XS assumption (Zhang et al.,
2018; Zhang et al., 2020). Therefore, generating the collision
probability during solving the slowing-down equation on the fly,
a more rigorous method, PSM-CPM, has been developed to treat
nonuniform material and temperature distributions in the fuel
pellet.

This work reviews the PSM in brief and introduces PSM-CPM
with the refinement. The work demonstrates the accuracy of the
PSM and PSM-CPM with several light water reactor problems
with only uniform material and temperature distributions. The
computing time for the two methods is also estimated and
compared. Detailed verifications of the PSM-CPM are
performed with various light water reactor (LWR) problems
with a nonuniform material composition and temperature
profile, and the detailed XS comparison is presented to show
the superior accuracy of the method in the accompanying article
(Kim et al., 2021).

2 PIN-BASED POINTWISE ENERGY
SLOWING-DOWN METHODS (PSMS)

The achievements of the PSM are summarized as follows: RI or
XS look-up tables are not required for resonance treatment; the
distribution of the scattering sources in the fuel pellet is accurately

modeled; and PSMs have a comparable computational cost with
the equivalence theory.

The neutron transport equation can be expressed with the
radially subdivided regions (Stoker and Weiss, 1996) and
collision probabilities for the two-region problem (i.e., fuel and
moderator) in the resonance energy range as follows:

Σt,i(E)ϕi(E)Vi � ∑
j∈F

Pji(E)VjQs,j(E) + PMi(E)VMQs,M(E) ,

(1)

where i and j are the indexes of the radially subdivided regions of
the fuel pellet, Σt,i(E) is the total XS of the radially subdivided
region i of the fuel pellet, ϕi(E) is the flux in the subdivided region
i, Vi is the volume of the subdivided region i, F is the index of the
fuel pellet,M is the index of the moderator, Pji(E) is the collision
probability from the subdivided region j to the subdivided region
i, and the slowing-down scattering source of the subdivided
region j is defined as follows:

Qs,j(E) � ∑
r∈j

Nr ∫E/αr

E
σrs(E′)ϕj(E′) 1

1 − αr

dE′
E′ . (2)

Using the lethargy form and the reciprocity relation, Eq. 1 is
written as follows:

∑
t,i

(u)ϕi(u) � ∑
j∈F

Pij(u) Σt,i(u)
Σt,j(u)Qs,j(u)

+ PiM(u)Σt,i(u)
Σp,M

Qs,M(u) , i ∈ F . (3)

The flux of the subdivided region i by rearranging Eq. 3 is
expressed as follows:

ϕi(u) � ∑
j∈F

Pij(u)
Σt,j(u)Qs,j(u) + PiM(u)

Σp,M
Qs,M(u) , i ∈ F . (4)

In Eq. 3, the index M also indicates the nonfuel region. It is
assumed that materials in the nonfuel region only have a potential
XS. In case of the multiregion problem, the nonfuel regions (i.e.,
gap/clad/moderator) in a unit pin-cell are merged into a single
region with the volume weighting by assuming constant spatial
fluxes in the nonfuel regions.

The transport equation for the nonfuel region is written as
follows:

Σp,MϕM(u)VM � ∑
i∈F

PiM(u)ViQs,i(u) + PMM(u)VMQs,M(u),

(5)

where PMM(u) is the nonfuel-to-nonfuel collision probability.
The flux of the nonfuel region M by rearranging Eq. 5 is as

follows:

ϕM(u) � ∑
i∈F

PMi(u)
Σt,i(u) Qs,i(u) + PMM(u)

Σp,M
Qs,M(u) . (6)

If Pij(u), PiM(u), PMi(u), and PMM(u) are known, the fluxes
and scattering sources in Eqs 4–6 can be calculated by solving a
fixed source transport equation.
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The PSM and PSM-CPM calculate the collision probability
with a two-step approach. In the first step, the collision
probabilities of the subdivided regions in the isolated fuel
pellet are calculated.

The difference between PSM and PSM-CPM is the way to
calculate Piso

ij , whereby a neutron uniformly born in the
subdivided region i has its first collision in the subdivided
region j. The PSM-CPM calculates Piso

ij by using the CPM
(Carlvik, 1996) for all energy points while solving the slowing-
down equations with pointwise XSs.

In the PSM, however, Piso
ij is tabulated as a function of the total

XS of the fuel pellet before solving the slowing-down equations,
and then Piso

ij is interpolated using the total XS of any energy of
interest. While solving the slowing-down equations, Piso

ij is
interpolated from the P̂

iso
ij table using the total XS of the fuel

pellet at any energy of interest as follows:

Piso
ij (u) � P̂

iso

ij (Σt,F(u)) . (7)

Equation 7 is only exact if the fuel pellet has a constant
material composition and temperature profile in all the
subdivided regions. However, if the fuel is burned, the
material compositions in the subdivided regions change
differently from each other. For the burned fuel pellet, the
burnup of the outermost subregion is higher than that in the
inner subregion because of the spatial self-shielding effect. In
addition, the thermal–hydraulic (TH) calculation is coupled with
neutronics to analyze the power reactor. The fuel pellet must be
divided into several rings to model the temperature profile from
TH feedback. With the TH feedback, the temperature in the inner
region is higher than that in the outer region. Obviously, the
pointwise energy XSs depend on the material composition and
the temperature. With nonuniform material compositions and
temperatures, the total XSs of the subdivided regions are different
from each other. In this case, an average total XS (i.e., �Σt,F) is
defined with Eq. 8, and the total XS of the entire fuel pellet (i.e.,
Σt,F) in Eq. 7 is replaced by the average total XS.

Σt,F(u) ≈ �Σt,F(u) �
∑
i∈F

Σt,i(u)ϕi(uh)Vi

∑
i∈F

ϕi(uh)Vi
, (8)

where energy uh is one point higher than energy u.
Introducing the P̂

iso
ij table can lead error in computing the

collision probability, even though it can significantly reduce the
calculation time. The accuracy and efficiency on the use of the
pre-generated table are estimated and compared in Section 3 and
the accompanying article (Kim et al., 2021) in detail.

Piso
ij considers the collision probability of an isolated fuel rod.

Therefore, a proper correction is required to consider the
shadowing effect from neighboring fuel rods and structural
materials. In this second step of the collision probability
calculation, it is assumed that the shadowing effect is not
significantly different for the individually subdivided regions of
the fuel pellet. In other words, the subdivided regions of the
fuel pellet have the same shadowing effect. Under this
assumption, a multiterm rational equation in the equivalence
theory is used.

In PSMs, the shadowing correction factor is calculated with two
escape probabilities. One is the fuel escape probability of an isolated
fuel pin, and the other is that of the fuel pin in the lattice (or core).
Carlvik’s two-term rational approximation (Knott et al., 2010) is
applied for a cylindrical geometry to calculatePiso

e,F(u) and Pe,F(u) in
Eqs 22, 23.Piso

e,F is the fuel escape probability of the isolated fuel pellet,
and Pe,F is the fuel escape probability of the fuel pellet in the lattice.

Piso
e,F(u) � 1 − Piso

FF(u) � 2
2Σe,F

Σt,F(u) + 2Σe,F
− 3Σe,F

Σt,F(u) + 3Σe,F
; (9)

Pe,F(u) � 1 − PFF(u) � β1
α1Σe,F

Σt,F(u) + α1Σe,F
+ β2

α2Σe,F

Σt,F(u) + α2Σe,F
,

(10)

where Piso
e,F is the fuel escape probability of the isolated fuel pellet,

Pe,F is the fuel escape probability of the fuel pellet in lattice, and
the coefficients in Eq. 10 are defined with the Dancoff factor as
follows:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

A � Γ/(1 − Γ)
α1,2 � (5A + 6 ∓














A2 + 36A + 36

√ )/(2A + 2)

β1 � (4A + 6
A + 1

− α1)/(α2 − α1)
β2 � 1 − β1

, (11)

where Γ is the Dancoff factor of the fuel pellet.
It should be noted that Piso

e,F and Pe,F are probabilities for
the fuel pellet, not individual subregions of the pellet. The
total XS of the fuel pellet, Σt,F, to calculate both escape
probabilities is calculated by taking the average of the total
XSs of the subdivided regions of the fuel pellet. Although Eq.
8 is only used for the PSM, the average XS of the fuel pellet is
needed for both PSM and PSM-CPM to consider the
shadowing effect.

The shadowing effect correction factor, which adjusts the fuel
escape probability of an isolated fuel pin to consider the shadowing
effect, is defined as a ratio of the fuel escape probabilities of two
systems in the isolated fuel pellet and the lattice as follows:

ηF(u) �
Pe,F(u)
Piso
e,F(u)

. (12)

The shadowing effect correction factor is multiplied by the fuel
escape probability in each subregion of the fuel pellets as follows:

PiM(u) � Pe,i(u) � ηi(u)Piso
e,i (u) , (13)

where

Piso
iM(u) � Piso

e,i (u) � 1 −∑
j∈F

Piso
ij (u); (14)

ηi(u) ≈ ηF(u) . (15)

It is assumed that the shadowing effect correction factor of the
subdivided region i is equal to that of the fuel pellet, as shown in
Eq. 15. The source distribution in the fuel pellet is very important
because it has a significant effect on the fuel escape probability.
When Pe,F and Piso

e,F are calculated, a constant source distribution
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in the fuel pellet is assumed. Therefore, the probabilities are not
exact. The error from the constant source assumption exists in
both Pe,F and Piso

e,F. However, the error existing in both escape
probabilities is not expected to appear in the final products
because the ratio of Pe,F and Piso

e,F is used. The error existing in
both the numerator and denominator of the shadowing effect
correction factor in Eq. 12 can be canceled out.

The collision probabilities from the nonfuel region are
expressed as follows:

PMi(u) � PiM(u)Σt,i(u)Vi

Σp,MVM
; (16)

PMM(u) � 1 −∑
i∈F

PMi(u) � 1 −∑
i∈F

PiM(u)Σt,i(u)Vi

Σp,MVM
. (17)

Finally, all the collision probabilities and escape probabilities,
which are needed to solve the slowing-down equations in Eqs
4–6, are derived.

2.1 Calculation Flow
There are two different options depending on how the collision
probabilities of the subdivided regions of the isolated fuel pellet (i.e.,
Piso
ij ) are calculated. The flowchart of PSMs is shown in Figure 1. The

boxes with the dashed line are processes for only the PSMbut not the
PSM-CPM. The calculation process is as follows:

1. Read input information in a given problem.
2. Read the 72-group multigroup XS library and the 5·104 equal-

lethargy pointwise energy XS library.
3. Generate the P̂

iso
ij vs total XS table for all the pin-geometry

types in the given problem by using the CPM solver.
4. Perform the fixed-source MOC transport calculation for the

whole-problem domain, and then calculate the individual
Dancoff factors of the fuel pins with the enhanced neutron
current method (Yamamoto, 2012).

5. Calculate Piso
e,F and Pe,F with Carlvik’s two-termmethod (Knott

et al., 2010) and then calculate the shadowing effect correction
factor ηF using Eq. 12.

6. Interpolate P̂
iso
ij from the P̂

iso
ij table using the pointwise total XS

of the fuel pellet for energy u (PSM) or calculate Piso
ij using the

CPM solver with the spatially dependent pointwise total XSs in
the fuel pellet for energy u (PSM-CPM).

7. Correct the shadowing effect using the shadowing effect
correction factor as in Eq. 13, and then calculate Pij, PiM,
PMi, and PMM with Eqs 13–17.

8. Solve the pointwise energy slowing-down equations in Eqs
4–6. Repeat steps 6–8 for all the pointwise energy points from
high to low energy.

9. Condense the pointwise XS to the position-dependent
multigroup XS. Consider the resonance upscattering effect
for 238U (Choi, 2017; Choi et al., 2017). Return to step 5) until
all the fuel pins in the problem are treated.

3 NUMERICAL RESULTS

Several LWR problems are solved to verify the accuracy of the
PSMs. Table 1 presents a summary of test cases and methods

used in the verifications. The test cases include the pin-cell and
FA geometry with uniform material distribution, uniform
temperature profile, and fresh fuel. The methods used in the
comparisons are as follows:

1. EQ: The conventional equivalence theory.
2. PSM: The pin-based pointwise slowing-downmethod with the

P̂
iso
ij table.

3. PSM-CPM: The pin-based pointwise slowing-down method
with the CPM.

The following option was used in all the calculations in
Sensitivity Test for Energy Points in the Pointwise Cross-Section
Library and VERA 17 × 17 Fuel Assembly Problem: MOC
condition: 0.01 cm ray spacing, 128 azimuthal angles, and
T–Y optimized three polar angles (Yamamoto et al., 2007). It
should be also noted that those calculation results in Sensitivity
Test for Energy Points in the Pointwise Cross-Section Library and
VERA 17 × 17 Fuel Assembly Problem were calculated with the P2
high-order scattering model to reduce errors from the anisotropic
source. The reference was the MCS Monte Carlo code (Lee et al.,
2020). The numerical test was performed with the lattice physics
code STREAM (Choi et al., 2015b). STREAM uses the method of

FIGURE 1 | Flowchart of the pin-based pointwise energy slowing-down
solution method (PSM) (Choi, 2017; Choi et al., 2017).
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characteristics (MOC) for the transport calculation and the
equivalence theory for resonance treatment.

3.1 Sensitivity Test for Energy Points in the
Pointwise Cross-Section Library
Sensitivity test was performed to determine a reliable option to
give accurate results by PSMs. The parameter to test is the
number of energy points in the PW XS libraries.

The number of energy points is important in terms of accuracy
and computational efficiency. When many energy points are
used, the solution from the slowing-down calculation is
accurate. However, the calculation time is proportional to the
number of energy points. Four pointwise energy libraries, which
have different numbers of energy points, were used in the
sensitivity test. A normal UO2 pin-cell depletion problem was
solved with PSMs. The reason that the depletion problem was
selected is that light nuclides usually do not need many energy
points, whereas heavy nuclides need many energy points because
of their many resonances in XSs. Pointwise energy XS libraries
with 5,000, 10,000, 50,000, and 100,000 points were used in the
test. The energy between 0.3 eV and 30 keV was divided with
equal lethargy depending on the libraries. The result with 100,000
points was set as a reference. From the internal test, it was verified
that more than 100,000 points do not have noticeable effect on the
results.

Figure 2 shows the results with the four libraries. The result with
50,000 energy points is quite close to the reference. The differences in
the eigenvalue are less than 5 pcm over all the depletion steps. The
result with 10,000 energy points is also reliable in terms of
the eigenvalue. The maximum difference is 17 pcm. However, the
result with 5,000 energy points is significantly different from the
reference, with a maximum difference of 133 pcm. From this
sensitivity test for the number of energy points, it is verified that
50,000 energy points are sufficient to get an accurate result. In the
STREAM code, the pointwise energy XS library with 10,000 points is
used as a default. The library is accurate enough to get reasonable
solutions for practical use. The library with 50,000 points is used as
an option when a user wants to get the most accurate result. All the
results in this work were generated with 50,000 energy points to get
the highest accuracy. The number of energy points can be further
reduced by using a small lethargy width for high energy and a large
lethargy width for low energy because resonances at high energy are
narrower and more densely distributed.

The calculation times elapsed in PSMs were tested. A UO2 fuel
burnup level of 60 MW d/kg was used in this test. The number of

the subdivided regions of the pellet is 5. Because of the spatial self-
shielding effect in the fuel pellet, the material compositions are
nonuniform in the pellet. The number of nuclides in the fuel is
198. The library with 50,000 points was used in this test. The
eigenvalue results and elapsed time are shown in Table 2.

When the P̂
iso
ij table is used to calculate the collision

probabilities of the isolated fuel pellet (i.e., Piso
ij ), the elapsed

time used in “PSM solution” is reduced by a factor of 13.5. There

TABLE 1 | Summary of test cases (Choi, 2017).

Section Test name Geometry Material
distribution

Temperature
profile

Method Note

3.1 Sensitivity test for energy points in the PW XS
library

Pin-cell Uniform,
nonuniform

Uniform PSM, PSM-CPM Computing time and
eigenvalue

3.2 VERA FA FA Uniform Uniform PSM Various FA types
3.3 17 × 17 FA FA Uniform Uniform EQ, PSM,

PSM-CPM
Computing time test

FIGURE 2 | Comparison of k-inf from the PSM with different numbers of
energy points in the XS libraries (Choi, 2017).

TABLE 2 | Elapsed time in resonance treatment with PSMs (Choi, 2017).

Method → PSM-CPM PSM

k-inf → 0.79267 0.79282

Elapsed time (sec) PSM solutiona 0.148 0.011
XS condensationb 0.102 0.115
Nuclide groupingc 0.104 0.104

P̂
iso
ij tabled — 0.003

PSM totale 0.354 0.233

aElapsed time in solving the slowing-down equation and calculating collision
probabilities.
bElapsed time in condensing the pointwise XS, to multigroup XS.
cElapsed time in calculating the macroscopic XSs, and the average mass for the each
nuclide group.
dElapsed time in generating the collision probability table.
eTotal elapsed time in all calculations related to the PSM.
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are two error sources for the P̂
iso
ij table. One is error from

interpolating P̂
iso
ij . The P̂

iso
ij table is generated as a function of

the total XS of the fuel pellet. From the internal test, it was
concluded that the error from the interpolation is less than 4
pcm. The second error source is in approximation in the P̂

iso
ij table.

The P̂
iso
ij table is made with a constant pointwise XS approximation

in the fuel pellet. Overall, an error of 15 pcm occurs from the P̂
iso
ij

table. The second error source is themajor difference between PSM
and PSM-CPM. More detailed comparisons are performed in the
accompanying article (Kim et al., 2021). The P̂

iso
ij table effectively

reduces the calculation time without a significant loss of accuracy.
The additional calculation time required in generating the P̂

iso
ij table

is 0.003 s, which is negligible. The PSM takes 0.233 s to calculate the
effective multigroup XS of the burned fuel pellet with five
submeshes. Although the XS condensation and the grouping are
quite a simple calculation, they are themajor time-consuming tasks
in PSMs. The code must be further optimized to reduce the
calculation time in the XS condensation and the grouping. With
the 10,000-point library, the calculation time can be further
reduced by a factor of 5.

3.2 VERA 17 × 17 Fuel Assembly Problem
17 × 17 fuel assembly (FA) problems were solved to verify PSMs.
The 17 × 17 FAs in the VERA benchmark problem (Godfrey,
2014) were selected and solved as described in this section.
Figure 3 shows the configuration of the rods for various types

of FAs. Various burnable poisons and control rods were used in
the FA design. Table 3 summarizes the material information and
short descriptions of the FAs. The detailed specifications of the
geometry and the material compositions are well described in the
reference (Godfrey, 2014). The solutions for the 17 × 17 FAs were
generated by the PSM. The fuel pellets used in this problem have a
uniformmaterial composition and a uniform temperature profile.

The results for k-inf and the pin power distribution were
obtained with PSMs as shown in Table 4 and Table 5,
respectively. PSMs show quite accurate and consistent results.
The differences in k-inf are of the order of 100 pcm. For the FA
with AIC control rods, the PSM-CPM has a difference of 216 pcm
in k-inf. The RMS difference and the maximum difference in the
power distribution are approximately 0.17 and 0.41%, respectively.

From the verification with the various types of 17 × 17 FAs, it
is verified that PSMs calculate accurate and consistent results in
k-inf and the pin power distribution.

The PSM and PSM-CPM calculate identical solutions for the
condition (i.e., a uniform material composition and temperature
profile in the fuel pellet). There is a slight difference (i.e., less than
3 pcm in the eigenvalue) between PSM and PSM-CPM caused by
the P̂

iso
ij table interpolation.

3.3 Test for Computing Time
The PSM and PSM-CPM showed high accuracy in the reactor
parameters for the various verification problems. In order to use

FIGURE 3 | Configuration of rods in the 17 × 17 fuel assembly problem (Choi, 2017).
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the PSM and PSM-CPM in a practical design, it should be
confirmed that they calculate the effective multigroup XS
within a reasonable computation time.

The 17 × 17 FA problem was selected for the computation time
comparison. The EQ was compared to the PSM. The FA was
modeled with octant symmetry. For this section, the following
option was used in the calculation: MOC condition: 0.05 cm ray
spacing, 48 azimuthal angles, and three polar angles. In the test, each
pin-cell had eight azimuthal sectors, three radial subregions in the
coolant, and five radial subregions in the fuel pellet. The number of
flat source regions is 2,842. The number of macroscopic XS sets is
242. The inflow transport corrected P0 (TCP0) model is used for
both options (Choi et al., 2015c). Generally, these MOC conditions
and the TCP0 model are used for practical calculations.

The time comparison results are shown in Table 6. The results
were generated on an OSX system with a 3.1-GHz Intel Core i7
processor. PSMs perform the energy-independent fixed-source
calculations to consider the shadowing effect. However, the EQ

needs 15 fixed-source solutions for the fuel. The STREAM code
performs the fixed-source MOC calculation for the resonance
energy groups above 4 eV (Choi et al., 2015a). In case of the 17 ×
17 FA problem, the Dancoff factors are calculated for the fuel and
the cladding. PSMs are not applied on the resonance treatment
for the cladding. Both PSMs and EQ use a common resonance
treatment method (Choi et al., 2015a) for the cladding. The
cladding resonance treatment method is based on the
equivalence theory, and therefore PSMs and EQ perform
energy-group–dependent MOC fixed-source calculations.
Finally, PSM requires 16 MOC fixed-source solutions (1 for the
fuel; 15 for the cladding), whereas EQ requires 30 fixed-source
solutions (15 for the fuel; 15 for the cladding). This is why PSMs
need approximately half the computation time in the fixed-source
calculation (MOC FSP in Table 6) compared to EQ. Obviously, the
elapsed time in the fixed-source MOC calculation depends on the
MOC ray conditions. PSMs solve the slowing-down equations for
the individual fuel pins. In the case of the 17 × 17 FA problem with

TABLE 3 | Description for the fuel assembly problem (Choi, 2017).

Problem Description UO2 enrichment
(%)

Moderator temperature
(K)

Fuel temperature
(K)

Moderator density
(g/cc)

Boron concentration
(ppm)

A No poison 3.1 565 565 0.743 1,300
B No poison 600 600 0.661
C No poison 900
D No poison 1,200
E 12 Pyrex 600 0.743
F 24 Pyrex
G 24 AIC
H 24 B4C
I Thimble
J Thimble, 24 Pyrex
K Zoned, 24 Pyrex 3.1, 3.6
L 80 IFBA 3.1
M 128 IFBA
N 104 IFBA, 20 WABA
O 12 Gadolinia 1.8, 3.1
P 24 Gadolinia

TABLE 4 | k-inf results—PSM and PSM-CPM.

Problem Description k-inf

MCS PSM Difference (pcm) PSM-CPM Difference (pcm)

A No poison 1.18165 ± 0.00007 1.18179 14 1.18181 16
B No poison 1.18298 ± 0.00007 1.18303 14 1.18306 17
C No poison 1.17371 ± 0.00008 1.17357 −14 1.17360 −11
D No poison 1.16597 ± 0.00007 1.16567 −30 1.16570 −27
E 12 Pyrex 1.06915 ± 0.00007 1.06922 7 1.06924 9
F 24 Pyrex 0.97554 ± 0.00007 0.97569 15 0.97571 17
G 24 AIC 0.84743 ± 0.00007 0.84957 214 0.84959 216
H 24 B4C 0.78759 ± 0.00008 0.78865 106 0.78867 108
I Thimble 1.17931 ± 0.00007 1.17960 29 1.17962 31
J Thimble, 24 Pyrex 0.97475 ± 0.00007 0.97494 19 0.97497 22
K Zoned, 24 Pyrex 1.01944 ± 0.00007 1.01987 43 1.01989 45
L 80 IFBA 1.01837 ± 0.00007 1.01896 59 1.01898 61
M 128 IFBA 0.93838 ± 0.00007 0.93914 76 0.93916 78
N 104 IFBA, 20 WABA 0.86919 ± 0.00007 0.86977 58 0.86978 59
O 12 Gadolinia 1.04722 ± 0.00007 1.04694 −28 1.04697 −25
P 24 Gadolinia 0.92683 ± 0.00007 0.92646 −37 0.92648 −35
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octant symmetry, the slowing-down equations are solved for 39 fuel
pins. Approximately 0.41 s is spent on the pointwise energy
slowing-down calculations for all the fuel pins in the problem.
PSMs spend additional time on grouping the nuclides and the
energy condensations. A non-negligible time is consumed for these
calculations, although the calculations are quite simple. Because the
pointwise energy XS data are used in PSMs, these calculations are
inevitable. The PSM-CPM takes a longer time in the slowing-down
solver because it calculates the collision probability with the CPM
solver for all energy points. PSMs spend less time in interpolating
the RI from themultigroup RI library because they do not use the RI
look-up table to calculate the effective XSs of fuel materials.

The same problem was solved with different numbers of the
radially subdivided regions in the fuel pellet. Figure 4 shows the

calculation time as a function of the number of the subdivided regions
in the fuel pellet. Both PSM and PSM-CPMwere tested with different
numbers of regions.When the number of radially subdivided regions
is small, the differences in the calculation time between PSMs are not
noticeable. As the number of the subdivided regions increases, the
elapsed time used in the XS generation significantly increases with the
PSM-CPM. With the PSM-CPM, the XS generation accounts for a
very large portion of the total simulation. However, the elapsed time
in the XS generation with the PSM is not very long compared to the
total simulation time. The PSM is very effective in reducing the
calculation time in the XS generation.

In conclusion, PSMs can calculate the multigroup XS within a
reasonable computation time. PSMs save the calculation time by
reducing the number of MOC fixed-source calculations. Even
though PSMs solve the pointwise energy slowing-down
equations, the calculation time is not problematic because
various techniques are applied to enhance the performance of
PSMs (Choi, 2017). The PSM-CPM takes a longer time in

TABLE 5 | Pin power distribution results—PSM and PSM-CPM.

Problem Description Pin power difference (%)

PSM vs MCS PSM-CPM vs MCS

RMS Max RMS Max

A No poison 0.116 ± 0.001 0.217 ± 0.001 0.116 ± 0.001 0.217 ± 0.001
B No poison 0.103 ± 0.001 0.205 ± 0.001 0.103 ± 0.001 0.205 ± 0.001
C No poison 0.151 ± 0.001 0.345 ± 0.001 0.151 ± 0.001 0.345 ± 0.001
D No poison 0.127 ± 0.001 0.254 ± 0.001 0.127 ± 0.001 0.254 ± 0.001
E 12 Pyrex 0.109 ± 0.001 0.303 ± 0.001 0.109 ± 0.001 0.303 ± 0.001
F 24 Pyrex 0.126 ± 0.001 0.264 ± 0.001 0.126 ± 0.001 0.264 ± 0.001
G 24 AIC 0.172 ± 0.001 0.357 ± 0.002 0.172 ± 0.001 0.357 ± 0.001
H 24 B4C 0.153 ± 0.001 0.408 ± 0.002 0.153 ± 0.001 0.408 ± 0.001
I Thimble 0.143 ± 0.001 0.340 ± 0.001 0.143 ± 0.001 0.340 ± 0.001
J Thimble, 24 Pyrex 0.153 ± 0.001 0.351 ± 0.001 0.153 ± 0.001 0.351 ± 0.001
K Zoned, 24 Pyrex 0.129 ± 0.001 0.297 ± 0.002 0.129 ± 0.001 0.297 ± 0.002
L 80 IFBA 0.108 ± 0.001 0.317 ± 0.001 0.108 ± 0.001 0.317 ± 0.001
M 128 IFBA 0.140 ± 0.001 0.285 ± 0.002 0.140 ± 0.001 0.285 ± 0.002
N 104 IFBA, 20 WABA 0.154 ± 0.001 0.414 ± 0.002 0.154 ± 0.001 0.414 ± 0.002
O 12 Gadolinia 0.148 ± 0.001 0.370 ± 0.001 0.148 ± 0.001 0.370 ± 0.001
P 24 Gadolinia 0.159 ± 0.001 0.339 ± 0.001 0.159 ± 0.001 0.339 ± 0.001

TABLE 6 | Comparison for elapsed time (unit: s) (Choi, 2017).

Category EQ PSM PSM-CPM

Reading librarya 0.36 0.37 0.37
MOC FSP solver for fuelb 0.36 0.03 0.03
MOC FSP solver for claddingc 0.36 0.35 0.36
Interpolation in multigroup XS and RI librariesd 0.97 0.15 0.14
Nuclide groupinge — 0.23 0.22
XS condensationf

Slowing-down solverg — 0.42 5.21
Total XS generationh 2.25 1.67 6.44
Total simulation 7.78 7.16 11.95

aElapsed time in reading the XS and RI libraries.
bElapsed time in solving the MOC fixed-source problem for the fuel.
cElapsed time in solving the MOC fixed-source problem for the cladding.
dElapsed time in interpolating the multigroup XS and RI, from the multigroup XS library
and the RI library.
eElapsed time in calculating the macroscopic pointwise energy XSs of the nuclide
groups.
fElapsed time in collapsing the pointwise energy XS to the multigroup XSs.
gElapsed time in solving the slowing-down equation and calculating the collision
probabilities.
hTotal elapsed time in calculating the multigroup XSs.

FIGURE 4 | Elapsed time as a function of the number of radial meshes
(Choi, 2017).

Frontiers in Energy Research | www.frontiersin.org December 2021 | Volume 9 | Article 7658638

Choi et al. PSM Refinements Part 1: Theory

https://www.frontiersin.org/journals/energy-research
www.frontiersin.org
https://www.frontiersin.org/journals/energy-research#articles


calculating the multigroup XSs with many subdivided regions
in the fuel pellet. Nevertheless, the PSM-CPM is still useful
because more than five subdivided regions are hardly used
in the practical calculations for UO2 pin-cells. For a uniform
material distribution and temperature profile, PSMs show
consistent results. The comparative analysis between PSM and
PSM-CPM for a nonuniform material distribution and
temperature profile is presented in the accompanying article
(Kim et al., 2021).

4 CONCLUSION

The PSM has been refined to exactly consider the collision
probability in the subdivided regions of the isolated fuel pellet.
The collision probabilities of an isolated pellet with the radial
subdivisions are calculated by using the CPM. The PSM calculates
the collision probability corresponding to the grid of the total XSs
which is assumed to be constant in all the subdivided regions of
the fuel pellet before solving the slowing-down equation. Then,
the PSM uses a pre-generated look-up table for the collision
probability to reduce the calculation time, but it is only valid if the
fuel pellet has a uniform material composition and temperature
profile in the subdivided regions of the fuel pellet. On the other
hand, the PSM-CPM directly calculates the collision probability
in the fuel pellet while solving the slowing-down equation so that
exact collision probabilities in all the subdivided regions for the
isolated fuel pellet are calculated.

The PSM-CPM has been verified with a few types of LWR FA.
PSMs generate consistent results for specified problems in this
article. The verification calculations showed good agreement in the
eigenvalues, with differences of the order of 100 pcm compared to
those of the reference solutions. The pin power distributions were

also sufficiently accurate. It has also been demonstrated that the
computation times using the PSM-CPM are comparable to those
with the conventional equivalence theory methods in the practical
use. The accompanying article demonstrates more comparative
analysis to verify the PSM-CPM for nonuniform material and
temperature distributions in the fuel pellet.
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