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Virtual power plant is an integrated technology and operation mode to realize air-
conditioning load participating in power system operation, further benefitting low
carbon renewable energy applications. However, the principle of multi-system coupling
in central air-conditioning poses a challenge to normal load regulation. Besides, the
uncertainties of demand-side resources bring risks to the operation of virtual power
plant. In this paper, the regulation characteristics of central air conditioning are obtained by
experiment, while the potential of central air conditioning is quantified by a thermodynamic
model, further resulting in the central air conditioning could be transformed into a virtual unit
model. Then the dynamic capacity optimization strategy is formulated based on the risk
measurement theory, while the generation task decomposition strategy is also formulated
based on the equal increase rate criterion, thus forming a two-tier operation strategy of
virtual power plant. Finally, illustrative case study is constructed to quantitatively analyze
the power generation capacity and effectiveness of the virtual power plant. The
effectiveness and practicability of the proposed strategy is also verified to benefit low
carbon energy applications.
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INTRODUCTION

In recent years, the proportion of renewable energy integrated into the power grid has been
increasing, and the power load characteristics have been deteriorating. According to statistics, the air
conditioning load during the peak load hours in summer has surpassed half of the total network load.
This imposes higher requirements on the regulation capacity and operational efficiency of the power
system. With the development of smart grid and the improvement of communication technology,
demand-side resources can participate in the power system regulation, and virtual power plant
(VPP), with reasonable optimization of resource allocation via control, measurement and
communication technologies, has a promising future in integrating demand-side resources for
low carbon renewable energy applications (Wei et al., 2013) (Pudjianto et al., 2007).

VPP is a special kind of power plant, while like conventional power plants, needs to submit
technical parameters and transaction plans to the dispatching agency. Its operation strategy includes
optimal dispatching strategy for flexible loads (Haputhanthri et al., 2021) and identification of
technical parameters of the power plant (Xi et al., 2021) (Xi et al., 2016). Central air-conditioner
(CAC), as the main generation resource of VPP, exposes VPP to risks due to its diversity in regulation
methods and uncertainty in regulation potential, resulting in higher requirements for the operation
strategy of VPP (Chen et al., 2021) (Yang et al., 2020) (Luo et al., 2020).
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Currently, most air conditioning loads are simply regarded as
interruptible loads in flexible load optimization scheduling
strategies, and the load reduction method for air conditioning
clusters based on direct load control is formed through measures
such as pre-start, duty-cycling control, and discontinuous
operation (Wang et al., 2016) (Zhu et al., 2018) (Wang et al.,
2017a). A CAC load reduction model based on temperature
adjustment of partial terminal devices is constructed, and a
“bottom-up” control method is used to implement the CAC in
response to external power signals in Ref. (Qi et al., 2015). The
load curtailed by the power users is used as virtual output, and the
incentive and price demand response VPP are constructed
respectively according to the differences in load response
mechanisms in Ref. (Niu et al., 2014). Optimal dispatch under
uncertainties is also a typical application of flexible load
regulation. Ref. (Fang et al., 2017) establishes a dynamic game
model for VPP bidding considering the output fluctuation and
the prediction error of VPP. Ref. (Wan et al., 2017) considers the
randomness of renewable energy and uses a wheel control
Strategy of fixed-frequency air conditioners and a fuzzy
optimization strategy for energy storage units to realize the
VPP load shaving objective. Risk-constrained optimal
optimization is employed to handle the energy management
for virtual power plants considering correlated demand
response in (Liang et al., 2017). In general, less research has
been done on practical VPP operation strategies for the CAC
flexible regulation method, so the in-depth modeling and analysis
of specific flexible loads based on actual data is necessary.

In this study, the regulation characteristics of CAC
refrigeration hosts are obtained experimentally, a practical
CAC virtual unit model is established, and a VPP generation
task decomposition strategy is proposed, to optimize the
scheduling of CAC clusters with the goal of cost minimization.

Risk measurement method is widely used in the risk-benefit
analysis (Qian et al., 2017) and optimal scheduling of multiple
resources (Wang et al., 2017b) by describing the probability
distribution of income. Ref. (Wei et al., 2018) considers the
value-at-risk, optimizes the capacity of generation resources in
VPPs with the objective of minimizing investment and operating
costs, and provides the optimal resource allocation scheme.
Currently, multi-resource optimal scheduling based on risk
measurement theory mostly aims at risk minimization (Wang
et al., 2005) and pursues benefits by reducing risks to a certain
level (Wang et al., 2017c). Hence, the model is built on hypotheses
about the probability distribution of risk, whereas the actual
uncertainties are numerous, leading to the deviation of model
from reality.

This paper proposes a dynamic optimizing strategy for VPP
capacity based on the risk measurement method, where risks are
simulated through historical losses and updated on a rolling basis
according to the operating status of VPP, the operating strategy is
actively modified and the risk is averted. It not only ensures the
external characteristics of VPP but also solves the optimal
dispatch of resources, thus providing a theoretical basis for the
participation of a large number of scattered flexible loads in the
normal operation of the power system.

Regulation Characteristics of Central
Air-Conditioner
Experiment-Based Central Air-Conditioner Regulation
Characteristics
As a flexible load, CAC has the advantages of large volume, few
owners and high controllability (Wang et al., 2016). CAC is used
as the resource for VPP, and the power cut by changing its
operation is treated as virtual output.

The chilled water, cooling water and air circulation systems
of CAC interact in a complex way. The CAC black-box model is
established via the black box method and its characteristics can
be obtained using an experimental approach (Moness and Diaa-
Eldeen, 2017). The chilled water outlet temperature (hereinafter
referred to as water temperature) which is easy to achieve
regulation in the CAC system is used as the input to the
black-box model, and the cooling capacity and power are
used as its output. On this basis, the CAC regulation
characteristics are analyzed. The black box model is
implemented for different types and brands of CACs because
the basic principle of CAC is to provide cooling capacity to the
room with chilled water. Figure 1 shows the CAC black-box
model of the centrifugal chiller. The CAC is composed by major
components of fresh air system, surface air cooler, chiller,
cooling tower, cooling water pump and chilled water pump.
The operation of various components of CAC is carefully
designed in terms of the two cyclings of chilled water
circulation and cooling water circulation. It is too
complicated to model the CAC systems and in our paper the
input output relation can be identified by a black-box.

After CAC receives the regulation instruction, the water
temperature is adjusted upward, resulting in a decrease in its
power and cooling capacity sent to the room. When CAC return
air temperature reaches the upper limit, the water temperature is
regulated back to the initial value and thus the regulation ends.

Experiment-Based Adjustable Power Value
In the experiment, the adjustable range of CAC water
temperature is 8°C–12°C. A relationship between the water
temperature and the steady-state power of the CAC is
considered to exist without considering the variation of
external factors.

FIGURE 1 | Black box model of central air conditioning.
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TChilled →PT°C (1)

where Tchilled is water temperature, and PT°C is the steady-state
power of the CAC when the water temperature is at time T.

Figure 2 is employed to characterize the power consumption
behavior of CAC once the Water outlet temperature of chiller is
adjusted. This is very important to guide the VPP operation. Since
the room temperature is the major concern of the customer, while
room temperature depends on howmuch cold it can get from the
cycling water, which can be adjusted by setting the water outlet
temperature. Meanwhile the power consumption will be changed
as well. Therefore when we operate an VPP composed by many
CACs, the temperature constraints will be respected, which could
be characterized by Figure 2. The power curve adjusting the water
outlet temperature from 8°C to 10°C, which is monitored by the
building automation control system. As can be seen from the
curve, with the water temperature at time zero being adjusted
from 8°C to 10°C, CAC power from the steady-state power P8°C
decline instantly, and then back to the steady-state power P10°C.
Meanwhile, the return air temperature gradually increases and
reaches the upper limit at time t2. The water temperature is
adjusted back to 8°C, and the regulation is ended.

The CAC power reduction is calculated according to the
definition of power reduction, which is shown in the following
formula.

P8°C−10°C(t) � P8°C − P(t) (2)

where P8°C−10°C is the power reduction when regulating the water
temperature from 8°C to 10°C, andP(t)is the real-time power of
the CAC in regulation. The power of a single CAC is too small
compared to a VPP, and its transient variation is rapid, so the
average power reduction is used for approximate calculation.

�P8°C−10°C � 1
t3

∫t3

0
P8°C − P(t)dt

� P8°C − 1
t3
⎛⎜⎜⎜⎝∫t1

0
P(t)dt + ∫t2

t1

P(t)dt + ∫t3

t2

P(t)dt⎞⎟⎟⎟⎠
(3)

In the short time regulation process, the variation of the
external environment is not considered. Then the power

change curve for upward temperature regulation is considered
the same as that for downward temperature regulation, as shown
in the following equation.

∫t1

0
P(t) � P10°Cdt � −∫t3

t2

P(t) − P8°Cdt (4)

t3 − t2 � t1 (5)

The power at time t1 reaches the steady-state power at 10°C,
then

∫t2

t1

P(t)dt � P10°C(t2 − t1) (6)

Substituting Eqs. 4–6 into (Eq. 3), we get

�P8°C−10°C � t2
t3
(P8°C − P10°C) (7)

Let t � t3, then the general expressions for the average power
reduction of CAC �PT°C→T′°C and its average power �P during
regulation are as follows.

�PT°C→T′°C � t − tT°C→T′°C
t

(PT°C − PT′°C) (8)

�P � PT°C − �PT°C→T′°C (9)

where tT°C→T′°C is the time needed for adjusting the water
temperature from T°C toT′°C, which is determined by the
performance of the CAC chiller. From Eq. 8, it indicates that
the average power reduction of CAC is only related to water
temperature and regulation time. Given that different types,
brands and operation methods generate different power, the
power curves acquired in different conditions are formed into
a CAC operation database through experiments. The
characteristics between water temperature and refrigeration
host power as well as cooling capacity are available by
database matching. Meanwhile, the error of power curve
probably caused by database matching is regarded as the
output error of virtual unit, and this factor is considered in
the later paper and the dynamic optimizing strategy for VPP
capacity is proposed for error correction.

Calculation of Air-Conditioning Regulation Potential
Based on Equivalent Thermal Parameter Model
Due to the large number of rooms served by CAC, it is unavailable
to measure the temperature of each room. Therefore, this paper
builds a model based on the equivalent room and uses the total
return air temperature to characterize the equivalent indoor
temperature. The CAC receives power regulation instructions
from the VPP coordinate control center and converts them into
chilled water temperature regulation signals. According to the
instructions, the CAC power immediately decreases, and the
return air temperature gradually rises, but to ensure human
comfort within the environment it should not be excessive.

The time consumed in this process is called the maximum
regulation time of the CAC at the corresponding adjusted water
temperature. The maximum regulation time is calculated by the
thermodynamic model.

FIGURE 2 | Power variation under TChilledgoing from 8°C to 10°C.
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1) CAC energy consumption model.
The relationship between CAC refrigerating output Qand

average power �P can usually be expressed in terms of the
CAC coefficient of performance (COP). COP is linearly
related to the water temperature and increases with the water
temperature (Zhang, 2016).

Q
�P
� COP � k · TChilled + b (10)

where k and b are both constants larger than 0, as determined by
the CAC performance.

2) Terminal modeling.
The CAC units in large commercial buildings provide cooling

capacity to a large number of rooms with varying room
temperatures. Since the total amount of cooling supply
decreases and the indoor temperature of each room tends to
increase during the air conditioning regulation, the upper bound
of the return air temperature is used to characterize that of the
regulation time. The description of the temperature and heat
variation with time is available in Ref. (Xu et al., 2016). The time-
varying expression for the return air temperature is obtained by
solving the heat balance equation.

Ti(t) � [Ti(0) − Q − A

B
]e− t

X/B + Q − A

B
(11)

Where T0 is the outdoor temperature and Ti is the equivalent
indoor temperature characterized by the total return air
temperature. A and B are calculated according to the outdoor
temperature, fresh air load, equipment cooling, building envelope
and other parameters.

3) Maximum regulation time.
The room model describes the relationship between indoor

heat and temperature over a period of time. To meet the
requirements of human comfort, the return air temperature
during the regulation period shall not exceed its maximum
temperatureTi

max, i.e. Ti
(t)Ti

max. In this case Eq. 11 can be
expressed as

Q(t) � a · (e− t
τ − 1)−1 + A (12)

where a � B(Tmax
i − Ti(0)), τ � X/B

Equation 12 calculates the refrigerating output that the CAC
needs to provide at different times to ensure human comfort. The
longer the time the more the refrigerating output needs to be
provided. Ti

maxcan be used as the limit value, a known quantity,
and T (0) is the initial return air temperature, a measured
quantity.

Output Characteristics of a Single Central
Air-Conditioner Virtual Unit
Water temperature of CAC generally retains a certain margin for
adjustment. Its adjustment degree affects power reduction and
regulation time. Let the current water temperature be 8°C, then
the average power reduction and regulation time curves are
respectively drawn according to Eq. 8 when the water
temperature is adjusted to 9–12°C, as shown in Figure 3. The
relationship between the average power reduction and the
regulation time during the CAC regulation can be obtained by
Eqs 9, and 10, and 13.

�PT°C→T′°C � PT −
a(e− t

τ − 1)−1 + A

k · TChilled + b
(13)

Equation 14 describes the power reduction relationship of air
conditioning in a certain temperature range, that is, the shorter
the regulation time, the greater the power can be reduced in a
short time.

The maximum capacity and regulation time at each water
temperature can be calculated by coupling Eq. 14 and Eq. 8, the
expression of CAC regulation characteristic. They are the four
intersection points in Figure 3, which are known as the output
characteristic points of the CAC virtual unit.

The characteristic points (tg°C→ 12°C, �Pg°C→ 12°C) indicate that
when the CAC water temperature is adjusted from 8°C to 12°C,
the maximum regulation time is tg°C→ 12°C, and the average power
reduction during the regulation period is �Pg°C→12°C as shown in
Figure 4; At this time, the average power reduction is called the
capacity of the CAC virtual unit. The functional relation between
the output time and the maximum capacity of the virtual unit is
acquired by fitting the characteristic points, which is written as

Pi � gi(t) (14)

FIGURE 3 | Output characteristic points of CAC virtual unit.

FIGURE 4 | Output characteristics of a single central air conditioning
virtual unit.
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Since the operating status of the air conditioner may change,
resulting in the output characteristics not matching the actual
one, each air conditioner needs to continuously report its initial
status to calculate the output characteristics curve of each virtual
unit. In addition, the initial state of CAC (including start-stop
state, initial water temperature, indoor temperature, etc.) will
change only when an unexpected condition occurs, such as
emergency shutdown or abrupt temperature change.
Therefore, in this paper, the initial state is updated in a 1-h cycle.

Bi-Level Operation Strategy of Virtual
Power Plant
Figure 5 is a schematic diagram of the VPP operation. Virtual
power plant is composed by control center which is equipped
with a control center and the CACs, the distributed resources of
end users. The information collected by the control center is the
status of each CACs, including the power and the associated
potential of regulation according to the temperature limit, which
is usually characterized by the change of power and the during
time. Meanwhile, the control center will receive information from
the power market and make strategic decsion for market bidding.
Once the offer is accepted, the control center needs to assign the
generation tasks to each CAC to satisfy its commitment of
offering. Specifically, each CAC virtual unit first uploads its
operation status to the coordinated control center. Then, the
coordinated control center calculates the dynamic capacity
parameters of the VPP and decomposes the generation tasks
to each CAC virtual unit after determining them from the power
market. In this paper, the operation strategy is formulated from
the perspective of VPP, and the targets of strategy optimization
can be divided into two levels, namely, maximizing power
generation benefits and minimizing its costs.

Maximizing power generation benefits means that the
uncertainty of CAC resources should be considered, and the
power generation capacity should be fully exploited by
formulating dynamic capacity parameters for the VPP.

Meanwhile, the generation tasks should be reasonably
decomposed according to the characteristics of each virtual
unit to minimize the power generation cost. In this paper, a
VPP optimal operating model is established based on the power
output characteristics of a single virtual unit.

Dynamic Optimizing Strategy for Virtual Power Plant
Capacity
The capacity of a virtual power plant characterizes its production
capacity and needs to be matched to the actual generation
capacity of the VPP. Dynamic capacity optimization means
that in the real environment, the VPP capacity values are
adjusted according to the risk dynamics so that the economic
performance of the VPP is optimized. Due to many uncertainties
in the real environment, such as the reduction in the number of
air-conditioning virtual units, sudden changes in outdoor
temperature, and actual output not matching expectations, the
VPP is penalized for failing to complete its generation tasks. In
this study, the uncertainty factors are described using randomly
distributed parameters, i.e., the number of air conditioning virtual
units N, the outdoor temperature Tout, and the actual output
Pactual
i of the air conditioning virtual units. The normal

distribution of N, Tout and Pi
actual is a special case, which does

not apply to all the scenarios, the acutal distribution could be
determined by examining the data, which is not detailed in our
paper.

N ∼ B (ntotalvir , Pready) (15)

Tout ∼ N (Tpre
out , σ

2
tout

) (16)

Pactual
i ∼ N (Pi, σ

2
Pi
) (17)

where ntotalvir is expressed as the total number of air conditioning
virtual units included in the VPP, Pready as the probability that a
single air conditioning virtual unit is ready to respond, Tpre

out as the
outdoor temperature prediction, σ2tout as the variance of the
outdoor temperature prediction, Pi as the output prediction of

FIGURE 5 | Schematic diagram of VPP operation.
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the air conditioning virtual unit, and σ2Pi
as the response error

variance.
In this study, a CVaR risk measurement method is adopted to

calculate the VPP profit at risk and to avert the risk by
dynamically optimizing the VPP capacity. CVaR is the
conditional mean at a given level of risk, where the loss of the
decision is greater than the conditional mean of a given VaR
value. It reflects the average level of excess losses. The CVaR risk
measurement method avoids the requirement that risk must
satisfy a normal distribution, and provides a more sufficient
measurement for tail loss (Xiao, 2016). The mathematical
expression is given below.

CVaRβ � E[f(x, r0)∣∣∣∣f(x, r0)≥Varβ]
� 1
1 − β

∫
f(x,r)≥VaRβ

f(x, r0)p(r0)dr (18)

where r0 is the decision variable, x is the decision variable
weight,f(x, r0) is the loss prediction function of the decision,
andp(r0) is the probability density function of the loss prediction.

The calculations are simplified by constructing auxiliary
functions and the loss expectation is simulated using the
scenario analysis method (Rockfellar, 2010).

Fβ(x, a) � α + 1
1 − β

E([f(x, r0) − α]+)
� α + 1(1 − β)m∑m

k�0
(wk[f(x, rk) − α]+) (19)

CVaRβ � min
α

Fβ(x, α) (20)

where [f(x, r) − α]+ � max[f(x, r) − α, o , r1 r2 r1 . . . rm] is the
historical decision and wk is the historical data weight, which is
used to indicate the timeliness of the data, and the older the data,
the smaller the weight is.

The CVaR risk measurement method avoids the assumption
of the risk probability distribution by simulating loss expectations
with historical losses, and achieves the risk value assessment with
the current decision. When the above model is applied to describe
the risk in VPP operation, the decision variable is taken as the
VPP capacity P, i.e., the sum of each virtual unit capacity, as
shown in Eq. 21.

r � p � ∑N
i�1

Pi (21)

The loss prediction function is the loss caused by the real-time
electricity price that the VPP must bear because of its uncertainty
of insufficient power output, which is written as follows.

f(x, r) � k ·⎛⎝∑N
i�1

Pactual
i −∑N

i�1
Pi
⎞⎠ (22)

where k is the difference between real-time electricity prices and
on-grid electricity prices in the spot market.

The profit at risk R of VPP is defined using the linear weighted
method, which is expressed as follows.

maxR � (1 − β) · R0 + β · CVaRβ (23)

where R0 � p · P · T − Cis the profit of the VPP without regard to
risk,p is the on-grid price,P is the capacity of the VPP, T is the
power generation time, C is the cost of power generation
calculated by the generation task decomposition strategy, and
β ∈ (0, 1) is the risk preference level. The larger β represents the
less risk one is willing to take.

The dynamic optimizing strategy for VPP capacity identifies
the risks of VPP operation using risk measurement method, and
dynamically adjusts its capacity parameters based on risk
preferences so that the risks can be avoided and the
economics can be optimized.

Power Generation Task Decomposition Strategy
The VPP has a large number of virtual generating units with
different characteristics, and the generation task is decomposed to
each virtual unit and the generation cost is minimized. The power
generation cost for the VPP is the call compensation to the
customers, and the compensation price is usually a primary
function of power (Fan et al., 2015), so the total compensation
CT is a quadratic function of power.

Ct � ∑N
i�1

Ci(Pi,t) � ∑N
i�1
[ai(Pi,t)2 + biPi,t + ci] (24)

In this case, the objective function is the minimum value of the
total generation cost.

minC � min ∫T

0
Ctdt (25)

After the CAC virtual unit receives the power output
instruction, the power in one regulation cycle is constrained
by the output characteristics of VPP in Eq. 14. Therefore, the
constraint of virtual unit power is as follows.

gi(T) � 1
T
∫T

0
Pi,tdt (26)

where T is the power output time of the virtual unit and gi(T) is
the fitting function of its output characteristics. The equation
describes the relationship between the power Pi,t and the output
time T of the virtual unit.

For the generation task required to be completed P, the
generation constraint is shown in Eq. 27.

P � ∑N
i�1

Pi,t (27)

The constraint on the power limit is given in Eq. 28

Pimin ≤Pi,t ≤Pimax (28)

The optimization model of the power generation task
decomposition strategy is established through Eqs 24–28.
From the equal incremental rate principle, we get that the
generation cost is minimized when
dC1(P1)
dP1

+ c1 � / � dCN(PN)
dPN

+ cN � λ. Among them, λ and ci are

the Lagrange multipliers corresponding to Eqs 27, 26,
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respectively. They can be calculated iteratively, and the derivation
process is shown in Supplementary Appendix S1A.

All the above mentioned are the guidelines for power
generation tasks allocation under a section at a certain
moment. In actual operation, due to the constraints of the
output characteristics, the air conditioning virtual unit is still
in the output state at time t and unable to receive the regulation
instruction. At this time, the air conditioning virtual units are
divided into the output-occupied virtual unit group Ooccupied and
the output-available virtual unit group Oavailable. The vacant
power generation task Pvacant is given as

Pvacant � P − ∑
i∈Ooccupied

Pi (29)

Therefore, at this time, the vacant power generation tasks
Pvacant should be dispatched to the available virtual unit group
Oavailable according to the equal incremental rate principle.

The power generation task decomposition strategy
integrates characteristics between the power output and
cost of the virtual units and decomposes the power
generation task to each virtual unit to minimize the cost of
power generation. The relationship between the active power
and the cost of VPP generation can be obtained using this
operating strategy. Combined with the dynamic capacity
parameters of VPP, its external characteristics are identical
to those of a conventional plant and can be easily dispatched
by the system.

Bi-Level Operation Strategy Process for the Virtual
Power Plant
The algorithm flow chart of the operation strategy considering
resource uncertainty and economy of the VPP is shown in
Figure 6, and its operation process is as follows.

1) Determination for the dynamic capacity of VPP.

FIGURE 6 | Algorithm flow chart of VPP operation strategy.
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The risk level of VPP β is set according to the risk preference of
the VPP operator, its CVAR value at risk is calculated based on
historical operating data, and the current dynamic capacity P is
determined by solving the optimization problem of (Eq. 23).

2) Analysis of CAC state and calculate vacant power
generation tasks.

State quantities such as the current outdoor temperature Tout
and the COP of each air conditioner are collected, the output
characteristics of each CAC virtual unit shown in Eq. 14 are
calculated and grouped according to their current state, and the
vacant power generation task Pvacant is calculated according to
Eq. 29.

3) Decomposition of power generation tasks based on
incremental rate and Lagrange multiplier.

The incremental rate λ and the Lagrange multiplier c are
calculated according to the equal incremental rate principle, the
vacant power generation task Pvacant is decomposed to each unit,
and the generation task orders are transformed into water
temperature adjustment orders combined with the output
characteristics of the virtual units.

4) Calculate the overall cost and check the convergence
criteria, it is not met, the dynamic capacity should be calculate
again by solve the optimization problem of Eq. 23 with the
new input.

5) If the convergence criteria is met, the power generation task
will be assgined to each CAC by water temperature regulation
instruction.

CASE STUDY

Case Study on a Single Central
Air-Conditioner Virtual Unit
In this study, the basic data is obtained from measured data of a
commercial building in Shanghai, and the centrifugal chiller CAC
is used for the experiment. The relationship between water
temperature and steady-state power and COP is presented in
Table 1. The thermal resistance of the room model R � 0.02°C/
kW, the heat capacity C � 2 kWh/°C, the outdoor temperature is
40°C, the initial room temperature is 24°C, the maximum allowed
temperature is 26°C, and the heat emitted by the human body and
other equipment in the room Q′ � 10kW.

The output characteristics of the CAC virtual unit were
analyzed at an initial water temperature of 8°C. Figure 5
presents the power and return air temperature when the water
temperature is adjusted to 9°C and 12°C.

As shown in Figure 7, when the water temperature is adjusted
from 8°C to 9°C, the regulation time is 39.46 min; when it is
adjusted from 8°C to 12°C, the regulation time is only 12.48 min.
This reveals that the greater the water temperature adjustment,

the greater the decrease of CAC power, and the shorter the time
required to reach the upper-temperature limit when the water
temperature rises rapidly. Figure 6 shows that the CAC low
power operation in a short time can be achieved by changing the
water temperature under the premise of ensuring the return air
temperature. The power output characteristic points of the virtual
unit are listed in Table 2. From the table, it indicates the larger the
water temperature adjustment, the larger the average power
reduction, but the power output time becomes smaller due to
the constraints of the return air temperature.

The total output characteristic curves shown in Figure 8 are
obtained by integrating 1000 CAC virtual units with different
output characteristics into a VPP and superimposing their output
characteristic curves.

Figure 8 shows the output characteristics when the outdoor
temperature is 40°C, 45°C and 30°C respectively. The calculation
results show that the output characteristics at outdoor
temperatures of 45°C and 30°C are inferior to those at 40°C.
This indicates that when the outdoor temperature is too high, the
power and output time of the virtual units are affected to ensure
indoor comfort; When the outdoor temperature is too low, the
CAC has less power to decrease due to its low power operation,
but it maintains long-term power output.

Case Study on Bi-Level Operation Strategy
of Virtual Power Plant
As shown in Figure 8, the maximum capacity of the VPP is
ideally about 51 MW when the outdoor temperature is 40°C.
However, many uncertainties of the VPP lead to risks in the
actual operation. The case study introduces the main
uncertainties of VPP using the scenario technique and makes
the operation strategy via the proposed method to avoid the risks.

The number of virtual units in the operation state N ∼ B (500,
0.95) is defined to describe the situation where the CAC
customers reject the regulation. The actual outdoor
temperature Tout ∼ N (40,1) is defined to depict the prediction
error of the outdoor temperature. The actual output of the virtual
units Pactual

i ∼ N(Pi, 0.1, Pi) is defined to represent the system
error caused by the insufficient regulation accuracy of a single air
conditioner.

The on-grid price p � 350 yuan/MW· h, and the difference
between the real-time spot market price and the on-grid price k �
100 yuan/MW· h. The call compensation for consumers is
calculated according to Eq. 24, where the compensation
coefficient is shown in Supplementary Appendix S1B. The
risk preference value β is the weight of the risk value in the
risk-benefit. B � 1 represents the VPP decision-maker refusing to
take all risks, and β � 0 represents the willingness to take any risks
for the pursuit of high profits. In this paper, β � 0.05 (risk-
avoiding strategy) and β � 0.01 (risk-seeking strategy) are taken
for comparison and analysis, the maximum capacity of 51 MW in
an ideal situation is taken as the initial value, and the dynamic
capacity optimization strategy is applied for simulation. The
dynamic capacity of the VPP is simulated in 1 hour, and the
output characteristics of each VPP are assumed to be unchanged
during this time. The results are shown in Figure 9.

TABLE 1 | Chilled water temperature and steady-state power of CAC.

Water
temperature(°C)

8 9 10 11 12

Steady-state power(kW) 455 433 420 392 350
COP 2.6 2.8 3.0 3.2 3.4
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The following conclusions can be drawn from the dynamic
capacity results.

1) From the data at times one to three, it demonstrates
the actual output of VPP is unable to reach the maximum
capacity of 51 MW in the ideal case due to the uncertainties.
Therefore, the VPP capacity is continuously corrected until it
matches the actual output, so the curves all tend to decrease at the
beginning.

2) For fixed uncertainties, the dynamic capacity of VPP tends
to be constant (about 41 MW for risk-avoiding strategy and about
46 MW for risk-seeking strategy). The dynamic capacity is
affected by complex uncertainties in actual operation.

3) Due to lower risk preferences, a more conservative strategy
is adopted and lower capacity is selected, which allows the VPP
resources to meet the power generation tasks. In contrast, when
the risk-seeking strategy is adopted, the dynamic capacity of the
VPP is high to pursue high profits. However, due to the
uncertainties, the actual output of VPP fails to reach its
capacity when the total callable generation amount is not
sufficient (in the case of 7,10,12), thus incurring losses. It also
shows that the existing generation resources of VPP are not
sufficient to maintain the continuous operation of the high
capacity (about 46 MW).

To better understand the ability of the VPP in actively
modifying its operation strategy and avoiding risks according
to the risk magnitude, let the external environment change
abruptly from 16:00, and then the VPP faces the following
high-risk scenarios.

N ∼ B(500, 0.9)
Tout ∼ N(40, 2)

Pactual
i ∼ N(Pi, 0.2 · Pi)

The comparison between the two risk scenarios shows that the
VPP generation capacity is affected in the high-risk scenario and

FIGURE 7 | Power and return air temperature under Tchilled going to 9°C and 12°C.

TABLE 2 | The output characteristic points of virtual unit.

Water temperature
adjustment
range(°C)

Average power
reduction(kW)

Output
time(min)

1 32.61 91.46
2 37.35 52.47
3 42.52 28.85
4 51.05 12.48
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the fluctuation of the actual output increases. The results indicate
that the VPP can actively adjust the dynamic capacity downward
according to the risk magnitude for risk aversion, and that the
adoption of the risk-seeking strategy leads to a greater output
vacancy of the VPP at times 20, 25 and 28, as shown in Figure 10.
Therefore, the risk-seeking strategy is inappropriate at high
risk. zF

zλk
� 0

Equation 30 is the CAC resource utilization rate η.

η �
∑nvir
i
Pactual
i

∑nvir
i
Pvir
imax

(30)

Figure 11 shows the utilization rate of CAC in each time
period under different risk preferences. It shows the actual output
is insufficient for capacity in time periods one to three, and the
VPP calls a large number of CACs, so the air conditioner

utilization is high in the initial period; after the capacity is
gradually adjusted, the number of called CACs decreases,
so the curve shows a decrease. The utilization rate is also
impacted after the dynamic capacity is adjusted downward by
VPP for risk aversion. A comparison of the two curves shows
that greater generation capacity is pursued using a risk-seeking
strategy, and therefore a relatively higher utilization of resources
is required.

The relationship between power generation cost and output
power of VPP shown in Figure 12 can be established by the
generation task decomposition strategy. The minimum
output power of CAC virtual units exists, and the power
generation cost of VPP is constant when the output power
of VPP is less than the sum of the minimum output power of
each virtual unit. In addition, the figure shows that under the
current uncertainties, the VPP has a limit to its generation
capacity (about 45 MW), and the cost of purchasing power

FIGURE 8 | Total output characteristics of VPP under different outdoor temperatures.

FIGURE 9 | Dynamic capacity of VPP.
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FIGURE 10 | Dynamic capacity of VPP at high risk.

FIGURE 11 | Utilization rate of central air conditioning of different risk preference.

FIGURE 12 | Output power-cost curve for VPPs.
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from the market rises rapidly when the uncertainties exceed
this limit.

CONCLUSION

VPP is an integrated technology and plays a vital role in the low
carbon renewable energy applications. This paper proposes a
hybrid artificial intelligence strategy to address the operational
problem of VPPs containing numerous distributed CAC
resources. Specifically, the CAC regulation characteristics are
obtained and the CAC is converted into a virtual unit model
through experiments, an optimal operation strategy is then
formulated for VPPs with reference to the risk measurement
theory and the well-known equal incremental rate principle. The
following conclusions are obtained through the illustrative results
of the numerical example.

1) The output characteristic of a single CAC virtual unit is that
the regulation capacity decreases as the regulation time increases.
It is also affected by the outdoor temperature; either too high
or too low outdoor temperature can reduce the regulation
capacity.

2) Due to uncertainties, VPPs need to measure risks and adjust
capacity in real time. Simulation results show that the decision
makers of VPPs are capable of developing risk-seeking or risk-
avoiding strategies by adjusting risk preference. This can
effectively avoid the risk caused by the uncertainties of
resources and maximize the benefits of VPPs.

3) The minimization of generation costs can be achieved using
the generation task decomposition strategy. The cost
characteristic curve of the VPP, similar to the consumption
characteristic curve of the traditional power plant, is obtained
through simulation, facilitating the participation of the VPP in
the normal operation of the power system.

The proposed method could well promote VPP in low carbon
applications. On the basis of this study, in the electricity market

environment, our future work focuses on investigating the VPP
bidding competition model that contains multiple VPPs and
traditional power plants, as well as the operation strategy
influenced by the uncertainties of CAC resources themselves
and the electricity market.
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