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Organic Rankine Cycles (ORCs) are promising approaches for generating power from
medium or low temperature heat sources. In this regard, ORCs can be used to indirectly
produce power from solar energy. Due to intermittent nature of solar energy, storage unit
should be coupled with solar ORCs to improve the output power and operating hours. In
this article, studies on solar ORCs integrated with various types of storage units were
reviewed; the main findings of such studies were extracted and provided. Based on the
findings, several factors such as the temperature and pressure at the inlet of the turbine, as
well as the operating condition affect the performance of solar ORCs with thermal storage
unit just like the conventional ORCs. In addition, the optimum size of the storage unit in the
solar ORCs was found to depend on the operating condition. From the financial
perspective, it can be noted that the storage unit affects the corresponding indicators.
Moreover, the improvement rate in the ORCs by applying storage units could be affected
by the configuration of the system.
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INTRODUCTION

Industrialization and population growth are the main drivers of the increase in electricity
demand. Regarding the increment in power demand, limitations in the quantity of conventional
fossil fuels such as oil, coal, and natural gas have necessitated the search for renewable energy
sources for power generation (Amin et al., 2015; Khanlari and Alhuyi Nazari, 2021). For this
purpose, hydropower, geothermal, wind, and solar energies are currently the main alternatives
(Stark et al., 2015; Singh et al., 2018). Solar energy, with respect to its availability and huge
amount, can be harnessed in different regions of the world for clean power production. Different
technologies have been developed for power production from solar in indirect or direct modes
(Klein et al., 2015; Alizadeh et al., 2020). Generally, photovoltaic cells are employed for direct
power generation while thermal configurations are utilized for indirect power production from
solar. To generate power indirectly using solar energy, different technologies and cycles can be
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used (Grange et al., 2014; Ahmadi et al., 2018; Wang et al.,
2019); however, Organic Rankine Cycles (ORCs) are one of the
most feasible ones due to its ability to produce power using
medium or low-temperature heat sources (Castelli et al., 2019;
Haghighi et al., 2020).

The operating principles of ORCs are similar to steam Rankine
cycles; however, different working fluids are used. In the
conventional Rankine cycles, water is used as the working
fluid while different organic fluids are applicable in ORCs
(Tian and Shu, 2017). The utilization of organic fluids with
lower boiling temperatures compared to water makes it
possible to generate power from the medium or low
temperature heat sources (Tchanche et al., 2009).
Consequently, ORCs are suitable choices for power generation
with different heat sources, such as geothermal, waste heat of
industries, and solar (Stijepovic et al., 2017; Mirzaei et al., 2018).
Similar to conventional Rankine cycles, the economic and
working performance of the ORCs are affected by different
elements, such as the configuration of the system, the
operating conditions, and the used equipment (Zarogiannis
et al., 2017; Petrollese and Cocco, 2019). For instance, Stanciu
et al. (Dragomir-Stanciu et al., 2020) investigated the impact of
condensing temperature on the efficiency of a solar ORC system
and found that decreases in the temperature of condensing would
improve the efficiency. In another work by (Baccioli et al., 2017),
an ORC integrated with compound parabolic collectors was
investigated; the study found that higher concentration ratios
cause increase in specific production. In addition, the type of
operating fluid can remarkably influence the output of ORCs
(Stijepovic et al., 2017). According to a work done by Desai and
Bandyopadhyay (2016), it was concluded that the efficiency and
cost of power block were dependent on the working fluid of
the cycle.

Despite several benefits of solar energy, its intermittent nature
is one of its main disadvantages. To solve this defect, storage units
are suggested to be applied. Conventionally, electricity storage
technologies are used to overcome this situation by storing the
produced power in off-peak conditions or day hours and used in
peak or night hours. In addition, thermal storage units can be
used to improve the reliability and working hours of solar thermal
systems. Thermal energy can be stored in several forms, such as
latent heat, sensible heat, and reversible thermochemical
reactions (Kalaiselvam and Parameshwaran, 2014; Das et al.,
2021). Depending on the desired temperature for storing the
thermal energy, the choice of suitable material would be different.
In this regard, it is necessary to consider the operating condition
and the applications of the discharged thermal energy to have a
proper storage. Thermal storage units have a wide range of
applications in solar energy systems, such as solar preheaters
and desalinations (Faegh and Shafii, 2017). In addition, latent
heat thermal storage units have been used for thermal
management of the PV cells and have shown efficient
performance for this purpose (Salari et al., 2020).
Furthermore, thermal storage units would be attractive for
solar ORCs to increase the operating hours and the output power.

Despite the existence of some review papers on the working
fluids of ORCs, there is no comprehensive review work on the

solar ORCs with storage units. The current work focused on the
applications of thermal storage units in solar ORCs for the first
time. For this purpose, different scientific databases, including
GoogleScholar and Scopus were searched for the references
related to the subject of this review. Afterwards, their main
findings were extracted and provided in this paper to help
researchers in the relevant fields in their future works. In the
following section, the contents of the reviewed studies were
provided and discussed.

SOLAR ENERGY FOR POWER
GENERATION

As previously mentioned, solar energy is suitable for both direct
and indirect power generation. In this section, the main
technologies used for power generation using solar energy are
briefly discussed and explained.

PV Cells
For te direct conversion of solar radiation into electricity, PV cells
are applied. In the PV cells, special types of semiconductors are
employed. The application of solar radiation on the
semiconductor provides energy for electron transfer that give
rise to electric current (Assad et al., 2021). Crystalline and thin
film are the mostly used types of PV technologies; however, there
are some other technologies, such as organic cells which have
been used in recent years (Assad et al., 2021). The efficiencies of
some of the PV cells, which indicates the ratio of the generated
electricity to the solar incidence on the cell under standard
condition, are provided in Table 1. According to this table,
the efficiencies of the PV cells are relatively low, which
restricts adequate power generation in small spaces. Hence,
concentrators are used to reach higher solar radiation on the
surface of the PV cells by employing optical tools and mediums.
In this condition, efficient thermal management approaches can
be used to prevent efficiency degradation due to temperature
increment (Wang et al., 2020; Wu et al., 2020). From the
economic point of view, the feasibility of the solar cells for
power generation has improved in recent years. According to
the report of the International Renewable Energy Agency
(IRENA), the cost of utility-scale electricity generation by PV

TABLE 1 | The efficiencies of different types of solar cells (Green et al., 2019).

Type of cell Efficiency range (%)

Si (Crystalline Cell) 26.7±0.5
Si (Multicrytalline Cell) 22.3±0.4
Si (Thin Film Minimodule) 10.5±0.3
GaAs (Thin Film Cell) 29.1±0.6
GaAs (Multicrystalline) 18.4±0.5
InP (Crystalline Cell) 24.2±0.5
Dye (Minimodule) 10.7±0.4
Dye (Submodule) 8.8±0.3
Organic (Cell) 11.2±0.3
Organic (Minimodule) 9.7±0.3
Si (Amorphous Cell) 10.2±0.3
Si (Microcrystalline Cell) 11.9±0.3
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cells decreased by 85% between 2010 and 2020 (International
Renewable Energy Agency IRENA, 2021). This report suggests
that over 707 GW of PV systems had been installed by the end of
2020, meaning that more than 16-fold growth has been achieved
since 2010.

Solar Thermal Power Plants
In addition to direct power generation from solar energy,
electricity can be produced indirectly by using solar thermal
systems. In these technologies, thermal energy of the Sun is
used as the heat source to drive thermal power plants. To
increase the generated power in a constant space, solar
concentrators must be employed similar to concentrated PV
systems. In general, there are three kinds of concentrated solar
power systems, which are linear parabolic collectors, parabolic
dish collectors, and solar towers. Linear parabolic collectors are
composed of a linear concentrator with a parabolic cross-
sectional geometry. The surface of the concentrator follows the
Sun path on a single axis (Assad et al., 2021). This type of
concentrator is fixed on a structure and is appropriate for
unfavorable operating conditions, such as windy weather. The
received sunlight by these systems is concentrated on a tube
located along the focal point. The working fluid inside the tube
receives heat which increases its temperature and internal energy.
In parabolic dishes, reflecting panels are used to follow the path of
Sun through rotation around two axes. Sunlight is concentrated
on the receiver and installed on the focal point. Using these
systems, thermal energy in high temperature condition is
transferred to the applied working fluid. In solar towers,
heliostats, which are flat-surface reflecting panels, are applied
to concentrate the sunlight. The used panels rotate on two axes
and concentrate the received solar irradiance on a receiver
installed at the top of tower in the central region of the
systems. Similar to the previous systems, the concentrated
solar radiation increases the temperature of the fluid inside the
receiver (Assad et al., 2021). Concentrated solar power plant’s
total installation cost reduced by 50% between 2010 and 2020
(International Renewable Energy Agency IRENA, 2021).
Different working fluids, such as Brayton, ORC, and
supercritical CO2 (Yan et al., 2011; Sánchez-Orgaz et al., 2015;

Gao et al., 2019), can be applied on the collected thermal energy
for power generation. According to the data provided by the
International Energy Agency, the global concentrated solar power
generation in 2019 was 15.6 TWh and has been predicted to reach
53.8 TWh by the year 2030 (Solar, 2020).

THE OPERATING PRINCIPLES OF SOLAR
ORCS

In this section, the operating principles of the ORCs and the
selection of the working fluid were discussed.

Thermodynamic of the ORCs
As shown in Figure 1, the structure of ORCs is similar to the
conventional steam Rankine Cycles; the main components of a
simple ORC are turbine (expander), evaporator, condenser,
and pump. The operating fluid of the cycle is sent to the
evaporator using a pump. In this stage, heat is applied to the
working fluid to evaporate it at approximately constant
pressure. In solar ORCs, the required thermal energy in this
stage is supplied by solar energy. In some cases, a superheater
is applied to superheat the fluid. Afterwards, the provided
saturated or superheated fluid will be expanded in the turbine.
Finally, the turbine drives the generator for power generation
(Javanshir et al., 2017). In the expander, the pressure and
temperature of the operating fluid are decreased; subsequently,
the fluid is condensed in the condenser to become saturated or
slightly subcooled. Afterwards, the pump is used to increase
the fluid pressure and complete the cycle (Javanshir et al.,
2017). Adding some components such as regenerator units to
the simple ORCs can improve the power output of the systems;
however, the cost of the system will be increased (Haghighi
et al., 2020). When using regenerative ORCs, a heat exchanger
is installed at the outlet of the turbine, which makes it possible
to preheat the fluid entering the evaporator by transferring
heat from the outlet fluid of the turbine and the fluid entering
the evaporator as shown in Figure 2. It should be noted that
the selection of the operating fluid plays a key role in the design
of solar ORCs. The properties of the working fluid affect the

FIGURE 1 | Schematic of a simple ORC (Javanshir et al., 2017).
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operation range and efficiency of the cycle (Mirzaei et al.,
2018).

Despite the similarity in the working principles of ORCs and
conventional Rankine cycles, ORCs have some advantages, such
as applicability for lower temperatures, lower operation and
maintenance costs, no requirement for water, more compact
sizes, expanders with lower sizes and higher rotational speeds,
quiet working and simple procedures for start and stop (Darvish
et al., 2015). The main applications of ORCs are geothermal
energy, biomass, heat recovery, and solar (Darvish et al., 2015;
Markides, 2015). In addition, ORCs can be integrated with other
cycles (Pantaleo et al., 2020) mainly as the bottoming of Brayton
cycles to reach higher overall efficiencies and generated power. In
this paper, the solar ORCs with thermal storage units are
considered.

Working Fluids of ORCs
As noted earlier, the working fluid of the ORCs must have some
special properties. Generally, organic fluids are proper choices for
power generation from low grade heat sources due to their lower
specific vaporization heat compared to water (Kang, 2012). A
proper working fluid for these cycles must have appropriate
chemical, physical and environmental properties. In addition,
it is crucial to be safe and have feasible cost. The specific volume
of the fluid should be low (Linke et al., 2015). Low condensation
and high vaporization latent heat, in addition to high critical

temperature, are among the features of the working fluid that
positively affect the performance of ORCs. The fluids with lower
vapor density would increase the volumetric flow rate, leading to
increase in the pressure drop and expander size (Desai and
Bandyopadhyay, 2016). The selection of a proper working
fluid for ORC is dependent on the heat source temperature.
Table 2 provides the evaporation temperatures of some fluids
used in ORCs.

THERMAL STORAGE UNITS IN SOLAR
ORCS

Solar ORCs are categorized into two main groups–direct vapor
generation (DVG) and indirect solar ORCs. In DVG types, the
intermediate heat exchanger is removed, and solar collectors are
directly applied as the evaporator of the cycle. In the conventional
types, a heat exchanger is used to transfer the collected solar
energy to the operating fluid of the cycle using a heat transfer fluid
(Alvi et al., 2021). In both types of solar ORCs, the performance of
the system is improvable by utilizing thermal storage unit. Using
storage units in the solar ORCs extend the time of power
generation; for instance, Manfrida et al. (2016) used phase
Change Material (PCM) in solar ORC and found that the
proposed configuration can produce power in 78.5% of time
with an average efficiency of 13.4% for ORC. Based on these
findings, it could be concluded that the addition of a storage unit
will extend the operating hour. In another work, Kutlu et al.
(2018) applied pressurized hot water as the storage unit in a solar
ORC. It was found that the adjustment of the mass flow rate of
water in the evaporator section of the ORC gave a power output
range of 4.3–5.7 kW in the daytime and 4.7 and 4.3 kW at late
night. This finding showed that the integration of a storage unit
with the solar ORC can facilitate the operation of the system even
in the absence of solar radiation.

The performance of the solar ORCs using storage unit is
affected by different factors, and the configuration of the system is
one of the most important factors. For instance, Alvi et al. (2020)
compared the performance of both direct and indirect solar ORCs
by applying the same collector, operating fluid, and storage unit.

FIGURE 2 | Schematic of regenerative ORC (Tchanche et al., 2010).

TABLE 2 | Selection of the working fluid for ORCs based on the literature (Bao and
Zhao, 2013; Thurairaja et al., 2019).

Temperature of
evaporation
(℃)

Fluid suggestion by
the researchers

50–100 R245fa, R134a, Hexane, R123, Butane, R141b, and
R227ea

100–150 Solkatherm, R236ea, R11, R114, R245fa, R601,
R601a, R113, and R141b

150–200 Ethanol, benzene, R245fa
200–300 R123 and butylbenzene
250–500 n-hexane, n-pentane, toluene, n-octane, n-dodecane
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For the considered case study (Islam Abad in Pakistan), their
model revealed that the annual system efficiency of the direct
solar ORC was 71.96% higher compared to the corresponding
value of the indirect solar ORC. Furthermore, they found that the
capacity of the systems increased by 21.71 and 17% for the
indirect and direct solar ORCs, respectively. In another work,
Wang et al. (2014) investigated the impacts of different factors on
the performance of a solar ORC with compound parabolic
collector. They found that decreases in the ambient
temperature and increases in the mass flow rate of thermal oil
(as storage unit) could enhance the performance of the cycle in
off-design conditions. Other parameters can also influence the
performance of the simple or regenerative solar ORCs; for
instance, a regenerative solar ORC with thermal storage unit
was analyzed by Wang et al. (2013). It was found that increment
in the turbine inlet temperature and pressure leads to
performance improvement of the system. Due to the
dependency of the performance on the operating conditions,
the optimal size of the storage unit is dependent on these factors.
For instance, He et al. (2012) investigated the performance of a
solar ORC with parabolic solar trough and found that the optimal
volume of the storage unit highly depends on the solar
irradiation, and the highest size is required in summer solstice.
Operating conditions affect the economic indicators of the solar
ORCs with thermal storage units in addition to the technical
aspects. According to the findings of a study by (Baral, 2020),
solar source temperature remarkably influences the electricity
generation cost. Based on their case study, the cost of electricity
generation in cases of solar heat sources of 90℃ and 120℃ were
0.6 and 0.4 $/kWh, respectively. These findings show that
increment in the temperature of heat sources (solar thermal
system in this case) could lower the cost of power generation;
consequently, it may be better to apply this system at higher solar
irradiances in cases where continuous power generation is not
required.

The type of storage unit can remarkably affect the overall
performance of the solar ORCs using storage. As an example,
Bellos et al. (2020) investigated the performance of a

regenerative solar ORC shown in Figure 3 by applying
three storage types, including pure thermal oil, thermal oil
in addition to rocks, and finned PCM. As seen in Figure 4,
the use of PCM and thermal oil + rock improved the
efficiency as defined by the ratio of net electricity
generation to the heat input in the system, compared to
the use of pure oil as storage. The Net Present Value (NPV)
of the system was compared for different types of storage
units and it was found that applying pure oil results in the
lowest NPV for all the considered collecting areas.
According to the findings of this study, it can be
determined that system performance in terms of technical
and financial criteria is under the influence of storage
material and type since the stored heat in the thermal
storage unit is dependent on the properties of the applied
material, such as the latent and sensible heat capacities, and
thermal conductivity of the material (Iasiello et al., 2017). In
this regard, it would be beneficial to assess different storage
types and materials to find the most appropriate choice.

Solar ORCs with thermal storage unit have been optimized by
considering different objective functions; for instance, Yu et al.
(2021) optimized a solar ORC with and without recuperator as
shown in Figure 5 by considering the overall efficiency of the
cycle as the objective function. In their study, the decision
variables of the optimization were temperatures of the hot and
cold tanks, evaporation pressure, operating fluid mass flow rate,
heat load of the recuperator, and cold tank temperature
(recuperative ORC). They found that the thermal efficiency of
the cycle with recuperator was around 11.2–18.7% higher than
the systems without it. Other criteria can also be used to optimize
solar ORCs with thermal storage; for instance, Bellos and
Tzivanidis (2020) financially optimized a solar ORC with
recuperator as shown in Figure 6 by considering the volume
of the storage tank and the area of collecting as the variables. The
nominal power generation was set 10 kW and for this system, the
minimum payback period was found to be 8.37 years. They also
found that there is an optimum value for the size of the storage
tank as higher values were not beneficial from the financial point

FIGURE 3 | Schematic of regenerative solar ORC with different types of storage units (Bellos et al., 2020).
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of view. Increment in the size more than the optimal value would
not be useful since the storage capacity is limited and higher that
it cannot be possible or utilizable for the system.

Solar ORCs can be integrated with other systems to supply
other energy-related output in addition to electrical power
(Tarique et al., 2014; Kutlu et al., 2019). For instance, Ramos

FIGURE 4 | Efficiency of the system in different collecting areas (Bellos et al., 2020).

FIGURE 5 | Schematic of a solar ORC with two-tank thermal storage and recuperator (Yu et al., 2021).

FIGURE 6 | Schematic of solar ORC with storage tank and recuperator (Bellos and Tzivanidis, 2020).
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et al. (2018) investigated two configurations, as shown in
Figure 7, to investigate their performance. The proposed
configurations were used to generate power and supply
domestic hot water (DHW). Different working fluids were
used in the proposed configurations to find the optimal

performance. It was observed that in term of electricity
prioritization, using evacuated tube solar collector is preferred.
Furthermore, in case of using the best fluid for each configuration,
the investment cost of the configuration using flat plate collector
was much higher than the one using evacuated tube. In another

FIGURE 7 | Solar ORCs with (A) flat-plate collector, (B) evacuated collector (Ramos et al., 2018).

FIGURE 8 | Schematic of a CHP system using ORC and thermal storage (Freeman et al., 2017).
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study, a solar combined heat and power system using ORC and
thermal storage was investigated by Freeman et al. (2017) as
shown in Figure 8. The study compared the performance of the
system using different PCMs and sensible thermal energy storage.
They found that using inorganic PCM as the storage led to the
highest outlet work of ORC. Utilizing inorganic PCM resulted in
20 and 41% higher daily output in comparison to the cases of
using the best considered sensible storage and the best solid
thermal energy storage, respectively.

Table 3 summarized the findings of the works on the
applications of the thermal storage units in the solar ORCs.

EXISTING CHALLENGES FOR USING
THERMAL STORAGE UNITS IN SOLAR
ORCS
In the previous sections of this article, the applications of thermal
storage units in solar ORCs have been reviewed. According to the
outcomes of the research studies in this field, using storage unit in
these systems would be useful in terms of power generation,
operating hour extension, and reliability of the plants; however,
there are some challenges in this area. First, the integration of
thermal storage units will increase the cost of the system, which
may cause higher levelized cost of electricity generation. In
addition, applying storage units require some accessories that
will increase the complexity of the systems and the maintenance
cost. The use of storage units may also necessitate some changes
in the configuration of the system. Besides the mentioned
challenges, the selection of thermal storage material and type
is another issue that must be considered in the design of solar
ORCs with storage units. To properly integrate storage units with

solar ORCs, it is crucial to consider different factors, such as the
required volume of storage material, the operating temperature of
the system, and the working fluid.

RECOMMENDATIONS FOR FUTURE
WORKS

The performance of solar ORCs has been investigated from
different perspectives in recent years; however, there are some
suggestions that can be considered for the future works. First,
there is not enough experimental work on the solar ORCs, and
it is highly recommended to perform experimental works to
reach more realistic results. In the experimental works, the
effects of different parameters must be considered by varying
the operating conditions, such as the ambient temperature and
pressure, and solar irradiation. In addition, it would be useful
to consider exergy and exergoeconomic analysis more widely
in future to get better insight into the system performance
(Kerme and Orfi, 2015). By conducting exergy analysis and
determining the exergy destruction of the components, the
potentials of performance improvement could be better
distinguished. Furthermore, the storage unit of the solar
ORC can be improved by using different tools and
approaches, such as the incorporation of nanotechnology
(Alhuyi Nazari et al., 2021), and conductive heat transfer
mediums such as heat pipes and thermosyphons. The idea
of using heat pipes has been considered in some other energy-
related systems and have shown efficient performance; this
approach can be applied in solar ORCs with thermal storage
units to accelerate and improve heat transfer and consequently
modify the overall performance (Jung and Boo, 2014; Wu et al.,

TABLE 3 | Summaries of the works on the solar ORCs with storage units.

References Type of thermal storage
unit

Solar technology Main findings

Manfrida et al. Manfrida et al.
(2016)

PCM Parabolic trough collector The system was able to generate power in 78.5% of time

Kutlu et al. Kutlu et al. (2018) Pressurized hot water Evacuated flat plate collector The power output of the system in late night was more than 4.3 kW
Alvi et al. Alvi et al. (2020) PCM Evacuated flat plate

collectors
Using PCM in indirect solar ORC led to more increment in capacity
factor compared with direct solar ORC.

Wang et al. Wang et al.
(2014)

Thermal oil Compound parabolic
collector

Decrement in the ambient temperature caused improvement in the
performance of off-design condition

Bellos et al. Bellos et al.
(2020)

Thermal oil, thermal oil + rock
and PCM

Parabolic trough collector The lowest NPV was observed in cases of using thermal oil as the
storage unit

Baral Baral (2020) Water Evacuated tubular collector Higher temperature of solar heat source led to lower cost of electricity
generation

He at al. He et al. (2012) Heat transfer oil Parabolic trough collector Optimal size of the storage unit is dependent on the solar irradiation
Wang et al. Wang et al.
(2013)

Water Flat plate collector Increase in the temperature and pressure at the inlet of turbine caused
performance enhancement

Yu et al. Yu et al. (2021) Two-tank storage Parabolic trough collector Using recuperator in the cycle could increase the cycle thermal
efficiency by up to 18.7%

Bellos et al. Bellos and
Tzivanidis (2020)

Thermal oil Parabolic trough collector There is an optimum value for the size of storage tank and further
increase is not beneficial

Ramos et al. Ramos et al.
(2018)

Water Flat plate and evacuated
tube collectors

Using evacuated tube collector was preferred in term of electrical
prioritization

Freeman et al. Freeman et al.
(2017)

Different PCMs and sensible thermal
energy storages

Array of solar collector Using inorganic PCM led to much higher daily output work compared
with the sensible thermal energy storage
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2018). Moreover, the thermal performance of the system can
be enhanced by dispersing nanoparticles in the PCMs or heat
transfer fluids used for sensible storage due to the modification
of the thermophyscial properties (Ramezanizadeh and Alhuyi
Nazari, 2019). For the modeling and forecasting of the
performance of the solar ORCs with thermal storage units,
intelligent methods such as artificial neural networks can be
applied due to their ability in modeling complex systems. By
employing these methods and using proper inputs, the outputs
of the solar ORCs can be predicted in a fast and accurate way;
furthermore, the obtained models would be useful for the
optimization of the systems.

In addition to the modeling and performance improvement
of solar ORCs with thermal storage components, there are
some suggestions for optimization of these systems. For
instance, it is highly suggested to apply more novel
algorithms to optimize solar ORCs with storage units. In
addition, hybrid optimization approaches obtained by
integrating different algorithms would be useful for the
future works. Moreover, it is recommended to apply
optimization with more objective functions. The
components of the storage units, such as the dimension and
number of fins (Shinde et al., 2017), can also be optimized to
reach the maximum efficiency and output of the systems.
Finally, the ORCs using different renewable energies as heat
source can be coupled with thermal storage units, analyzed and
optimized by considering different objective functions.

CONCLUSION

ORCs are promising technologies for power generation from
solar energy due to their ability in power generation using low
or medium temperature heat sources. To extend the operating
hours and increase the output power of solar ORCs, different
thermal energy storage units can be applied. In this work, the
studies on solar ORCs with thermal storage units were
reviewed and based on the review, the most important
findings are as follows:

• The type and material of the storage unit significantly
influences the performance and output of the system.

• In addition to technical features, the type of storage unit
affects the economic aspect of solar ORCs.

• The performance improvement of the solar ORCs with thermal
storage units is dependent on the system configuration.

• Different thermal storage types such as sensible and latent
heat are applicable for solar ORCs.

• The operating hours of the solar ORCs could be extended by
using thermal storage units to make them applicable in
night hours.

• The optimal size of the storage unit is dependent on some
factors such as solar irradiance and demand.

• Like the solar ORCs without storage units, using additional
equipment such as recuperator can improve the performance.

The performance of the solar ORCs with storage unit is
dependent on the operating conditions and the employed
technologies, such as the type of collector.

• Solar ORCs with thermal storage units can be integrated
with other technologies to supply other energy-related
demand, such as heating load.

• There is an optimum size for storage units of solar ORCs
and further increase would not be beneficial.
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