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A Race Between Economic Growth
and Carbon Emissions: How Will the
CO, Emission Reach the Peak in
Transportation Industry?

Ya Wu*, Yitong Zhou, Yin Liu and Jiawei Liu

College of Economics, Jinan University, Guangzhou, China

Promoting carbon emissions of the transportation industry to reach the peak as soon as
possible is an effective way to control carbon emissions in China. Combined with the
logarithmic mean Divisia index (LMDI) model and the Tapio decoupling model, this paper
tries to predict and analyze the time, path, and quality of carbon peaking in the
transportation industry in China and its eastern, central, and western regions. The
research shows the following: 1) Under the “benchmark scenario,” the transportation
industry in China and its three regions will not achieve the international commitment of
achieving peak carbon emissions by 2030. 2) Under the “radical scenario,” the peak time of
China’s transportation industry can be reached in 2027, which is 5 years earlier, 10% peak
value lower than that in the “benchmark scenario.” In that scenario, in transportation
industry, the eastern region will reach the carbon peak in 2025 and the central and western
regions will both reach the carbon peak in 2028. By then, the peak quality of carbon
emissions will be better than that under the “benchmark scenario” in transportation
industry. This paper can provide theoretical support for promoting carbon emission
reductions and carbon peaking in China’s transportation industry.

Keywords: transportation industry, carbon emissions, Tapio decoupling, LMDI, peak quality, peak time

INTRODUCTION

To combat climate change, greenhouse gases need to be reduced mainly from CO, emissions in
China (Sun et al,, 2021). As the world’s largest economy emitting greenhouse gases (Chen et al., 2020;
Zhao et al,, 2021), China has set a two-stage goal of peaking the carbon emissions by 2030 and
achieving carbon neutrality by 2060 to actively shoulder the international responsibility for carbon
emission reductions (CPG, 2020a). In recent years, the transportation industry’s carbon emissions
accounted for an increasing proportion of the total national carbon emissions, from 9% in 2003 to
13% in 2019 (CESY, 2021). As the foundation of national economic and social development, the
transportation industry’s carbon emissions have maintained a rapid growth trend, with an average
annual growth rate of as high as 8%. As of 2019, carbon emissions have still not reached the peak or
exhibited a slowing trend (IEA, 2021). The growth trend of carbon emissions in the transportation
industry may slow down the overall process of China’s carbon peak. Therefore, research on carbon
emission reductions and carbon peaking in the transportation industry is of great significance for
China to achieve the 2030 goal.

Due to China’s vast territory, there are great differences in economic development, population
distribution, and geographical conditions in the eastern, central, and western regions, resulting in
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TABLE 1 | Comparison of CO, emission prediction models in the transportation industry.

Method

Econometric analysis (EA)

Long-range energy alternatives planning
(LEAP)

National energy technology model (NET)

KAYA forecast

Advantages

Simple technology; predictions can be
based on any available data

Flexible modeling structure; fewer data
requirements;

a simple and comprehensive accounting
framework

Predicting the minimum cost of energy
consumption and pollution emissions

Identifying intrinsic driving factors; easy of
analysis from the perspective of economics

Carbon Peak in Transportation Industry

Disadvantages

Over-reliance on historical trends;
impact factors have strong subjectivity

Highly dependent on personal judgment;
official data on technical parameters are
lacking

Low execution efficiency;
lack of technical parameters

Limited settings for
intrinsic driving factors

Documents

Chen et al. (2020)
Zhang and Su (2020)
Yang et al. (2020)

Zhang et al. (2020)
Liu J. et al. (2018)
Fan et al. (2017)

Zhao et al. (2021)
Li and Yu (2019)

Wang D. et al. (2019)
Wang and He (2018)

different energy consumption structures and carbon emission
efficiency of the transportation industry in its eastern, central, and
western regions. This represents the overall peak of the
transportation industry does not mean that the eastern,
central, and western regions can reach the peak at the same
time. Therefore, to promote China’s transportation industry to
achieve the carbon peak “quickly and well” and follow the
strategic deployment of places with conditions to reach the
peak first, it is necessary to conduct an in-depth analysis of
the peak time and quality of the eastern, central, and western
regions based on predicting the carbon peak of China’s
transportation industry.

Based on the above realistic background, this paper intends to
study the following issues: first, analyzing the relationship
between transportation industry carbon emissions and
economic growth and exploring the socio-economic factors of
carbon emissions from the transportation industry in China and
its eastern, central, and western regions; second, predicting the
peak time and peak value of the transportation industry in China
and its three regions; and, third, evaluating the carbon peak
quality.

Reaching the carbon emission peak does not mean an
improvement in carbon emission efficiency. If the carbon peak
is achieved at a higher total carbon emission, it will not be
conducive to the total control of carbon emissions and will
directly affect the time and difficulty of achieving carbon
neutrality. Based on the prediction of the peak time and the
peak value of the transportation industry, this paper puts forward
the judgment criteria of the carbon peak quality and development
quality of the transportation industry. This method of judgment
is not only scientific and reasonable but also convenient for
policy-makers to understand and operate, which is the main
innovation of this paper.

The contributions of this paper are as follows: First, different
from only studying carbon peak values and time (Liu J. et al,
2018; Chen et al., 2020; Zhao et al., 2021), this paper focuses on
peak quality and puts forward the judgment criteria of peak
quality. Second, different from the study of individual countries
and regions (Fan et al., 2017; Zhang et al., 2020; Zhang and Su,
2020), from a regional perspective, the differences of the peak
time, the peak value, and the peak quality in China and its eastern,

central, and western regions are compared, which is conducive to
the Chinese government to set the carbon peak goal at the
regional level, so as to help China realize its carbon peak
commitment in 2030 on time.

LITERATURE REVIEW

With the increasing prominence of climate change caused by
excessive greenhouse gas emission, in recent years, the
influencing factors of carbon emission and its future evolution
trend have gradually attracted wide attention in academic circles.
Experts and scholars used different models to study the peak time
and the peak value of carbon emissions in China. This paper
made a comparative analysis of existing prediction models, as
shown in Table 1.

At present, many experts and scholars study the peaking of
carbon emissions from the macro level and the meso level based
on different models and scenarios. Regarding the macro-level
carbon peak research, the focus of scholars’ research is whether
China can fulfill its promise of peaking before 2030. It is expected
that China will reach the carbon peak in 2030, which has a greater
sense of responsibility for independent contribution than the
United States, Japan, and the EU countries (Pan et al., 2017).
Wang and He (2018) compared with the United States, Japan and
EU countries in predicting the carbon peak of China’s
transportation industry, they believe that Chinese peak path is
much better than that of developed countries. Similarly, Fragkos
and Kouvaritakis (2018) predicted that China will reach the peak
in 2030, later than OECD developed economies and earlier than
other developing countries such as India. However, the volume of
CO, emissions in the selected economies will continue to increase
in the long run if the economic productivity of the OECD panel
continues to grow (Sun et al., 2020b), which means that it is
difficult to achieve the carbon peak, and the energy structure and
energy efficiency are particularly important for emission
reduction. In China, some scholars think it will reach the
carbon peak in 2030 (Liu and Xiao, 2018; Mi et al., 2017) by
optimizing the energy structure, adjusting the industrial structure
(Yu et al., 2018), and improving the energy efficiency (Xu et al,,
2021; Ding et al., 2019). On the contrary, other scholars believe
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that it is difficult to realize the adjustment of energy consumption
structure in the process of economic development (Duan et al.,
2018), such that China’s commitment to the international
community cannot be fulfilled (Cui et al, 2019; Wang Z.
et al, 2019; Chen et al., 2020). In addition, due to the vast
region in China, the national carbon peak target should be
divided into regional and provincial levels in accordance with
the principles of efficiency and equity (Li et al., 2020), and some
scholars focus on the peak time and value of carbon emissions of
the area (Cheng et al, 2021) and provinces (Fang et al., 2019;
Weng et al., 2019).

For the research on CO, emission reduction potential at the
middle level, domestic and foreign scholars mainly focus on high
energy consumption industries such as power transportation. Some
scholars believe that the carbon emissions of China’s power industry
(Tang et al., 2018; Zhao et al., 2020), construction industry (Li et al,,
2021), and heavy chemical industry (Lu et al., 2020) may reach the
carbon peak by 2030. However, the economic and social
development will lead to more traffic demand and boost the
growth of traffic energy consumption (Sun et al., 2020a; Yu et al,
2020). Different scholars consider that the transportation industry
may peak carbon emissions before 2030 (Liu J. et al., 2018; Liu L.
et al,, 2018; Liu et al., 2021; Zhao et al., 2021) and 2050 (Gambhir
et al,, 2015; Pan et al,, 2018; Wang and He, 2018; Zhou et al,, 2019;
Chen et al,, 2020) and after 2050 (Yang et al., 2020; Zhang et al.,
2020) in China. Due to differences in the research design of different
scholars, such as databases, methods, basic assumptions, and policy
objectives, there will be greater flexibility in the forecast peak and
time of carbon emission peak in the transportation industry (Fang
et al, 2019; Wang D. et al, 2019). In order to analyze the
fundamental source of carbon emissions from the perspective of
economics (Zhang et al.,, 2020; Wang et al., 2021), this paper intends
to use the LMDI model based on the Kaya model to predict the
carbon peak of transportation industry in China.

To sum up, the academia about whether China can achieve
commitment on time has not yet reached agreement on carbon
emissions to peak, and the industry level of carbon emissions and
its peak forecasting are still inadequate; especially, the
transportation industry in our country’s carbon emissions still
lacks systematic analysis and forecasting of peak values and the
corresponding peak policy analysis and recommendations. As a
major emitter, it is of global significance to achieve a high-quality
carbon peak for China. Therefore, this paper attempts to put
forward the standard to evaluate the quality of carbon peak and
discuss the peak time and how to achieve a high-quality peak in
transportation industry in China.

METHODS AND DATA SOURCES

Carbon Emission Measurement: Inventory
Method

To measure the carbon emissions of the transportation industry
in eastern, central, and western regions of China, this paper
adopts the inventory method introduced in the 2006 IPCC
Guidelines for National Greenhouse Gas Inventories (IPCC,
2006). The specific calculations are as follows:

Carbon Peak in Transportation Industry

8 44

CO, =Y, Eix K;x CEF;x 1)

where E; indicates the consumption of the i terminal energy in the

transportation industry, K; is the conversion factor of energy

standard coal of the i energy, and CEF; indicates the carbon

emission coefficient of the i energy (Supplementary Appendix

SA). It is found that the transportation industry mainly consumes

coal, gasoline, kerosene, diesel, fuel oil, liquefied petroleum gas,

natural gas, and liquefied natural gas. Thus, this paper mainly
considers the CO, emissions brought by the eight energies.

The Relationship Between Economic Growth

and Carbon Emission: Tapio Decoupling

To study the relationship between carbon emissions in the
transportation industry and economic development, this paper
introduces a decoupling model. Decoupling models include the
OECD decoupling index, Velma decoupling index, and Tapio
decoupling index (Wu et al., 2019). The Tapio decoupling model
further subdivides the decoupling state, and its results are more
accurate than those of the previous two methods. Therefore, this
study chooses the Tapio decoupling model for research. The
calculations are as follows:

_ ACO,  AGDP

= : , 2
¢=°co, " GDP &)

where ¢ is the decoupling index, ACO, is the change of carbon
emissions in the transportation industry, and AGDP is the change
of gross domestic product (GDP). To avoid overinterpreting slight
changes as significant changes, Tapio (2005) still considers the
interval floating at an elastic value of 20% at 1 as a coupling. The
decoupling results are divided into eight categories: when AGDP
>0, it is divided into strong decoupling (& <0), weak decoupling (0<
€ <0.8), expansive coupling (0.8< & <1.2), and expansive negative
decoupling (¢ >1.2); when AGDP<Q0, it is divided into recessive
decoupling (¢ >1.2), recessive coupling (0.8< € <1.2), weak negative
decoupling (0< & <0.8), and strong negative decoupling (e <0).

In order to measure the peak quality of carbon emissions in the
transportation industry, based on the Tapio decoupling model, this
paper puts forward the quality evaluation criteria of carbon peak in
the transportation industry: take the peak (historical highest value)
to 1 year after the peak as the research period to measure the peak
quality. If the decoupling index is smaller, then the peak quality is
higher. Similarly, the development quality of the transportation
sector is also measured by the annual decoupling index. The
reasons for that approach are as follows: if the decline is faster
within 1 year, it proves that the pollution prevention and control
measures taken are more effective, and the relationship between
carbon emissions and economic growth is weaker, which implies
that the peak quality is higher.

Influencing Factors of Carbon Emission’s
Growth: LMDI Decomposition Method

To measure the main socio-economic factors that affect the
transportation industry’s carbon emissions, this paper selects
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the logarithmic mean Divisia index (LMDI) model, which has
no residuals after decomposition, and can deal with zero-value
problems to quantitatively evaluate the action mechanism and
contribution efficiency of each factor. The formula is as follows:

i E; E DP
CO, = ZS CO; X — X X G x P, 3)
=l F. E GDP P

where i is the type of energy. The ratio of carbon dioxide emitted
by i energy to energy consumption of type i (E;) represents the
carbon emission coefficient (EF); the ratio of energy
consumption of type i (E;) to total energy consumption of
transportation industry represents the energy structure (ES);
the ratio of total energy consumption to gross domestic
product (GDP) in the transportation industry represents the
energy intensity (EI); the ratio of GDP to total population (P)
represents economic growth (EG). To simplify Eq. 3, we rewrite
it as follows:

Co, = ZleF x ES; x EIxEGxP. (4)

According to model calculations, the change in carbon
emissions from the transportation industry from the base year
(t) to the target year (f + n) can be decomposed into five factors,
as follows:

ACO, = AEF + AES + AEI + AEG + AP. (5)

Considering that if the technology does not change,
under normal circumstances, the carbon emission coefficient
of each energy will remain constant, and the effect of the
emission coefficient on carbon emissions (AEF) will be zero.
The decomposition results of the other four factors are as
follows:

AES = ilnggj : — l(;gg” x 1 (fg) (6)
AET=Y lnggji: l(;qug“ X ln(EEIZ) ?)
AEG = 1lnggz i ;22(;“ X ln(EEG ct;t> , 8)
AP = imxln<Pg">, )

where AES represents the energy structure effect; AEI represents
the energy efficient effect; AEG represents the economic growth
effect; and AP represents the population effect.

Data Sources

This paper studies the transportation industry in China and the
eastern, central, and western regions from 2003 to 2019. Energy
consumption by each region is extracted from the China Energy
Statistical Yearbook; other data come from China’s National
Bureau of Statistics (http://www.stats.gov.cn/tjsj/). To offset the
effects of inflation, GDP in each region was adjusted to 2010 price
levels. Due to the unavailability of data, this paper excludes Tibet,
Taiwan, Hong Kong, and Macau. According to the classification

Carbon Peak in Transportation Industry

of the National Bureau of Statistics of China, this paper divides
the remaining 30 provinces into the eastern, central, and western
regions (Supplementary Appendix SB).

THE DRIVING FACTORS FOR CARBON
EMISSIONS’ GROWTH IN THE
TRANSPORTATION INDUSTRY
Regional Carbon Emission Estimation:
2003-2019

In the national analysis, the carbon emission of China’s
transportation industry has not yet peaked from 2003 to 2019,
and it is showing a rapid growth trend, with an average annual
growth rate of 8% (Figure 1). In regional analysis, carbon
emissions in the eastern, central, and western regions have not
peaked, and the average annual growth rate in the central and
western regions is about 8.5%, which is higher than that in the
eastern region (7.4%).

The Decoupling Relationship Between

Carbon Emission and Economic Growth
Through Tapio elastic analysis, this paper measures the
decoupling indicators between carbon emissions and economic
growth in the transportation industry from 2003 to 2018. And the
historical decoupling status is studied in the medium term
(5years). This period is stable and can intuitively reflect the
trend of change. The decoupling indicators in the range of 0-0.8
mean weak decoupling, and those lower than 0 refer to strong
decoupling. The lower the value is, the better the decoupling state
is. As shown in Figure 2, the decoupling relationship between
carbon emissions and economic growth in the transportation
industry showed an overall trend of optimization in recent
decades.

At the national level, from 2003 to 2008, the decoupling index
was 1.38, indicating that the growth rate of carbon emissions
from the transportation industry was significantly higher than the
growth rate of economic development, that is, the development of
the transportation industry at the expense of the environment.
From 2008 to 2013, the decoupling index decreased to 0.45,
indicating a slowdown in the growth of CO, emissions while GDP
grew. The decoupling index from 2013 to 2018 was basically the
same as that from 2008 to 2013, which shows that the quality of
carbon emissions in the transportation industry has stagnated
recently.

At the regional level, from 2003 to 2013, the decoupling index
of carbon emissions and economic growth in the central region
has been in a state of expansive coupling, indicating that the
decline in carbon emissions in the central region is not obvious;
the eastern and western regions have changed from an expansive
negative decoupling state to a weak decoupling state. From 2013
to 2018, the three major regions all showed a weak
decoupling state.

Although the decoupling status of China and its three regions
is weak decoupling, it is still a long way from strong decoupling.
This means that, with the economic growth, the CO, of China’s
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FIGURE 1 | Total CO, emissions of the transportation industry in China (unit: million tons).
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FIGURE 2 | Decoupling relationships between carbon emissions and economic growth.

transportation industry is still growing slowly, and the trend of
emission inflection point is not obvious. It can be seen that
exploring the emergence of emission inflection point has become
an important topic.

Socio-Economic Factors Affecting Carbon

Emissions’ Growth
To predict the trend of carbon emissions reasonably, this paper
employs the LMDI model to analyze the main socio-economic
factors that lead to the growth of carbon emissions.

From 2003 to 2019, the total CO, emissions of China’s
transportation industry increased by 510 million tons (Mt).
Among them, economic growth and population size have a

positive effect on carbon emissions, while the energy structure
and energy intensity have a negative effect on carbon emissions
(Figure 3). The energy intensity reduces carbon emissions by
100 Mt, and the contribution rate to the growth of CO, emissions
is —20%. The energy intensity of the transportation industry can
be improved via developing and utilizing the energy-saving and
emission reduction technologies, and the carbon emissions will be
suppressed effectively.

The eastern region is the most developed region with high-
quality human capital. The energy-saving and emission reduction
technologies in the eastern region are better than those in the
central and western regions because of more investment, and the
negative contribution rate of energy intensity to the growth of
carbon emissions is —23%. The central region is under great
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FIGURE 3 | Contribution rate of four effects on carbon emissions’ growth. Note: CR; =
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economic growth pressure and has undertaken some high-energy
industries transferred from the eastern region. Therefore, the
contribution rate of energy intensity effect is only —14%, while
that of the western region is —19%.

The energy structure resulted in a 19.45 Mt reduction in
transportation carbon emissions, with a contribution rate of
—4%. The improvement of the energy structure is attributed to
the increase in the proportion of clean energy due to the
implementation of energy conservation and emission
reduction policies. The contribution of energy structure in the
eastern, central, and western regions was —4%, —2%, and —5%,
respectively.

The economic growth effect and population growth effect are the
main drivers of carbon emissions’ growth. From 2003 to 2019, CO,
emissions increased by 574.79 Mt due to economic growth, and the
contribution rate is 113%; CO, emissions increased by 55.34 Mt due
to population growth, and the contribution rate is 11%.

CARBON PEAK: TIME, VALUE, AND
QUALITY

Scenario Design for the Development of

Transportation Industry

From the LMDI model, optimizing the energy structure and
reducing the energy intensity are the primary ways to reduce
carbon emissions in the transportation industry. Therefore,
according to Eq. 4, the predicted CO, emission of the
transportation sector can be described as

FCOy = EF;_y x (ES;-; = S) x (EI,.; = I) x (GDPH +9)
x (Pry + p),
(10)
where FCO, represents the predicted value of CO, in the
transportation industry; S represents the average annual

decline in the proportion of oil and gas in the
transportation industry; I represents the average annual

TABLE 2 | Benchmark scenario of the transportation industry’s development in
2030 and 2035.

Factors 2030 2035

Energy structure 75% 72%

Energy intensity - 40% lower than that in 2015
Per capita GDP — 100% more than that in 2020
Population — 14.34 billion

Note: Energy structure represents the percentage of oil and gas in the transportation
industry.

TABLE 3 | Mild and radical scenarios of the transportation industry’s
development.

Scenario Energy structure Energy intensity
2030 (%) 2035 (%) 2035

Scenario 1 (mild A) 70 65 40% lower than that in 2015

Scenario 2 (mild B) 75 72 45% lower than that in 2015

Scenario 3 (radical) 70 65 45% lower than that in 2015

Note: See Supplementary Appendix SC for the background of scenario setting.

decline in the energy intensity of the
transportation industry; g represents the average annual
growth of GDP; and p represents the average annual
increase of population.

Combined with the important speech of General Secretary
Xi Jinping at the Climate Ambition Summit and China’s
policies or objectives in 2030 and 2035 (CPG, 2020a; CPG,
2020b; CF40, 2020), the benchmark scenario will be designed
to predict the carbon peak time and peak value of the
transportation industry. In Table 2, the benchmark targets
for 2030 and 2035 are listed.

Based on the benchmark scenario, according to the
changes in the two major factors of energy structure and
energy intensity, three scenarios are set in Table 3. In
scenario 1 (mild scenario A), it is assumed that the energy
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FIGURE 4 | (A-D) Trend of CO, emissions in the transportation industry in China and its eastern, central, and western regions (unit: million tons).

structure is cleaner than that in the benchmark scenario in 2030 and
2035, i.e., the oil and gas proportion will be reduced to 70% in 2030
and 65% in 2035. In scenario 2 (mild scenario B), it is assumed that
the energy intensity will be lower than that in the benchmark scenario
by 2035, i.e., the energy intensity will decrease by 5%. In scenario 3
(radical scenario), it is assumed that, in 2030, the energy structure and
energy intensity are improved at the same time, ie., scenario 1 and
scenario 2 are combined. It should be specifically noted that although
GDP growth and population growth are the main factors affecting
carbon emissions, we do not consider sacrificing economic interests
and demographic dividends to achieve carbon emission reduction.

Therefore, the scenario changes of economic growth and population
growth are not considered in the prediction of this paper. The
economic growth rate and population growth rate of mild
scenario and radical scenario are consistent with those in the
benchmark scenario, and the energy structure and energy
efficiency will change at a constant rate.

Carbon Peak Forecast: Time and Value

At the national level, under the benchmark scenario, the
transportation industry will achieve the carbon peak in the year
2032 with 880.86 Mt carbon emissions (Figure 4). In mild scenario
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TABLE 4 | Comparison of the peak quality in four scenarios.

Scenario Points China
Benchmark Decoupling index -0.05
Peaking time (T) (2032)
Scenario 1 (mild A) Decoupling index -0.05
Peaking time (T) (2029)
Scenario 2 (mild B) Decoupling index -0.03
Peaking time (T) (2029)
Scenario 3 (radical) Decoupling index -0.06
Peaking time (T) (2027)

Note: (T, T + 1) is the calculated period of decoupling.

A, the peak time is 2029, 3 years earlier than that in the benchmark
scenario, and the peak value is 821.95 Mt. In mild scenario B, the
peak time is the same as that of mild scenario A, but the peak value
increases by 14.53 Mt compared with that in mild scenario A. In the
radical scenario, the carbon peak of the transportation industry will
be advanced to the year 2027, reaching a peak of 792.31 Mt, which is
88.55 Mt less than that in the benchmark scenario.

At the regional level, in the benchmark scenario, the eastern
region will reach the peak in the year 2031, with 420.49 Mt carbon
emissions, and the central region and western region will peak in
the years 2032 and 2033, respectively, with carbon emissions of
238.77 Mt and 222.28 Mt, respectively. Reasons for these results
are that the eastern region pays more attention to the quality of
economic development and considers environmental constraints
at the same time, while the central and western regions focus on
the speed of economic growth, and the rapid economic growth
effect offsets the energy structure effect and energy intensity
effect, resulting in the increase of carbon emissions year by
year, and the peak time is relatively late.

In mild scenario A, the eastern region is expected to reach the
peak in the year 2027, 2 years earlier than the country, indicating
that the eastern region’s emission peak will help drive China’s
transportation carbon emissions to peak. The central region and
the western region will reach the peak simultaneously in the year
2031. In mild scenario B, the eastern region will peak in the year
2029, and the central region and the western region will reach the
peak simultaneously in the year 2030. Comparing the results of
mild scenarios A and B, it can be found that optimizing the energy
structure is more conducive to the transportation industry in the
eastern region to achieve the carbon peak and reducing the energy
intensity is more conducive to the transportation industry in the
central and western regions to achieve the carbon peak. In the
radical scenario, the eastern region will reach the carbon peak at
384.22 Mt in 2025, while the central region and western region will
reach the carbon peak at 212.61 Mtand 196.89 Mt in the year 2028.

To sum up, China’s transportation industry cannot reach the
carbon peak by 2030 under the current policy. With a small
improvement in the energy structure or energy intensity, the peak
time can be reached in the year 2029 under the mild scenario and
in the year 2027 under the radical scenario. However, reaching
the peak does not mean a high carbon peak quality. Under various
policy scenarios, the carbon peak quality will be analyzed in
combination with the Tapio decoupling index.

Carbon Peak in Transportation Industry

Eastern Central Western
-0.03 -0.05 -0.03
(2031) (2032) (2033)
-0.02 -0.10 -0.05
(2027) (2030) (2030)
-0.05 -0.10 -0.05
(2028) (2030) (2030)
0.00 -0.05 -0.05
(2025) (2028) (2028)
TABLE 5 | Decoupling indices in 2030.
Scenario China Eastern Central Western
Benchmark 0.06 0.02 0.06 0.12
Scenario 1 (mild A) -0.11 -0.14 -0.10 -0.05
Scenario 2 (mild B) -0.11 -0.14 -0.10 -0.05
Scenario 3 (radical) -0.27 -0.3 -0.26 -0.21

Note: (2030, 2031) is the calculated period of decoupling.

Peak Quality Analysis

First, the decoupling index between carbon emissions and
economic growth is used to reflect the quality of carbon peak
when reaching the peak (Table 4).

The smaller decoupling index means the weaker correlation
between carbon emissions and economic growth and the better
quality of carbon peak. From a regional perspective, mild scenario
B is a better scenario. When the carbon emission reaches the peak,
under mild scenario B, the decoupling index is —0.05 in the eastern
region, the decoupling index is —0.1 in the central region, and the
decoupling index is —0.05 in the western region, which is better than
that in the other three scenarios. Unfortunately, the peak year in this
scenario is later than that in the radical scenario, which is mainly
influenced by eastern China. In eastern China, reaching the peak in
advance will not obtain higher peak quality because of the rapid
economic development and adjusting the energy structure and
reducing the energy intensity cannot effectively offset the carbon
emissions caused by the economy. Therefore, sometimes, reaching
the peak in advance does not mean high quality.

From a national perspective, the radical scenario is a better
scenario. When carbon reaches the peak, the decoupling index of
the radical scenario is —0.06, which is better than that of the
benchmark scenario (—0.05) and mild scenarios A (-0.05) and B
(-0.03), indicating that the “two-pronged” approach of
optimizing the energy structure and improving the energy
efficiency can not only shorten the peaking time and reduce
the peak value effectively but also achieve a better peaking quality.

Then, the decoupling index is used to reflect the quality of
transportation industry development in 2030 (Table 5). In each
policy scenario, the peak time is discrete. The decoupling index of
different peak time lacks a uniform benchmark to compare with.
China has a commitment to reach the peak in the year 2030 to the
international community. By examining the relationship between
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carbon emissions and economic growth in 2030, we can compare the
development quality under different policy scenarios in a unified time
dimension. In 2030, the benchmark scenario has the worst
decoupling state, that is, weak decoupling; both mild and radical
scenarios achieve strong decoupling. The decoupling index of radical
scenario is the best, and mild scenarios are second only to the radical
scenario. This means that the development quality of China’s
transportation industry will be relatively good in the mild scenario
and radical scenario in 2030. Overall, this paper believes that both
mild scenario B and radical scenario will be excellent scenarios to
promote carbon emissions to peak.

CONCLUSIONS AND SUGGESTIONS

This paper analyzes the relationship between transportation
industry carbon emissions and economic growth and explores
the socio-economic factors of carbon emissions. On this basis, it
predicts the peak time, peak value, and peak quality of carbon
emissions in China and the eastern region, central region, and
western region. The main conclusions are as follows.

From a regional perspective, mild scenario B may be the best
scenario for carbon emission reduction. In the benchmark scenario,
the transportation industry in eastern, central, and western China
cannot achieve the goal of reaching the carbon peak by 2030. In
mild scenario B, carbon emissions will reach the peak by 2028 in the
eastern region, carbon emissions will reach the carbon peak by 2030
in the central and western regions, and the peak quality is better
than that in the benchmark scenario. Therefore, mild scenario B is
considered to be one of the best scenarios.

From a national perspective, the radical scenario is the best
scenario for carbon emission reduction. Under the benchmark
scenario, the transportation industry is expected to peak in 2032.
Under the radical scenario, the peak time of China’s
transportation industry may be in 2027. And the peak quality
of carbon emissions will be better than that under the benchmark
scenario in transportation industry. Therefore, the radical scheme
is considered to be one of the best choices to advance the peak
time and ensure the peak quality.

To sum up, to promote the transportation industry to achieve
the carbon peak “quickly and well,” the carbon emission quality
can be improved from the following two aspects:

First, the transportation energy structure should be improved
and transportation energy should be transformed to green energy.
For example, through cutting tax, adding subsidies, and
publishing policies to increase support for new energy vehicles,
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