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To maximize energy extraction, the nacelle of a wind turbine follows the wind direction.
Accurate prediction of wind direction is vital for yaw control. A tandem hybrid approach to
improve the prediction accuracy of the wind direction data is developed. The proposed
approach in this paper includes the bilinear transformation, effective data decomposition
techniques, long-short-term-memory recurrent neural networks (LSTM-RNNs), and error
decomposition correction methods. In the proposed approach, the angular wind direction
data is firstly transformed into time-series to accommodate the full range of yaw motion.
Then, the continuous transformed series are decomposed into a group of subseries using
a novel decomposition technique. Next, for each subseries, the wind directions are
predicted using LSTM-RNNs. In the final step, it decomposed the errors for each
predicted subseries to correct the predicted wind direction and then perform inverse
bilinear transformation to obtain the final wind direction forecasting. The robustness and
effectiveness of the proposed approach are verified using data collected from a wind farm
located in Huitengxile, Inner Mongolia, China. Computational results indicate that the
proposed hybrid approach outperforms the other single approaches tested to predict the
nacelle direction over short-time horizons. The proposed approach can be useful for
practical wind farm operations.
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INTRODUCTION

Wind energy generation is expanding with about 12% of world’s electricity to be supplied by 2020
(Kodama and Burls 2019). Compared with the traditional form of power generation, wind energy has
the advantages of zero pollution and low operation cost. Hence, it has become one of the fastest
growing renewable energy power supplies globally (Duan et al., 2021).

Although it has obvious advantages over others, wind energy still faces technical challenges due to
the characteristics of chaos, randomness, and intermittence which make the wind data complex. The
wind direction is one of the most complex aspect of the wind data due to its high dynamics in both
spatial and temporal domains. To follow the wind direction, the nacelle of a wind turbine orientes the
controlling of yaw and maximizes the energy output. For most efficient energy extraction, the nacelle
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orientation of a wind turbine needs to agree with wind direction
which calls for accurate and prediction of the wind direction (Hu
et al., 2016).

According to literature review, statistical approaches based on
meteorological and geographic information are widely applied to
forecast wind direction (Mcwilliams and Sprevak 1982; Castino
et al., 1998; Erdem and Shi 2011). Liu et al. (2010) applied a neural
Kriging method to spacially estimate the distribubiton of wind
directions. Erdem and Shi (2011) developed autoregressive
moving average (ARMA) model to forecast the short-term
wind directions. Masseran et al. (2013) used a mixture of Von
Mises models to fit the wind direction series.

Therefore, machine learning adoptions for wind direction
forecasting have evolved from the classic approach to deep
learning, which is then improved in this study (Mohandes
et al., 2004; Bilgili et al., 2007). In the wind direction
forecasting sector, Zhou et al. (2011) selected least-square
support vector machines (LS-SVM) to predict the wind
directions. Tagliaferri et al. (2015) developed artificial neural
networks to forecast the short-term wind directions. Khosravi
et al. (2018) developed an adaptive neuro-fuzzy inference system
to predict the wind directions. Amin et al. (2018) improved the
wind direction forecasting using the echo state network (ESN)
which is a deep-learning algorithm. Tang et al. (2021) integrated
the ESN network with IFPA optimization algorithm and
developed a two-step deep-learning wind direction framework.

Considering the complexity and high dynamics of the wind
direction series, additional measures are essential to study in the
pattern inside. Even though deep learning algorithms have
achieved promising results in the field of time-series
prediction, it is still challenging for a single deep-learning
approach to adapt all wind direction patterns. To further
improve the prediction performance, hybrid prediction models
are considered to be the mainstream since last year. The signal
decomposition is one of the most popular components within the
hybrid models published. It contains wavelet decomposition (Liu
et al., 2014), empirical mode decomposition (EMD) (Santhosh
et al., 2018), complete ensemble empirical model decomposition
(CEEMD) (Zhang et al., 2017), complete EEMD with adaptive
noise (CEEMDAN) (Yang and Wang 2018), and the improved
CEEMDAN (ICEEMDAN) (Rong et al., 2019). In particular, the
ICEEMDAN has demonstrated its superior performance in
decomposing a complex signal into a finite number of
intrinsic mode functions with transient frequencies. The
decomposed subseries contains the detailed characteristics of
the signal and can essentially reflect the spatial and temporal
patterns of the wind direction series (Kou et al., 2020).

Based on the above considerations, in this research, we
propose a new hybrid approach combining ICEEMDAN and
error correction methods for short-term wind direction
forecasting. First, the angular wind direction data has been
transformed via bilinear transformation. Then, the
transformed wind direction series are decomposed into a
series of relatively simple subseries by the ICEEMDAN
modules. Next, the LSTM-RNN is established as the prediction
module to predict each sub-series. After that, the prediction
errors are obtained and decomposed by ICEEMDAN modules.

The statistical ARIMA model is used to predict the error
subsequence and compute the prediction error. In the last
step, the final prediction of the wind direction is made by
summing all predicted subseries together with current
predicted error and then transformed into angular data by
inverse bilinear transformation.

The major contribution of this research can be summarized as
follows: First, the wind direction forecasting system based on
ICEEMDAN decomposition, LSTM-RNN and error correction
has been proposed; Second, the comparative analysis is
performed against other benchmarking deep-learning
algorithm; Third, the experiments were performed in different
seasons to explore seasonal patterns of wind directions.

The remainder of the manuscript is configured as follows. In
Section “dataset description and transformation”, it summarizes
the data collection process and patterns inside the wind direction
dataset. In Section “methodologies”, it introduces the
ICEEMDAN decomposition, LSTM-RNN, error correction,
benchmarking deep-learning algorithms, and error correction
procedures. The experimental results are provided in Section
“experimental results” and the Conclusion is made in Section
“conclusions” respectively.

DATASET DESCRIPTION AND
TRANSFORMATION

Data Analysis
In this study, the data has been collected during the year of 2020
from a wind farm namely Huitengxile wind power plant in Inner
Mongolia, Northern China. It is one of the largest wind farms in
Asian and it’s located in the suburbs between Chaha’er youyi
zhongqi and Ulanqab city. The whole wind farm has multiple
wind turbines that are distributed in an open flat grassland which
provides rich wind resources. The prevailing wind directions are
northwest and southeast which are very stable in recent years. The
location and the annual wind rose diagrams has been illustrated
in Figure 1 below.

According to Figure 1B, the two prevailing wind directions,
around 180° and 315° are visible. The geographic center
coordinate is 112°40′E and 41°05′N. It’s annual average wind
speed at 10 m height is 7.2 m/s and its annual average wind speed
at 40 m height is 8.8 m/s. In the wind farm, the annual average air
density is 1.07 kg/m and it contains an effective wind speed of
5–25 m/s with strong stability and high quality.

The data used in this research has been collected by the
supervisory control and data acquisition (SCADA) system.
Usually, data on more than 100 parameters at 10 s intervals is
collected and stored in a SCADA system. The SCADA collected
data of individual wind turbines is streamed to a central computer
for condition monitoring, performance evaluation, and other
forms of analysis.

In this research, the SCADA data collected at 20 wind turbines
over the period of 2020 has been analyzed. According to
Figure 1B, there are two annual prevailing wind directions
and it can be partitioned into four seasons independently as
illustrated with the wind roses in Figure 2. In the fall and spring,
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two prevailing wind directions around 150° and 315°are observed.
In the winter and summer, one prevailing wind direction is noted.
Since the wind direction data is captured as a discrete angular
variable, it needs to be transformed for modeling. A bilinear
transformation of the angular wind direction is applied in the
next section.

Bilinear Transformation of Angular Data
The value of wind direction ranges from 0° to 360°. It is likely that
the wind direction may change from the interval, i.e (0°, 10°) to
(350°, 360°). Practice shows that bilinear transformation is a better
way for transforming discrete wind direction data to continuous
data than the sine and cosine transformation (Peng et al., 2020).
Geometrically, the two intervals are close to each other and
therefore this change would lead to a large prediction error
(Bilgili et al., 2007). To avoid such error, transformation of the

discrete angular variable into a standardized continuous variable
is essential. One option is to use a sine and cosine transformation
which is not the best approach due to two variables needed for
prediction which enlarges the prediction errors. A better option is
to apply a bilinear transformation (Jury 1973).

The bilinear transformation maps the analog plane (s-plane)
into the digital plane (z-plane) (Groutage et al., 2003) (see
Figure 3). The transformation function, the ratio of two
polynomials (Davies 1974), is expressed in Eq. 1.

H(s)Z � 1 + T
2 s

1 − T
2 s

(1)

where: s is the original value of angular variable in s-plane; T is the
time interval of the transformation. The bilinear transformation
expressed the angular variable between 0° and 360° as continuous

FIGURE 1 | Location of the Huitengxile wind farm.
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FIGURE 2 | Wind rose diagrams for four seasons.

FIGURE 3 | Illustration of the bilinear transformation.
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and normalized. The inverse bilinear transformation is expressed
in Eq. 2.

s � 1
T

2 − 2H(s)Z−1
2 + 2H(s)Z−1 (2)

where: s is the inversed value of angular variable in s-plane; and
H(s)z is the transformed angular variable.

Since the wind direction data is noisy, a bilinear
transformation function acting as a low-pass filter in the
continuous-time domain reduces the noise (Davies 1974). A
prediction model developed with the transformed data is more
accurate than the model based on the discrete time-series
angular data.

METHODOLOGIES

The use of deep learning algorithms in regression, multi-class
classification, collaborative filtering, and graphic learning is
growing (Lecun et al., 2015). The concept of deep learning
originates from research in neural networks and it avoids the
local optima dilemma. However, any single deep learning
algorithms can offer limited extraction of patterns inside
the dataset. Hybrid frameworks containing multiple deep
learning algorithm is becoming the new mainstream in
academia.

ICEEMDAN

In this research, the improved complete ensemble empirical
mode decomposition with adaptive noise (ICEEMDAN) is
served as the major module in the hybrid forecasting
framework. It is considered as an improvement on empirical
mode decomposition (EMD) which decomposes the wind
directions in the temporal domain (Colominas et al., 2014).

The time-series of wind direction can be expressed as the sum
of multiple IMFs and the residual after the ICEEMDAN
decomposition which can be expressed in Eq. 3 as follows:

H(t) � ∑n
j�1

IMFj(t) + r(t) (3)

The amplitude energy E1, E2, . . ., En of the IMFs is calculated
as Eq. 4:

Ej � ∑N
k�1

∣∣∣∣IMFj(k)
∣∣∣∣2 (4)

where N denotes the total number of sampling points of the jth
IMF. Assuming that the energy carried by r(t) can be ignored, the
total energy of the transformed direction series can be expressed
as Eq. 5 as follows:

E � ∑n

j�1 ∑N

k�1
∣∣∣∣IMFj(k)

∣∣∣∣2 (5)

To remain the data in the same magnitude, the amplitude of
the IMFs is normalized to facilitate the subsequent calculations
and the impact of singular data has been reduced. Hence, the
energy entropy of the ICEEMDAN framework can be expressed
as Eq. 6 below:

E � −∑n
i�1

pj lnpj (6)

Compared with other decomposition methods, the
ICEEMDAN can not only reduce the noise in the original
time-series data but also reduce the residual spurious pattern
problems based by signal overlap. Thus, the decomposed
subseries gains more orthogonality among each other and it
can provide more accurate reconstruction of the original series.

Short-Term Wind Direction Forecasting
Using ICEEMDAN
To integrate the wind direction series with the ICEEMDAN
modules, the implementations are introduced as follows (Duan
et al., 2021):

Step 1: Compute the local means of realizations using the
EMD algorithm described in Eq. 7:

xi � x + β0E1(wi) (7)

where β0 � ε0σ(x)/σ(E1(wi) ); σ() compute the standard
deviation; and ε0 is the reciprocal of the desired signal-to-
noise ratio between the first added noise and the analyzed signal.

Step 2: Compute residual term R1 in the first component using
Eq. 8:

R1 � M(xi) (8)

Step 3: Compute the first mode at the first stage (k � 1) using
Eq. 9:

d1 � x − R1 (9)

Step 4: Estimate the second residue as the average of local
means of the realizations R1 + β1E2(wi) and then define the
second mode using Eq. 10 as follows:

d2 � R1 −M(R1 + β1E2(wi)) (10)

Step 5: For the other terms (k � 3, . . . ,K) of residuals, they can
be computed by Eq. 11:

Rk � M(Rk−1 + βk−1Ek(wi)) (11)

Step 6: Compute the other terms (k � 3, . . . ,K) of the mode by
Eq. 12:

dk � Rk−1 − Rk (12)

Step 7: Implement step 4 for the next iteration.
For the transformed wind direction series, the IMF

components are obtained via the above steps which can be
illustrated by the diagram presented in Figure 4.
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FIGURE 4 | Diagrams of ICEEMDAN modules.

FIGURE 5 | Autocorrelation analysis of time-series wind direction data.
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Long-Short-Term Memory Recurrent
Neural Network
A major drawback of the classical deep neural networks is that
they do not have memory of the past periods. The time series
information such as the past clusters of seasonal patterns and
seasonal trend may not be reflected (Lee et al. 1993). Introduced
by Hochreiter and Schmidhuber (1997) and Gers et al. (2003), the
long-short-term memory recurrent neural network (LSTM-
RNN) matches the needs and it is used in this paper to
predict wind direction.

The long-short-term memory recurrent neural network
(LSTM-RNN) contains units called memory blocks composed
of memory cells with self-connections storing temporal states.
Each memory block includes an input and output gate. The input
gate controls the flow of input data into the cell. The output gate
controls the output data flow into the rest of the network (Sak
et al. 2014). In addition, the LSTM-RNN has peephole
connections (Gers et al. 2003) from its internal cells to the
gates in the same cell to learn precise timing of the output.
The architecture of LSTM-RNN is illustrated in Figure 5.

With a long-short-term memory recurrent neural network
(LSTM-RNN) architecture, the mapping from an input to an
output layer is iteratively computed from Eqs 13–18 (Gers et al.
2003).

it � sig(W ixxt +W immt−1 +W icct−1 + bi) (13)

f t � sig(Wfxxt +Wfmmt−1 +W icct−1 + bf) (14)

ct � f t+ct−1 + it+g(Wcxxt +Wcmmt−1 + bc) (15)

ot � sig(Woxxt +Wommt−1 +Wocct + bo) (16)

mt � ot+h(ct) (17)

yt � ϕ(Wymmt + by) (18)

where: W are the weight matrices (i.e., Wix is the weight matrix
from the input to the input layer; Wic, Wfc, Woc are diagonal
weight matrices of the peephole connections (Gers et al., 2003));
bi,bf,bo, and bc are the bias vectors; m is the cell output activation
vector; sig () is the sigmoid function; i, f, o, and c are the input
gate, forget gate, output gate, and cell activation vectors,
respectively, with all having the same size as the cell output
activation vector m; + is the element-wise product of the vectors;
and g () and h () are the cell input and cell output activation
functions, respectively.

Benchmarking Machine Learning
Algorithms
Comparative analysis is performed in this research against the
other benchmarking popular deep learning algorithms. All
algorithms tested here are using the same ICEEMDAN
framework as described in Section “Short-term Wind
Direction Forecasting using ICEEMDAN”. The benchmarking
deep learning algorithms compared includes deep neural network
(DNN) (Xu et al., 2018; Sun et al., 2020; Yi and Xu, 2020), deep
belief network (DBN) (Ouyang et al., 2019; Li et al., 2020), kernel-
based extreme learning machine (KELM) (Li et al., 2018; Ouyang

et al., 2018), and gated recurrent unit network (GRU) (Pan et al.,
2019; Tang and Zhang, 2019).

The DNN is a fully connected feedforward network that
consists of a cascade of multiple layers and hidden units. It’s
structure with multiple processing layers enables it to handle
highly nonlinear patterns inside the dataset. The deep temporal
representations in the temporal domain can be effectively
extracted by DNN.

Similar to DNN, the DBN consists of multiple layers of
restricted Boltzmann machines (RBMs). It also contains a
supervised regression layer stacked on the top of all RMBs for
classification or regression tasks. Inside each RBM, it contains an
input layer and a hidden layer with hidden-to-all-visible
connections.

The ELM is a single hidden layer feedforward network. Instead
of conventional back-propagation, it uses Penn-Moore pseudo-
inverse to compute the wights between the hidden layer and
output layer. The KELM is the improvement of vanilla ELM
which uses the kernel matrix to replace the randomly initialized
weights between the input layer and output layer. The most
popular applied kernel functions include RBF, linear function,
and polynomial function.

The GRU is another type of recurrent neural network other
than LSTM-RNN proposed by Cho et al. (2014). In a typical GRU
unit, it has one less gate than the LSTM unit and consists of two
gates: the reset gate and the update gate. Hence, the GRU is also
popular in modeling time-series dataset.

Measurement Matrices
To assess prediction accuracy of the proposed deep learning
model, four metrics are computed: the MAE [Mean absolute
error (Eq. 19)], the MAPE [Mean absolute percentage error (Eq.
20)], the MSE [Mean square error (Eq. 21)], and the RMSE [Root
mean square error (Eq. 22)].

MAE � 1
N

∑N
i�1

∣∣∣∣oj − tj
∣∣∣∣ (19)

MAPE � 1
N

∑N
i�1

∣∣∣∣∣∣∣∣oj − tj
tj

∣∣∣∣∣∣∣∣ (20)

MSE � 1
N

∑N

j�1 oj − t2j (21)

RMSE �
������������
1
N

∑N

j�1 oj − t2j

√
(22)

where: oj is the jth predicted wind direction; tj is the jth measured
wind direction; and N denotes total number of samples.

Error Correction
To improve the forecasting accuracy, the error correction is
implemented in this research. First, after the forecasting
outcome produced by each LSTM-RNN, the error series E(t)
of the training dataset can be computed by comparing the original
transformed wind direction series. The step can be expressed in
Eq. 23 as follows:

E(t) � WLSTM(t) −WActual(t) (23)
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where WLSTM(t) is the final forecasted transformed series in the
first module; and WActual(t) is the actual transformed wind
direction series after bilinear transformation.

The forecasted errors of wind direction series E(t) are
oscillatory in the time-series domain (Wasynczuk et al., 1981).
The relationship between oscillatory and decaying property of the
wind direction errors can be represented by an ARIMA model
which predicts the errors. In detail, the ARIMA can be
constructed by computing autocorrelation expressed with the
autocorrelation factor (ACF) (See. Eq. 24) and the partial
autocorrelation factor (PACF)) (See. Eq. 25). Here, Cov()
denotes the covariance; Var() denotes the variance; and Corr
() denotes the Pearson’s correlation coefficient.

ρk �
Cov(E(t), E(t − k))

Var(E(t)) (24)

ρk � Corr(E(t), E(t − k)|E(t − 1), . . . , E(t − k + 1)) (25)

For each IMF, an ARIMA model is developed and then all
outcomes of each ARIMA are integrated to obtain the final error
series. Last, as illustrated in Figure 4, the final prediction is
achieved by Eq. 26 as follows:

ŴFinal(t) � ̂WLSTM(t) + ^E(t) (26)

where ̂WLSTM(t) denotes the forecasting results from the LSTMs;
^E(t) denotes the errors forecasted by ARIMA models; and̂WFinal(t) is the final forecasting outcomes.

FIGURE 6 | Performance of all measurement metrices with various prediction horizons in four seasons.
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EXPERIMENTAL RESULTS

Training Strategies
In this section, computational experience with models predicting
wind direction is presented. Wind data from four seasons, spring,

summer, fall, and winter are used. Prediction of wind direction is
conducted using dataset at 10, 20, and 30 s resolution. The
prediction horizons are 2, 5, 10 min, and 1 h. The prediction
model is expressed in Eqs 27–29.

Y � f(D) (27)

TABLE 1 | Mape of the five algorithms for 2020 before error correction.

Season Resolution (s) Algorithm Prediction horizon Season Resolution (s) Algorithm Prediction horizon

2 min 5 min 10 min 1 h 2 min 5 min 10 min 1 h

Spring 10 DNN 0.082 0.106 0.133 0.211 Summer 10 DNN 0.047 0.057 0.092 0.181
DBN 0.072 0.09 0.121 0.207 DBN 0.056 0.064 0.097 0.182
KELM 0.081 0.098 0.137 0.224 KELM 0.062 0.074 0.106 0.186
GRU 0.077 0.095 0.125 0.211 GRU 0.059 0.07 0.095 0.181
LSTM-RNN 0.072 0.091 0.108 0.195 LSTM-RNN 0.047 0.056 0.084 0.171

20 DNN 0.088 0.112 0.139 0.269 20 DNN 0.049 0.061 0.099 0.221
DBN 0.077 0.093 0.127 0.252 DBN 0.056 0.065 0.105 0.227
KELM 0.085 0.102 0.141 0.273 KELM 0.065 0.077 0.113 0.228
GRU 0.082 0.101 0.131 0.264 GRU 0.064 0.073 0.104 0.227
LSTM-RNN 0.076 0.094 0.117 0.231 LSTM-RNN 0.049 0.058 0.096 0.214

30 DNN 0.096 0.114 0.15 0.33 30 DNN 0.052 0.066 0.112 0.278
DBN 0.082 0.099 0.139 0.316 DBN 0.058 0.072 0.116 0.277
KELM 0.089 0.109 0.153 0.328 KELM 0.068 0.083 0.125 0.29
GRU 0.087 0.105 0.142 0.311 GRU 0.063 0.078 0.116 0.286
LSTM-RNN 0.081 0.096 0.128 0.305 LSTM-RNN 0.051 0.063 0.108 0.261

Fall 10 DNN 0.094 0.112 0.154 0.239 Winter 10 DNN 0.049 0.069 0.125 0.212
DBN 0.079 0.095 0.145 0.226 DBN 0.06 0.078 0.134 0.213
KELM 0.14 0.163 0.232 0.302 KELM 0.077 0.091 0.125 0.213
GRU 0.109 0.128 0.153 0.232 GRU 0.055 0.073 0.12 0.209
LSTM-RNN 0.075 0.092 0.133 0.211 LSTM-RNN 0.035 0.053 0.097 0.183

20 DNN 0.098 0.116 0.156 0.285 20 DNN 0.053 0.072 0.127 0.247
DBN 0.082 0.101 0.147 0.279 DBN 0.064 0.084 0.136 0.264
KELM 0.145 0.167 0.224 0.365 KELM 0.08 0.094 0.131 0.256
GRU 0.113 0.131 0.158 0.285 GRU 0.059 0.077 0.124 0.243
LSTM-RNN 0.079 0.095 0.137 0.266 LSTM-RNN 0.041 0.057 0.102 0.234

30 DNN 0.102 0.124 0.168 0.364 30 DNN 0.058 0.084 0.14 0.314
DBN 0.086 0.11 0.16 0.353 DBN 0.069 0.095 0.149 0.33
KELM 0.149 0.179 0.237 0.459 KELM 0.083 0.101 0.142 0.313
GRU 0.117 0.138 0.169 0.357 GRU 0.064 0.087 0.136 0.321
LSTM-RNN 0.083 0.104 0.149 0.332 LSTM-RNN 0.046 0.066 0.114 0.276

Bold only shows the optimal solution results.

FIGURE 7 | Actual error versus forecasted error by ARIMA models.
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D � [Dt−1,Dt−2,Dt−3,Dt−4,Dt−5,Dt−6] (28)

Dt−i � (xt−i, . . . , xt−i−359) (29)

where: f(D) represents the whole framework illustrated in
Figure 4; Dt-i is the ith lagged vector containing 1 hour of the
historical wind direction data; and xt−i denotes the ith lagged
transformed wind direction series.

The wind speed and wind direction are 10 s data. One hour of
data (360 data points) is used as the input vector. The six-time
lagged vectors containing 1 hour of the historical wind direction
data are selected as the input vectors. The wind direction of the 2,
5, 10 min, and 1 h horizon is predicted. The input vector is
normalized beforehand and the predicted values are inverse-
normalized.

Short-Term Predictions
Based on the training strategy stated in Section “Training
Strategies”, experiments with the five selected algorithms have
been performed. In all experiments, the wind direction has been
predicted for the next 2, 5, 10 min, and 1 h. Experiments have
been conducted in each of the four seasons of 2020.

The prediction accuracy results in Figure 6 demonstrate that
the long-short-term memory recurrent neural network (LSTM-
RNN) performs better over short-term horizons than the other

algorithms. Since the LSTM-RNN contains long/short term
memory, it produces smaller prediction errors than the DNN,
DBN, KELM, and GRU. For the short-term horizons (i.e., 2 and
5 min), prediction accuracy of all five algorithms is similar.
However, the LSTM-RNN provides more promising results for
longer-term predictions (i.e., 10 min and 1 h) of wind direction.

The prediction accuracy in four seasons varies. In the fall and
spring season, the prediction errors are larger than the errors in
the summer and winter season. This is due to a larger variability
of the wind direction over short-term horizons. Hence, training
specific prediction models in different seasons is necessary.

Table 1 provide the MAPE for different resolution data
(i.e., 10, 20, 30 s) and different prediction horizons (i.e., 2, 5,
10 min, and 1 h) before the error correction. Obviously, the
MAPE errors are smaller for the 10 s data than for 20 and
30 s. With the increase of the prediction horizon, the MAPEs
increase. The LSTM-RNN algorithm has the smallest MAPE at all
resolutions and all prediction horizons. Therefore, it is an
effective algorithm for wind direction prediction at short-term
horizons.

Error Correction
To correct the errors made by the ICEEMDAN modules, the
ARIMA model has been developed to forecast the errors. In the

TABLE 2 | Mape of the five algorithms for 2020 after error correction.

Season Resolution (s) Algorithm Prediction horizon Season Resolution (s) Algorithm Prediction horizon

2 min 5 min 10 min 1 h 2 min 5 min 10 min 1 h

Spring 10 DNN 0.082 0.106 0.133 0.211 Summer 10 DNN 0.047 0.057 0.092 0.181
DBN 0.072 0.094 0.121 0.207 DBN 0.056 0.064 0.097 0.182
KELM 0.081 0.098 0.137 0.224 KELM 0.062 0.074 0.106 0.186
GRU 0.077 0.095 0.125 0.211 GRU 0.059 0.077 0.095 0.181
LSTM-RNN 0.072 0.091 0.108 0.195 LSTM-RNN 0.047 0.056 0.084 0.171

20 DNN 0.088 0.117 0.139 0.269 20 DNN 0.049 0.061 0.099 0.221
DBN 0.077 0.093 0.127 0.252 DBN 0.056 0.065 0.105 0.227
KELM 0.085 0.102 0.141 0.273 KELM 0.065 0.077 0.113 0.228
GRU 0.082 0.146 0.131 0.264 GRU 0.064 0.073 0.104 0.227
LSTM-RNN 0.076 0.094 0.117 0.231 LSTM-RNN 0.049 0.058 0.096 0.214

30 DNN 0.096 0.114 0.154 0.332 30 DNN 0.052 0.066 0.112 0.278
DBN 0.082 0.099 0.139 0.316 DBN 0.058 0.072 0.116 0.277
KELM 0.089 0.109 0.153 0.328 KELM 0.068 0.083 0.125 0.294
GRU 0.087 0.105 0.142 0.311 GRU 0.063 0.078 0.116 0.286
LSTM-RNN 0.081 0.096 0.128 0.305 LSTM-RNN 0.051 0.063 0.108 0.261

Fall 10 DNN 0.071 0.096 0.117 0.204 Winter 10 DNN 0.036 0.056 0.092 0.181
DBN 0.06 0.083 0.113 0.214 DBN 0.044 0.065 0.098 0.182
KELM 0.107 0.142 0.176 0.254 KELM 0.056 0.076 0.092 0.179
GRU 0.083 0.115 0.116 0.202 GRU 0.041 0.061 0.088 0.179
LSTM-RNN 0.057 0.079 0.101 0.185 LSTM-RNN 0.026 0.044 0.071 0.161

20 DNN 0.074 0.121 0.124 0.255 20 DNN 0.039 0.06 0.099 0.221
DBN 0.062 0.086 0.117 0.243 DBN 0.047 0.071 0.106 0.234
KELM 0.117 0.144 0.175 0.319 KELM 0.059 0.079 0.101 0.215
GRU 0.086 0.114 0.125 0.239 GRU 0.044 0.064 0.097 0.212
LSTM-RNN 0.061 0.083 0.109 0.228 LSTM-RNN 0.03 0.048 0.081 0.205

30 DNN 0.077 0.107 0.135 0.305 30 DNN 0.043 0.074 0.111 0.275
DBN 0.065 0.095 0.129 0.291 DBN 0.051 0.079 0.118 0.277
KELM 0.113 0.155 0.187 0.387 KELM 0.061 0.084 0.113 0.285
GRU 0.089 0.119 0.136 0.314 GRU 0.047 0.072 0.108 0.274
LSTM-RNN 0.063 0.089 0.122 0.282 LSTM-RNN 0.034 0.055 0.092 0.242

Bold only shows the optimal solution results.
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second part of Figure 4, To illustrate this step, the forecasted
errors using ARIMA versus the actual errors produced by LSTM-
RNNs are visualized in Figure 7. It is obvious that the aggregated
results from ARIMAs can represent the temporal trend of the
forecasted errors produced from the first component of the
proposed framework.

Table 2 provides the MAPE for different resolution data
(i.e., 10, 20, 30 s) and different prediction horizons (i.e., 2, 5,
10 min, and 1 h) after the error correction. There exists significant
performance for all algorithms tested with respect to the MAPE
computed before and after error correction. It validates the
effectiveness of implementing error correction in improving
the forecasting accuracy of time-series dataset. Meanwhile, the
LSTM produces the smallest errors which also demonstrates its
superior performance in forecasting wind directions.

Error Analysis
The experiments reported in Section “Short-term Predictions”
have been conducted using the transformed wind direction data
from four seasons. An inverse bilinear transformation, expressed
in Eq. 2, is applied to transform the predicted transformed wind
direction into the original angular range [0°, 360°]. The actual
angular values versus the forecasted angular values by the
proposed framework using ICEEMDAN and LSTM-RNN are
presented in Figure 8. It can be seen that the majority of the
forecasted values fall within a relatively small range with respect

FIGURE 8 | Actual angular values versus forecasting angular values.

TABLE 3 | Angular prediction error at four seasons.

Season Fall Winter Spring Summer

MAE (2 min) 1.88° 1.67° 1.92° 1.65°

MAPE (2 min) 0.86% 0.79% 0.95% 0.74%

MAE (5 min) 5.18° 5.01° 5.57° 4.93°

MAPE (5 min) 2.37% 2.28% 2.75% 2.21%

MAE (10 min) 6.53° 6.25° 6.97° 6.10°

MAPE (10 min) 3.18% 3.01% 3.36% 2.96%

MAE (1 h) 10.64° 9.05° 10.58° 9.34°

MAPE (1 h) 5.62% 4.39% 5.29% 4.71%
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to the actual values. It demonstrates the proposed framework can
sufficiently provide accurate forecasting performances.

In this section, performance of the ICEEMDAN framework
integrated with the long-short-term memory recurrent neural
network (LSTM-RNN) for prediction of wind direction at four
seasons is discussed. The prediction error of the inverse

transformed wind direction at 2, 5, 10 min, and 1 h horizons
are presented in Table 3. The mean absolute error (MAE) and
mean absolute percentage error (MAPE) of wind direction are
smaller in the summer and winter.

The wind direction error shows less variability over short
horizons. The changes of a nacelle position are usually made
within 5 min and the prediction error should be under 3%
(Ouyang et al., 2017). A control chart is applied to monitor
the prediction error and facilitate changing the nacelle position. A
control chart with lower and upper limits enables monitoring the
yaw error. Any prediction error that exceeds the bound (i.e., 3%)
may trigger a change of the nacelle position. The final forecasting
errors in the angular perspectives are illustrated in Figure 9.

Validation
The long-short-term memory recurrent neural network (LSTM-
RNN) has been demonstrated to perform better than other
algorithms. To validate the effectiveness and robustness of the
LSTM-RNN, the data collected from another wind farm located

FIGURE 9 | Wind rose of the prediction errors for the four seasons of interest in 2020.

TABLE 4 | Angular prediction error at four seasons.

Season Fall Winter Spring Summer

MAE (2 min) 1.61° 1.63° 1.62° 1.59°

MAPE (2 min) 0.79% 0.78% 0.80% 0.76%

MAE (5 min) 4.94° 4.41° 5.19° 4.51°

MAPE (5 min) 2.08% 1.93% 2.58% 1.97%

MAE (10 min) 5.92° 5.86° 6.18° 5.94°

MAPE (10 min) 2.79% 2.78% 2.81% 2.71%

MAE (1 h) 9.81° 9.02° 9.75° 9.32°

MAPE (1 h) 4.77% 4.37% 4.92% 4.74%
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in Shandong Province in the year 2020 has been used. The
experiments are conducted following the similar training
strategies as described in Section “Data Analysis”. The
computational results are presented in Table 4.

The prediction error (see Table 4) in winter and summer
seasons of 2020 from the wind farm in Shandong Province
produced by the LSTM-RNN is similar to the one based on
the 2020 data (see Table 3) in the wind farm in Inner Mongolia.
More accurate performance has been observed in the fall and
spring seasons with two prevailing wind directions. The favorable
prediction error validates the effectiveness and robustness of the
LSTM-RNN to predict the nacelle orientation.

CONCLUSION

A hybrid short-term forecasting framework to orient nacelle
based on the predicted wind direction was presented.
Industrial data collected from a wind farm in Inner Mongolia,
China was utilized to train and validate the prediction models. A
bilinear transformation was applied to transform the wind
direction data from an angular variable into a continuous
time-series. The forecasting framework was developed using
ICEEMDAN integrated with LSTM-RNN. Also, the error
corrections are implemented to improve the forecasting
accuracy. The wind direction was predicted at short-term
horizons, i.e., 2, 5, 10min, and 1 h. Five algorithms, the deep
neural network, deep belief network, kernel-based extreme
learning machine, gated recurrent unit network, and long-short-
term memory recurrent neural network were applied to predict
wind direction at short-term horizons. The results of performance
analysis of the five algorithms at four seasons were reported.

It was demonstrated that the long-short-term memory
recurrent neural network outperformed the other four
algorithms tested to predict wind direction. The results

presented are of paramount importance in yaw control and
can improve the efficiency of energy extraction process.
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