1' frontiers

in Energy Research

ORIGINAL RESEARCH
published: 26 October 2021
doi: 10.3389/fenrg.2021.771465

OPEN ACCESS

Edited by:

Yaxing Ren,
University of Warwick,
United Kingdom

Reviewed by:

Jian Chen,

Yancheng Institute of Technology,
China

Hong-Bing Zeng,

Hunan University of Technology,
China

Wen-Juan Lin,

Qingdao University, China

*Correspondence:
Da Xu
xuda@cug.edu.cn

Specialty section:

This article was submitted to
Smart Grids,

a section of the journal
Frontiers in Energy Research

Received: 06 September 2021
Accepted: 23 September 2021
Published: 26 October 2021

Citation:

Yuan Z-L, Xu D, Jin L and

Wang H-Z (2021) Delay-Dependent
Stability Analysis of Load Frequency
Control for Power System With

EV Aggregator.

Front. Energy Res. 9:771465.

doi: 10.3389/fenrg.2021.771465

Check for
updates

Delay-Dependent Stability Analysis of
Load Frequency Control for Power
System With EV Aggregator

Zhe-Li Yuan"?3, Da Xu"?%*, Li Jin"%® and Hong-Zhang Wang"**

"School of Automation, China University of Geosciences, Wuhan, China, 2Hubei Key Laboratory of Advanced Control and
Intelligent Automation for Complex Systems, Wuhan, China, 3Eng/neering Research Center of Intelligent Technology for Geo-
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In this paper, the stability of load frequency control (LFC) for delayed power systems with
an electric vehicle (EV) aggregator is studied based on Lyapunov theory and linear matrix
inequalities (LMIs). Through mechanism analysis, the LFC of power systems with an EV
aggregator based on a proportional-integral—differential (PID) controller is modeled. By
constructing a delay interval information correlation functional and estimating its derivative
using Wirtinger inequality and extended reciprocally convex matrix inequality, a new
stability analysis criterion is proposed. Finally, in order to verify its advantage, the
proposed method is used to discuss the influence of EV aggregator gains and PID
controller gains on the delay margins for LFC of power systems with EV aggregator
participation in frequency regulation.

Keywords: power system, load frequency control, electric vehicles, stability analysis, time delay

1 INTRODUCTION

Under the guidance of sustainable development concept, the generation of renewable energy
sources (RESs) such as wind power, hydropower, and photovoltaic power has developed
rapidly in recent years, and part of traditional thermal power generation will be gradually
replaced (Zhou et al.,, 2018). However, the grid connection of these RESs also brings some
problems, especially the wind power generation with great intermittency and volatility (Jin
etal., 2021b; Shi et al., 2021). These problems aggravate the imbalance between generation and
load consumption in the power systems, resulting in obvious frequency fluctuation. Therefore,
load frequency control (LFC) is widely used in power systems (Jin et al., 2019; Shangguan et al.,
2021b). The frequency deviation caused by an intermittent energy grid connection is difficult
to be eliminated by traditional generator sets. With the grid connection of controllable loads
such as electric vehicles (EVs) and the rapid response characteristics of batteries, some studies
paid attention to vehicle-to-grid technology, which provides frequency regulation services
with alarge number of converging EVs (Peng et al., 2017; Jia et al., 2018; Pinto et al., 2021; Teng
et al., 2021).

In traditional power systems, the time delay phenomenon of the LEC system is not obvious.
However, modern power systems tend to use flexible and open communication networks for
information exchange (ShangGuan et al., 2021). For power systems with EVs and intermittent
wind power connected, the EV aggregator needs to transmit the control command to the EVs
through open communication networks (Ko and Sung, 2019; Li et al., 2019). The use of such
networks will inevitably bring unreliable factors, such as time delay, packet loss, and potential
failure, which may lead to instability of LFC for power systems (Jin et al., 2021a; Shangguan
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TABLE 1 | Parameter of the LFC model.

Parameter Value
M 10
D 1

Ty 0.1
Ten 0.3
Twra 1.5
Tev 0.1
R 0.05
B 21

et al., 2021a). Therefore, it is very important to analyze the
influence of time delays on the LFC of power systems with an
EV aggregator. In addition, in order to ensure the stability of
power system LFC, it is necessary to calculate the delay
margins and determine all parameters of the
proportional-integral-differential (PID) controller (Naveed
et al., 2019b; Tek et al., 2020).

In recent years, EVs have been widely used in power
systems, and there are also some studies on the influence
of time delays and EV aggregator on LFC stability. The
Rekasius substitution method is used to determine the
stability =~ delay margins of LFC with constant
communication delays for an EV aggregator (Naveed et al,,
2019a). Then, Naveed et al. presented a graphical method to
describe the trajectory of the stable boundary and studied the
influence of EV aggregators with communication delays on
the stability regions and stability delay margins of the LFC
system (Naveed et al., 2021). Based on Lyapunov theory and
linear matrix inequalities (LMIs), stability criteria for time-
varying delays using the Wirtinger-based improved integral
inequality are proposed to calculate the delay margins for
LFC with EVs, and the relationship between the gains and the
delay margins of the PI controller is given in detail (Ko and
Sung, 2018). Two stability criteria are derived, respectively,
using Bessel-Legendre inequality and model reconstruction
technique, and the interregional delay interaction and the
effect of EV gain on the delay margins are discussed

LFC Delay-Dependent Stability

Description

Inertia constant

Generator damping coefficient

Time constant of the governor

Time constant of the turbine

Time constant of the wind turbine generator
Time constant of the battery

Speed regulation

Frequency bias factor

(Zhou et al., 2020). Khalil et al. proposed a microgrid
model of photovoltaic power generation and EVs
considering communication delay, and the maximum
allowable delay bound for the stable operation of
microgrids is calculated by solving the LMIs (Khalil et al.,
2017). Dong et al. characterized the asymptotic stability of EV
aggregation delays by using the delay distortion matrix
structure of infinite operator dimension reduction and
proved that convergence delay affects frequency stability in
the form of low-frequency oscillation through three unstable
modes (Dong et al., 2020). Although there have been some
studies on the stability of delayed LFC systems with an EV
aggregator, there are few studies on LFC of renewable energy
power systems with an EV aggregator. Also, how to obtain
more accurate delay margins remains a challenge.

In this paper, the stability of LEC for power systems with
EV aggregator participation in frequency regulation is
considered, and the influence of EV aggregator and
controller gains on the delay margins is studied. Firstly,
based on the PID controller, the LFC of power systems
with an EV aggregator is modeled. Then, a new delay
stability criterion using Wirtinger inequality and extended
reciprocally convex matrix inequalities is proposed. Finally,
according to the proposed stability criterion, the delay
margins of LFC for power systems with an EV aggregator
are obtained, and case studies are performed to show the
advantage of the proposed method.

wind
ACE
—sd PID !
LA g 1+sT,

FIGURE 1 | Frequency regulation scheme of the power system with an EV aggregator.
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2 MODEL OF LFC FOR POWER SYSTEM
WITH EV AGGREGATOR

The block diagram of the LFC for power systems with an EV aggregator
is given in Figure 1, and the controller is the PID controller. e and
¢ denote the time delay of the frequency regulation circuit involved in
the EV aggregator and the secondary frequency regulation circuit,
respectively; Kgy is the gain of the EV aggregator; Af, APgy; APyrc,
AP,,, AP,, and AP are the deviation of frequency, EV aggregator power
output, wind turbine generator (WTG) power output, mechanical
output of the generator, valve position, and load disturbance,
respectively. Definitions of other related symbols in the figure are
shown in Table 1.

Select the following state variables, output variables,
disturbance, and control input:

%(t)=[Af APgy APwrc AP, AP,]", (1)
y(t) = ACE(t) = BAf, 2)

w(t) = [ APy APyina | (3)

u(t —t(t)) = AP.(¢). (4)

Then, the following system state space model can be obtained:

{ X(t) = AX(t) + Ax(t—7(t) + Bu(t - d (1)) + Foo (1),
y(t) = Cx (1),

(5)
where
r D 1 1 1 0 h
M M M M
1 0 00007
0O —/— 0 0 0
Tev Kev 0000
~ 1 ~ Ty
A= 0 0 =m0 0 LA=| g 9ol
1 1
o o o0 - L 0 0000
ch Seh L 0o 0000}
1 0 0 0 !
| RT, T, |
1 T
r — 0 0 00
_ 11"
B=|10000—+—| F= M
To 0 000
_ Twr
C=[p0000]
The controller is designed as
dACE (t
u(t) = ~K,ACE(f) - K, JACE(t)dt - KdT(). ©)
Define the new vectors x(t) =[x (t) fj/T(t)dt]T,

y® =" [y mdt £y"(H]" and K = [K, K; Kql.
The system (Eq. 5) is rewritten as
x(t) = Ax(t) + Ayx(t —7(t)) + Bu(t —d(t)) + Fw(t),
{ y(t) = Cx(t) + Dw(t),
u(t) = -Ky(t),
(7)

LFC Delay-Dependent Stability

. _ _ _ c o
S RIS M IR F
W I[COZOOBOFOCCZI(I)
and D=1[0 0 CF]".

In order to simplify the analysis, it is assumed that the
delay 7(t) of the frequency regulation circuit involved in the
EV aggregator is consistent with the delay d(f) of
the secondary frequency regulation circuit. Then, the
closed-loop state space equation of LFC for the delayed
power system with an EV aggregator can be obtained as
follows:

x(t) = Ax(t) + Agx (t —d(t)) + FLyw(t), 8)

where A = A}, A; = A, - BKC, and F,, = F — BKD.

3 DELAY-DEPENDENT STABILITY
ANALYSIS

When discussing the internal stability of the power system, the
influence of external disturbance can be ignored. The model of
LFC for the delayed power system with an EV aggregator is
obtained as follows:

x(t) = Ax(t) + Agx(t —d (1)), 9)

where h, < d(t) < h, and Vt > t,.

The following stability criterion for system (Eq. 9) is
derived by using Wirtinger inequality (Seuret and
Gouaisbaut, 2013) and extended reciprocally convex matrix
inequality (Zhang et al., 2017).

Theorem 1. For given scalars & > 0, h, > h; > 0, the LFC of the
closed-loop power system with an EV aggregator (Eq. 9) is
exponentially stable, if there exist matrices P > 0, Q; > 0, Z >
0, R>0,i=1,2, and any matrix S; or S, with appropriate
dimension, satisfying

0, = [ Yimi = ¥2 =¥ ES, ] <0, (10)
-R
@, = [ Fu = ¥2 = ¥s E_ggl ] <0, (11)

where

Wi = HITPHZ + ngnl + elTQlel + ef (Q: = Qi)e, — e4TQ264
+ e? [hfZ + hsz]es

¥, = El [diag{Z,3Z}e """ |E,
E, ! 2R S~1 E,

\Il4 - E3 T * R E3
N Ez 1~2 SZ~ E2
> | Es * 2R || Es
IT; = colies, hies, (d(t) = hi)es + (hy — d(t))e;}
I, = col{es, e; — €3, €2 — ey}
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TABLE 2 | Delay margins for different methods.

LFC Delay-Dependent Stability

Ky Methods Ki
0.2 0.3 0.4 0.6 1

0.2 Theorem 1 (Jiang et al., 2012) 3.2831 0.9930 0.7983 0.5286 0.2301
Theorem 1 5.2094 3.9441 3.0267 1.8634 0.7617

0.3 Theorem 1 (Jiang et al., 2012) 3.4021 0.9833 0.7922 0.5469 0.2600
Theorem 1 3.6493 31177 2.6172 1.7828 0.7617

0.4 Theorem 1 (Jiang et al., 2012) 1.1328 0.8411 0.7214 0.5280 0.2753
Theorem 1 2.4823 2.2650 2.0142 1.4911 0.7074

0.5 Theorem 1 (Jiang et al., 2012) 0.7916 0.7050 0.6250 0.4840 0.2765
Theorem 1 1.6492 1.5436 1.4124 1.1115 0.6177

0.6 Theorem 1 (Jiang et al., 2012) 0.6421 0.5859 0.5316 0.4315 0.2679
Theorem 1 1.1084 1.0474 0.9753 0.8154 0.5249

1 Theorem 1 (Jiang et al., 2012) 0.3253 0.3094 0.2930 0.2600 0.1953
Theorem 1 0.4144 0.4004 0.3851 0.3540 0.2875

€ = [OnX(ifl)n)I:Onx(7fi)n]ai =12,...,7 h t 7ah T( )Z ( )d > (t) 1Z 0

E; = col{e; — eiv1, € + €11 — 2€44},1 = 1,2,3 " SEXI9AS =& 3e iz

R = diag{R,3R}e ™" hy, = h, — hy, e, = Aey + Ages.

8IR, 3R}e ™y = by — By &, = Aey + Adts ) & () = Oy, ), (14)
Proof: Construct the following Lyapunov-Krasovskii o
. —m
functional:

t
DT ($)Zx (s)dsdo

t+6

0
VD) = nT(t)Pn<t)+h1jhj
- -
+hlzj j e*CO%T (5)Rx (s)dsd0
t+60

—hy

+ Jt e*CDxT (6)Q, x (s)ds
h

'
i .[t—hz
where #(t) = col{x(t), .[Z_hl x (s)ds, Ji:Z; x(s)ds}.
Calculating the derivative of V(f), we get
V() +aV ()< 7" (OPqt) + 7" ()Py(t) + an’ (t)Pr(t)
+x"(t) (W Z + h},R)% ()
-hy L_h e M xT ($)Zx (s)ds — hy, J
+x" (5)Qix (t)
+e Ml (t = 1) (Q - Q)x(t - hy)
—e T (t = h)Qox (t — o)
= OV (O - By J e 9z (s

e xT (5)Qux (s)ds, (12)

t—h
e xT (s)Rx (s)ds

t—hy

t-h
—huj 5T ()Rt (s)ds, (13)
t—hy
where
C(t) = colfx (1), x (t — hy), x (t — d (1)),
Cox(e) (T x(s) A0 x(s)
"“"“)’th Ty % J-(r)d(t)— ds Lhz h—dm

Based on Wirtinger inequality, we have

e xT (s)Rx (s)ds
t-d(t)

t—h
hlZ j eiahlch (S)Rx (s)ds = hlZ (j
t=hy

t-d(t)
J
t—hy

e 5T (s)Rx (s)ds)

> d(t) 82 (t)Re, (t) + d( )£3 (H)Re; (1), (15)
where
x(t) —x(t - hy)
g (t) = t x(s)
x(t)+x(t—hy) —th . h1
[ x(t—h)—x(t-d(t) ]
& (t) = e x(s)

x(t—h1)+x(t—d(t))—ZJ ds

—d@y d(t) — hy

_ x(t=d(t) = x(t = hy) -
“OZ e am v xe—m) ‘zjij(t)%ds

Using extended reciprocally convex matrix inequality to
estimate Eq. 15 yields

h12€§ (t)Re, (1) hlzfg (t)Res (t)
A —h | h-d(
+hz—d(t>[sz<t> T[R—szlesf sl][ez(t)]

> eg ()Re, (1) + s? (t)Re; (1)

hy | &) * & (t)
d(t)—hi[ & (t) S, & (t)
+— T
hy, [53(t)] [ R-S[R Sl][£3(t)]
= CT (t)l//3)[d(t)]((t), (16)
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TABLE 3 | Delay margins for Ky = 0.

LFC Delay-Dependent Stability

K, - K; 0.05 0.1 0.15 0.2 0.3 0.4
0.1 15.8185 11.2262 8.2007 6.2970 4.1388 2.9816
0.2 7.3389 6.7004 59119 51477 3.9001 2.9550
0.3 41736 4.0625 3.8623 3.6151 3.0890 2.5940
0.4 2.6349 2.5977 2.5397 2.4573 2.2430 1.9946
0.6 1.1597 1.1414 1.1194 1.0938 1.0333 0.9625
TABLE 4 | Delay margins for Ky = 0.2.
K, - K; 0.05 0.1 0.15 0.2 0.3 0.4
0.1 1.5466 1.5955 1.6443 1.6943 1.7902 1.8616
0.2 1.4648 1.5125 1.5607 1.6101 1.7096 1.7920
0.3 1.3391 1.3818 1.4258 1.4722 1.5674 1.6571
0.4 1.1835 1.2177 1.2537 1.2915 1.3721 1.4563
0.6 0.8734 0.8887 0.9039 0.9198 0.9540 0.9900
TABLE 5 | Delay margins for K, = 0.5.
Ky - Ki 0.05 0.1 0.15 0.2 0.3 0.4
0.1 0.4761 0.4785 0.4810 0.4834 0.4889 0.4944
0.2 0.4663 0.4688 0.4712 0.4736 0.4791 0.4840
0.3 0.4559 0.4578 0.4602 0.4626 0.4675 0.4730
0.4 0.4443 0.4462 0.4486 0.4510 0.4553 0.4602
0.6 0.4193 0.4211 0.4230 0.4248 0.4285 0.4327
where Thus, it follows from Eq. 21 that V (t) + aV (¢) <0, which
_— . further leads to
s ra h—dW[E] [R-SRS; S |[E:
Vs 1a) = E,RE; + E;RE; + h —a(t—to)
12 E, * 0 |LE; V(t)<e V (to). (22)

d(t) - [E: ro S, E,
+— - . .
b |Ey] |* R-STR™S, ||E;

Then, we can get

t—h
o | e GRS (O O (17)

t=h;
Applying Eq. 14 and Eq. 17 to Eq. 13, the following holds:
V() +aV () < B[V iy = Vo~ Vo 0O (18)

By using the Schur complement, Eqs 10, 11 are equal to the
following inequalities:

Vit ~ Y2 = Vi py <0 (19)
Vit ~ VY2 = Vi, <0 (20)

which implies
Viaw ~ Y2~ Vs SO- 1)

Noting that V(f) > pIIx(t)IIz, V (to) gﬁllgbllz, p>0,and § > 0, we
have

llx (D) < \/Ee"‘s“(”wllqbll, (23)

which implies the system (Eq. 9) is exponentially stable (Yang
et al., 2020).

According to the above, system (Eq. 9) is exponentially stable
if Eqs 10, 11 hold. The proof is completed.

Remark 1. The method proposed in this section establishes the
constraint relation between the delay information and the
exponential stability of the LFC for power systems with an
EV aggregator, which can be used to analyze the influence of
delays on the stability of the system and calculate the delay
margins. The margins represent the time delay tolerance range
of the system to ensure exponential stability, which is
composed of the delay lower bound h; and delay upper
bound h,.
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006 T T T T T L L L L
K=[0.1 0.1 0]
K=[0.2 0.2 0]
0.04 K=[0.4 0.4 0]
- K=[0.2 0.2 0.5]
0.02 , J
l
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: PRI L AL
= /v [ Il Hﬂ
3 Wil ll i [' “ ml | “ll ‘w
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_006 1 1 1 — 1 o 1 S— S—
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t(s)
FIGURE 2 | Frequency deviations for different K.
TABLE 6 | Delay margins for different values of Kg, and K.
Key - K [0.1 0.05 0] [0.1 0.1 0] [0.1 0.1 0.2] [0.2 0.2 0.2]
1 15.8185 11.2262 1.5955 1.6101
2 13.3228 10.4242 1.4941 1.5259
3 8.9191 7.7698 1.3904 1.4270
4 6.3446 5.7806 1.2891 1.3226
5 4.8284 4.5056 1.1969 1.2250

Remark 2. In Theorem 1, the LFC for power systems with an
EV aggregator is exponentially stable if Eqs 10, 11 are
satisfied. The calculation steps of the delay margins for
the stability of the system can be briefly summarized as
follows:

1) Construct the LFC closed-loop model for power systems with
an EV aggregator and a PID controller.

2) Choose the values of «, the EV aggregator gain Ky, and the
allowable lower bound h;.

3) Calculate the delay margin h, of the power system by using the
binary search technique (Zhang et al.,, 2013) and MATLAB/
LMI toolbox to solve the LMIs in Theorem 1.

4 CASE STUDIES

Case studies of LFC for power systems with an EV aggregator are
presented to verify the advantage of the proposed method and

study the influence of PID controller and EV aggregator gains on
the delay margins. The related parameters of the system are
shown in Table 1.

4.1 Comparison With the Existing Research
The method proposed by Jiang et al. (2012) is used to verify the
advantage of the proposed method. Set h; = 0, « = 0, K; = 0, and
kgy =1, and the system can be considered asymptotically stable if
the conditions in Theorem 1 are true. Then, the delay margins of
the method proposed in this paper are compared with the delay
margins of time-varying delay (¢ = 0.9) in the study of Jiang et al.
(2012). It is clear from Table 2 that the results of the proposed
method are less conservative.

4.2 Effect of PID Controller and EV

Aggregator Gains

The gains of the PID controller and EV aggregator have an
important effect on the delay margins of the LFC for power
systems with an EV aggregator. Firstly, let h; = 0, &« = 0.01, kgy =
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1, and PID controller parameters K be different; the delay margins
of the system are obtained, and the related results are shown in
Tables 3-5.

As shown in Table 3, when K; =0 (PI controllers), for fixed
K,, the delay margins decrease gradually with the increase of
K;. For fixed K;, with the increase of K, the delay margins
decrease gradually. As can be seen from Tables 3-5, when K,
is not 0 (PID controllers), the delay margins gradually
become smaller with the gradual increase of K, For fixed
K,, the delay margins increase gradually with the increase of
K;; for fixed K;, the delay margins decrease as K, increases. To
sum up, the delay margins under PI controllers are larger
than that under the PID controller. The larger K, or K is, the
smaller delay margins are.

Then, the frequency deviations of LFC for power systems
with an EV aggregator under the delay of 5.15s and different
PID controller gains are simulated. It is assumed that the
power deviations of load and WTG fluctuate randomly in the
range of 0.19-0.21 p. u. and 0.49-0.51 p. u., respectively. As
shown in Figure 2, when K = [0.2 0.2 0], the system is stable.
When K, and K; decrease (K = [0.1 0.1 0]), the frequency
deviation also tends to zero. But when K, and K; are increased
(K=1[0.40.40]), or K;is increased (K =1[0.2 0.2 0.5]), it is clear
that the frequency deviations do not converge in these cases.
Therefore, Figure 2 validates the analysis in Tables 3-5, and
appropriate selection of PID controller gains K is very
important for the stability of LFC for power systems with
an EV aggregator.

Finally, the gain of the EV aggregator Ky is also an important
factor affecting the delay margins of LFC for power systems with
an EV aggregator. As shown in Table 6, regardless of how the
gains of the PID controller change, the delay margins of the
delayed LEC system with an EV aggregator and intermittent wind
energy decrease with the increase of Kgy.
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5 CONCLUSION

In this paper, the LFC stability of delayed power systems with an
EV aggregator was studied. The LFC of the power system was
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DATA AVAILABILITY STATEMENT

The original contributions presented in the study are included in
the article/Supplementary Material, and further inquiries can be
directed to the corresponding author.

AUTHOR CONTRIBUTIONS

All authors listed have made a substantial, direct, and
intellectual contribution to the work and approved it for
publication.

FUNDING

This work was supported by the China Postdoctoral
Science Foundation—funded project under Grant No. 2021M692992.

Jin, L., Zhang, C.-K,, He, Y., Jiang, L., and Wu, M. (2019). Delay-dependent
Stability Analysis of Multi-Area Load Frequency Control with Enhanced
Accuracy and Computation Efficiency. IEEE Trans. Power Syst. 34,
3687-3696. doi:10.1109/TPWRS.2019.2902373

Khalil, A., Rajab, Z., Alfergani, A., and Mohamed, O. (2017). The Impact of the Time
Delay on the Load Frequency Control System in Microgrid with Plug-In-Electric
Vehicles. Sustain. Cities Soc. 35, 365-377. d0i:10.1016/j.5¢s.2017.08.012

Ko, K. S., and Sung, D. K. (2019). The Effect of Cellular Network-Based
Communication Delays in an Ev Aggregator’s Domain on Frequency
Regulation Service. IEEE Trans. Smart Grid 10, 65-73. doi:10.1109/
TSG.2017.2731846

Ko, K. S., and Sung, D. K. (2018). The Effect of Ev Aggregators with Time-Varying
Delays on the Stability of a Load Frequency Control System. IEEE Trans. Power
Syst. 33, 669-680. doi:10.1109/TPWRS.2017.2690915

Li, X, Yu, X, Jia, H, Mu, Y., Wu, ], Wang, M, et al. (2019). Structure Constrained Controller
Design for Power Plants and Ev Aggregator in Frequency Regulation Considering Time
Delays. Energ. Proced. 158, 2966-2971. doi:10.1016/j.egypro.2019.01.961

Naveed, A., Sonmez, 9., and Ayasun, S. (2019a). Identification of Stability Delay
Margin for Load Frequency Control System with Electric Vehicles Aggregator
Using Rekasius Substitution. IEEE Milan PowerTech. 1, 6. doi:10.1109/
PTC.2019.8810662

Naveed, A., Sénmez, 2, and Ayasun, S. (2021). Impact of Electric Vehicle
Aggregator with Communication Time Delay on Stability Regions and
Stability Delay Margins in Load Frequency Control System. J. Mod. Power
Syst. Clean Energ. 9, 595-601. doi:10.35833/MPCE.2019.000244

Frontiers in Energy Research | www.frontiersin.org

October 2021 | Volume 9 | Article 771465


https://doi.org/10.1109/TSG.2020.3008333
https://doi.org/10.1016/j.apenergy.2017.05.174
https://doi.org/10.1109/TPWRS.2011.2172821
https://doi.org/10.1109/TPWRS.2011.2172821
https://doi.org/10.1109/TPWRS.2021.3056594
https://doi.org/10.1109/TCYB.2021.3051160
https://doi.org/10.1109/TPWRS.2019.2902373
https://doi.org/10.1016/j.scs.2017.08.012
https://doi.org/10.1109/TSG.2017.2731846
https://doi.org/10.1109/TSG.2017.2731846
https://doi.org/10.1109/TPWRS.2017.2690915
https://doi.org/10.1016/j.egypro.2019.01.961
https://doi.org/10.1109/PTC.2019.8810662
https://doi.org/10.1109/PTC.2019.8810662
https://doi.org/10.35833/MPCE.2019.000244
https://www.frontiersin.org/journals/energy-research
www.frontiersin.org
https://www.frontiersin.org/journals/energy-research#articles

Yuan et al.

Naveed, A., Zerdali, E., Sonmez, 9., and Ayasun, S. (2019b). “Optimization of Pi
Controller Gains Using Genetic Algorithm for Time-Delayed Load Frequency
Control Systems with Electric Vehicles Aggregator,” in 2019 11th International
Conference on Electrical and Electronics Engineering (ELECO), 28-30
November, 2019, Bursa, Turkey. doi:10.23919/ELEC047770.2019.8990434

Peng, C., Zou, ., Lian, L., and Li, L. (2017). An Optimal Dispatching Strategy for
V2g Aggregator Participating in Supplementary Frequency Regulation
Considering Ev Driving Demand and Aggregator’s Benefits. Appl. Energ.
190, 591-599. doi:10.1016/j.apenergy.2016.12.065

Pinto, J., Carvalho, A., and Morais, V. (2021). Power Sharing in Island Microgrids.
Front. Energ. Res. 8, 360. doi:10.3389/fenrg.2020.609218

Seuret, A., and Gouaisbaut, F. (2013). Wirtinger-based Integral Inequality:
Application to  Time-Delay Systems. Automatica 49, 2860-2866.
doi:10.1016/j.automatica.2013.05.030

ShangGuan, X.-C., He, Y., Zhang, C.-K,, Jin, L, Jiang, L., Wu, M., et al. (2021).
Switching System-Based Load Frequency Control for Multi-Area Power System
Resilient to Denial-Of-Service Attacks. Control. Eng. Pract. 107, 104678.
doi:10.1016/j.conengprac.2020.104678

Shangguan, X.-C., He, Y., Zhang, C.-K,, Jin, L., Yao, W, Jiang, L., et al. (2021a).
Control Performance Standards-Oriented Event-Triggered Load Frequency
Control for Power Systems under Limited Communication Bandwidth. IEEE
Trans. Control. Syst. Tech. 1, 9. doi:10.1109/TCST.2021.3070861

Shangguan, X.-C., Zhang, C.-K,, He, Y., Jin, L., Jiang, L., Spencer, J. W., et al.
(2021b). Robust Load Frequency Control for Power System Considering
Transmission Delay and Sampling Period. IEEE Trans. Ind. Inform. 17,
5292-5303. doi:10.1109/T11.2020.3026336

Shi, Q. Liu, L., Wang, Y., Lu, Y., Zou, Q., Zhang, Q,, et al. (2021). Cooperative
Synthetic Inertia Control for Wind Farms Considering Frequency Regulation
Capability. Front. Energ. Res. 9, 501. doi:10.3389/fenrg.2021.738857

Tek, B., Sénmez, 9., and Ayasun, S. (2020). “Delay-dependent Stability
Analysis of a Two-Area Load Frequency Control System Including
Electric Vehicle Aggregator and Dynamic Demand Response,” in 2020
12th International Conference on Electrical and Electronics Engineering
(ELECO), 26-28 November, 2019, Bursa, Turkey, 178-182. do0i:10.1109/
ELECO51834.2020.00035

Teng, W., Wang, Y., Sun, S, Cheng, Y., Yu, P, and Wang, S. (2021). Robust Stability
Control for Electric Vehicles Connected to Dc Distribution Systems. Front. Energ. Res.
9, 423. doi:10.3389/fenrg.2021.740698

LFC Delay-Dependent Stability

Yang, B., Hao, M., Wang, R., Zhao, X., and Zong, G. (2020). Exponential Stability of
Delayed Generalized Neural Networks with Intermittent Large-Delay Periods.
IEEE  Trans. Syst. Man, Cybernetics: Syst. 1, 11. doi:10.1109/
TSMC.2020.2967506

Zhang, C.-K.,, He, Y,, Jiang, L., Wu, M., and Wang, Q.-G. (2017). An Extended
Reciprocally Convex Matrix Inequality for Stability Analysis of Systems with
Time-Varying  Delay.  Automatica 85,  481-485.  doi:10.1016/
j.automatica.2017.07.056

Zhang, C.-K., Jiang, L., Wu, Q. H., He, Y., and Wu, M. (2013). Delay-
dependent Robust Load Frequency Control for Time Delay Power
Systems. IEEE Trans. Power Syst. 28, 2192-2201. doi:10.1109/
TPWRS.2012.2228281

Zhou, B,, Xu, D,, Li, C,, Chung, C. Y., Cao, Y., Chan, K. W,, et al. (2018). Optimal
Scheduling of Biogas—Solar-Wind Renewable Portfolio for Multicarrier Energy
Supplies. IEEE Trans. Power Syst. 33, 6229-6239. doi:10.1109/
TPWRS.2018.2833496

Zhou, S.-J., Zeng, H.-B., and Xiao, H.-Q. (2020). Load Frequency Stability
Analysis of Time-Delayed Multi-Area Power Systems with Ev Aggregators
Based on Bessel-Legendre Inequality and Model Reconstruction
Technique. IEEE  Access 8, 99948-99955. doi:10.1109/
ACCESS.2020.2997002

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated organizations, or those of
the publisher, the editors, and the reviewers. Any product that may be evaluated in
this article, or claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Copyright © 2021 Yuan, Xu, Jin and Wang. This is an open-access article distributed
under the terms of the Creative Commons Attribution License (CC BY). The use,
distribution or reproduction in other forums is permitted, provided the original
author(s) and the copyright owner(s) are credited and that the original publication
in this journal is cited, in accordance with accepted academic practice. No use,
distribution or reproduction is permitted which does not comply with these terms.

Frontiers in Energy Research | www.frontiersin.org

October 2021 | Volume 9 | Article 771465


https://doi.org/10.23919/ELECO47770.2019.8990434
https://doi.org/10.1016/j.apenergy.2016.12.065
https://doi.org/10.3389/fenrg.2020.609218
https://doi.org/10.1016/j.automatica.2013.05.030
https://doi.org/10.1016/j.conengprac.2020.104678
https://doi.org/10.1109/TCST.2021.3070861
https://doi.org/10.1109/TII.2020.3026336
https://doi.org/10.3389/fenrg.2021.738857
https://doi.org/10.1109/ELECO51834.2020.00035
https://doi.org/10.1109/ELECO51834.2020.00035
https://doi.org/10.3389/fenrg.2021.740698
https://doi.org/10.1109/TSMC.2020.2967506
https://doi.org/10.1109/TSMC.2020.2967506
https://doi.org/10.1016/j.automatica.2017.07.056
https://doi.org/10.1016/j.automatica.2017.07.056
https://doi.org/10.1109/TPWRS.2012.2228281
https://doi.org/10.1109/TPWRS.2012.2228281
https://doi.org/10.1109/TPWRS.2018.2833496
https://doi.org/10.1109/TPWRS.2018.2833496
https://doi.org/10.1109/ACCESS.2020.2997002
https://doi.org/10.1109/ACCESS.2020.2997002
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/energy-research
www.frontiersin.org
https://www.frontiersin.org/journals/energy-research#articles

	Delay-Dependent Stability Analysis of Load Frequency Control for Power System With EV Aggregator
	1 Introduction
	2 Model of LFC for Power System With EV Aggregator
	3 Delay-Dependent Stability Analysis
	4 Case Studies
	4.1 Comparison With the Existing Research
	4.2 Effect of PID Controller and EV Aggregator Gains

	5 Conclusion
	Data Availability Statement
	Author Contributions
	Funding
	References


