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Wind power prediction reduces the uncertainty of an entire energy system, which is very
important for balancing energy supply and demand. To improve the prediction accuracy,
an average wind power prediction method based on a convolutional neural network and a
model named Informer is proposed. The original data features comprise only one time
scale, which has a minimal amount of time information and trends. A 2-D convolutional
neural network was employed to extract additional time features and trend information. To
improve the accuracy of long sequence input prediction, Informer is applied to predict the
average wind power. The proposed model was trained and tested based on a dataset of a
real wind farm in a region of China. The evaluation metrics includedMAE, MSE, RMSE, and
MAPE. Many experimental results show that the proposed methods achieve good
performance and effectively improve the average wind power prediction accuracy.
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INTRODUCTION

With the rapid development of the global economy, people’s living standards and the global energy
demand are continuously increasing, while fossil-fuel energy sources have declined (Chakraborty
et al., 2018; Tu et al., 2019). Wind power generation, which has the advantages of being clean, low-
cost and in ample supply, is an indispensable aspect of developing new global energy (Chen and Yu,
2014; Hu et al., 2021; Oh and Son, 2020). The installed capacity of wind generation worldwide has
reached 644.5 GW in 2018, which is 17.4% higher than that in the past year (Zhang et al., 2020). The
Global Wind Energy Development Report 2019 shows that the newly installed capacity of global
wind turbines in 2019 was 60.4 GW. The instability of wind power is the main problem faced by the
grid-connected, operation technology of wind power (Chai et al., 2015; Jiang et al., 2019; Li et al.,
2019; Hu et al., 2020). With an increasing number of large-capacity wind farms, when their power
grid surpasses a certain limit, the stability of the power system will be seriously affected, even
threatening the safety of the whole power grid due to the randomness and low energy density of wind
energy. (Chang, 2014; Hazari et al., 2018). Therefore, the effective operation of the whole mechanism
can be guaranteed, and the stability of the whole system can be enhanced only by more accurate
forecasting of wind power generation (Hong and Rioflorido, 2019; Zhang et al., 2019).

Currently, the main wind power forecasting methods include physical methods, statistical
methods, and artificial intelligence methods. The physical forecasting method is the first method
applied in wind power forecasting. The physical forecasting method mainly includes three technical
links: the introduction of numerical weather prediction (NWP) data, the acquisition of wind speed
and direction at the height of a wind turbine hub, and wind speed-power conversion (Feng et al.,
2010). Men Z (Men et al., 2016) used the Gauss hybrid model to construct the mapping relationship
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between measured wind speed and NWP data and employed this
model to modify NWP wind speed. The corrected NWP data and
power prediction accuracy were greatly improved. Cassola
(Cassola and Burlando, 2012) used the Kalman filter algorithm
to filter the NWP output line, which effectively reduced the
systematic error of weather forecasting and significantly
improved the accuracy of the NWP model. Because of the low
forecast accuracy of physical methods, the accuracy of physical
prediction models that directly use the NWP often cannot meet
the application requirements. On the other hand, because of the
low updating frequency of NWP data, it is difficult to meet the
requirements of 0–3 h forecasting. The statistical method does
not require the introduction of historical wind information from
wind farms. This method can be employed to extrapolate and
predict the output of wind power of wind farms at a particular
time in the future based on historical sequence characteristics
(such as autocorrelation, partial correlation, standard deviation,
etc.) of the power generated by wind farms. Erdem (Erdem and
Shi, 2011) decomposed the wind speed into horizontal and
vertical components according to the direction of the wind
and constructed an ARMA model to separately predict the
wind speed, which improved the prediction results. Pan (Pan
et al., 2008) combined the time series analysis method with the
Kalman filter and dynamically corrected the prediction model
system and improved the prediction accuracy at the next
moment. Dong (Dong et al., 2008) utilized the phase space
theory of chaotic time series to construct a wind power neural
network prediction model.

The artificial intelligence (AI) method mainly uses one or
more AI algorithms to train historical power data and then
predict future wind power. Kariniotakis (Kariniotakis et al.,
1996) proposed ultrashort-term wind power prediction using
an ANN. Shukur and Lee (Shukur and Lee, 2015) proposed a
Kalman filter (KF)-(ANN) system to predict the wind speed
sequences of Malaysia and Iraq. Chen (Chen and Folly, 2021)
proposed a mixed input features-based cascade-connected
artificial neural network (MIF-CANN). The method is
employed to train input features from many neighbouring
stations without encountering overfitting issues caused by
many input features. Multiple ANNs train different
combinations of input features in the first layer of the MIF-
CANN model to produce preliminary results and then cascade
into the second phase of the MIF-CANN model as inputs. Hu
(Hu et al., 2014) applied Bayes theory to optimize the traditional
SVM loss function and established a v-SVM model, which
improved the accuracy of short-term wind speed prediction.
With the development of big data technology, AI prediction
methods have gradually developed from machine learning
algorithms to deep learning algorithms (Wang et al., 2017).
Haq (Haq and Zhen, 2019) proposed the improved empirical
mode decomposition (IEMD) to decompose the load demand
time series and selected T-Copula to incorporate the effect of
exogenous variables by performing correlation analysis. Recently,
many advanced models based on deep learning have also been
reported (Wu et al., 2019). Khodayar (Khodayar and Wang,
2019) presented an algorithm for deep neural networks
(DNNs). Zhu (Zhu et al., 2017) used long short-term memory

(LSTM) to model multivariable time series to achieve wind power
prediction. Chen (Chen et al., 2019) conducted correlation
research on wind speed prediction based on extreme learning
machines (ELMs), Elman neural networks, and LSTM networks.
Han (Han et al., 2019) proposed a model based on the copula
function and LSTM, which achieved better prediction results.
Zhou (Zhou et al., 2019) proposed a K-means-long short-term
memory (K-means-LSTM) neural network to classify wind power
factors and establish a sub-prediction model. Peng (Peng et al.,
2021) proposed a new neural-network prediction model named
encoder attention BiLSTM-quantile regression (EALSTM-QR),
which was developed for wind-power prediction considering the
input of NWP and the deep-learning method. The combination
inputs contain historical wind-power data and features extracted
and obtained from the NWP through the encoder and attention
levels. The bidirectional LSTM was utilized to generate wind-
power time-series probability prediction results. The QR method
and confidence interval limits were applied to obtain the final
prediction intervals. Hu (Hu et al., 2021) proposed an improved
deep belief network forecasting method for wind power, which
employed a Gaussian-Bernoulli, restricted Boltzmann machine.
Wang (Wang et al., 2021) applied a convolutional neural network
for feature reconfiguration with temporal information, which
increased the proportion of valid data, reduced the influence of
outliers, and helped the neural network capture features and
regularities from the historical dataset. Zhang (Zhang et al., 2021)
proposed power prediction of a wind farm cluster based on
spatiotemporal correlations. Pandey (Pandey et al., 2021)
proposed two hybrid models for water demand forecasting.
The first approach is based on the hybridization of ensemble
empirical mode decomposition (EEMD) and difference pattern
sequence forecasting (DPSF), and the second approach is based
on the hybridization of EEMD with DPSF and autoregressive
integrated moving average (ARIMA). The EEMD-DPSF
approach provides better results, whereas the EEMD-DPSF-
ARIMA approach requires shorter computational times. Shi
(Shi et al., 2021) proposed a hybrid neural network, short-
term, load forecasting model based on a temporal
convolutional network (TCN) and gated recurrent unit (GRU)
and utilized the state-of-the-art AdaBelief optimizer and

TABLE 1 | Recent studies for wind power forecasting based on hybrid models.

Authors Year Approach

Men (Men et al., 2016) 2016 Gauss Hybrid Model
Zhu (Zhu et al., 2017) 2017 LSTM
Chen (Chen et al., 2019) 2019 ELM-LSTM
Han (Han et al., 2019) 2019 Coupla-LSTM
Zhou (Zhou et al., 2019) 2019 K-means-LSTM
Haq (Haq and Zhen, 2019) 2019 IEMD-T-Coupla
Khodayar (Khodayar and Wang, 2019) 2019 DNN
Zhang (Zhang et al., 2021) 2021 Spatiotemporal Correlations
Wu (Wu et al., 2020) 2020 Transformer
Chen (Chen and Folly, 2021) 2021 MIF-CANN
Hu (Hu et al., 2021) 2021 Improved-DBN
Pandey (Pandey et al., 2021) 2021 EEMD-DPSF-ARIMA
Shi (Shi et al., 2021) 2021 TCN-GRU
Wang (Wang et al., 2021) 2021 CNN Feature Extract
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attention mechanism were to enhance the prediction accuracy
and efficiency. Dong (Dong et al., 2021) proposed a regional wind
power probabilistic forecasting model comprising an improved
kernel density estimation (IKDE), regular vine copulas, and
ensemble learning. Wu (Wu et al., 2020) utilized a
transformer to predict time series data. This method applied
the self-attention mechanism to learn complex patterns and
dynamics from time series data. However, some problems,
such as high spatiotemporal complexity and limited input and
output sequences, were still encountered. Zhou (Zhou et al., 2021)
proposed Informer, a more effective time series prediction model
than Transformer (Vaswani et al., 2017). Some hybrid models of
wind power prediction are summarized in Table 1 for reference.

To sum up, most of the latest research progress of wind power
prediction is based on machine learning (ML), artificial neural
network (ANN), convolutional neural network (CNN) and
recurrent neural network (RNN). These methods can
effectively predict wind power. However, when the amount of
input data becomes larger and the length of output data is long,
the effect of these models is not particularly ideal. Nowadays, a
large amount of data has been used in practical applications. How
to forecast wind power more accurately in the environment of
large data is a problem that needs to be solved.

This paper presents amethod based onCNN-Informer for short-
term, average wind power prediction. The average wind power can
reflect the overall trend of wind power for a certain period, and the
total wind power generation for a certain period can be obtained by
determining the average power for a certain period in the future. To
overcome the insufficiency of time series information contained in
the historical power generation of a wind generator set at a single
time scale, a convolution neural network is used to divide the original
data into time series data at different time scales, and then the sub-
sequences are input in the Informer model for training. The results
are fused to obtain the final wind power prediction results.

The main contributions of this paper are presented as follows:
The prediction of wind power belongs to the problem of long-

time series prediction. Therefore, to solve the problem of long-

term series input, Informer is used to predict wind power in
this paper.

To fully obtain the time-series features contained in the wind
power data, this paper proposes a convolutional neural network
to extract the features of the original wind power data to solve the
problem that the time scale of the original wind power is single.

This paper is organized as follows: Methdology of Wind Power
Prediction Section describes convolution, Informer, and the
structure of the proposed CNN-Informer model. Experiment of
Wind Power Prediction Section describes the datasets of wind
power and illustrates the results of the experiment in this paper.
The conclusions are summarized in Conclusion Section.

METHDOLOGY OF WIND POWER
PREDICTION

This paper proposes a hybrid network model based on a
convolutional neural network and Informer to forecast
wind power.

The convolutional neural network can extract sufficient
features from time series data, and Informer can more
accurately predict long sequence inputs. The proposed model
can effectively combine the advantages of these deep learning
networks.

This chapter introduces the convolutional neural network,
Informer, and proposed model.

Description of Convolutional Layers
Single time-scale, historical wind power data contain a minimal
amount of time information and cannot fully reflect the time
sequence information and trend. Therefore, more time sequence
features need to be extracted from the original wind power data.
Convolutional neural networks can effectively extract some useful
features. Therefore, this paper adopts a convolutional neural
network to extract different time sequence features from
original wind power data. The original wind power sequence

FIGURE 1 | Structure of convolution layers.
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FIGURE 2 | Architecture of informer.

FIGURE 3 | Overall framework of the proposed model.
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is convoluted into a wind power sequence at different scales by
two-dimensional convolution as follows:

Xi−en � Conv2d(Xinput) (1)

Xi−en represents the sequence of wind power generated by
convolution at different time scales, and Xinput represents the
original historical sequence of wind power. The network structure
diagram of this part is shown in Figure 1.

Two-dimensional convolutions with convolution kernel sizes
of 15*1, 30*1, 60*1, 90*1, and 120*1 are employed to extract
features of different time scales. Five convolution kernels are
selected to divide the original wind power sequence into five sub-
sequences with time scales of 15, 30, 60, 90, and 120 min.

Description of Informer
Informer (Zhou et al., 2021) is a network structure that is based
on an attention mechanism that improves the square
computational complexity of the self-attention mechanism,
multilayer network stacking, and step-by-step decoding
method. Informer mainly solves the prediction problem of
long series data; its overall architecture is shown in Figure 2.

In the encoder part of the model, ProbSparse self-attention
(Zhou et al., 2021) is used to replace canonical self-attention, and
self-attention distilling is used to reduce the size of the network.
The decoder receives the long sequence of inputs, sets the target

element to zero, and immediately predicts the outputs in a
generative inference method.

ProbSparse Self-attention: The i-th query’s attention on all the
keys is defined as probability p(kj|qi), and the output is its
composition with values v in this model (Zhou et al., 2021).
The likeness between p(kj|qi) and the uniform distribution
q(kj|qi) � 1

Lk
is calculated by a method similar to

Kullback–Leibler divergence.

�M(qi, K) � max
j

⎧⎨⎩qikTj		
d

√ ⎫⎬⎭ − 1
LK

∑Lk
j�1

qikTj		
d

√ (2)

If the i-th query gains a larger �M(qi, K), its attention
probability p is more “diverse” and has a high chance of
containing the dominant dot-product pairs in the header field
of the long tail self-attention distribution (Zhou et al., 2021).
According to this measurement, Informer only focuses on top-u
dominant queries for each k value:

A(Q,K,V) � Softmax( �QKT		
d

√ )V (3)

qi isQ’s value in the i-th row, kj isK’s value in the j-th row, and d is
the input dimension. �Q is a sparsematrix that contains onlyu queries.

Self-attention distilling: The model uses the distilling
operation to privilege the superior features with dominating
features and to construct a focused, self-attention feature map
in the next layer (Zhou et al., 2021). This distilling procedure
forwards from the j-th layer to the (j + 1)-th layer as:

Xt
j+1 � MaxPooling(ELU(Conv1d([Xt

j]att))) (4)

where [·]att represents the attention block. After each convolutional
layer, the distilling adds a max-pooling layer with stride 2 and
downsamples Xt

j to its half slice. The whole memory usage can be
reduced to O((2 − λ)L log L), where λ is a small number.

FIGURE 4 | Historical wind power.

TABLE 2 | Statistical elements of the historical wind power.

Statistic Value (MW)

Minimum 0.03717
Mean 6.68971
Maximum 20.4642
Median 6.32673

Frontiers in Energy Research | www.frontiersin.org January 2022 | Volume 9 | Article 7883205

Wang et al. Hybrid Short-Term Wind Power Prediction

https://www.frontiersin.org/journals/energy-research
www.frontiersin.org
https://www.frontiersin.org/journals/energy-research#articles


Generative Inference: The model feeds the decoder with the
following vectors:

Xt
i−de � Concat(Xt

i−token, X
t
i−0) ∈ R(Li−token+Li−y)×dmodel (5)

where Xt
i−de is the i-th input sequence of the decoder, Xt

i−token is
the start token of the i-th sequence and Xt

i−0 is a placeholder for
the target sequence of the i-th sequence, which are set to a scalar
such as 0. This model uses a generative way to decode; its decoder
predicts output by one forwards procedure.

Proposed Model
In the proposed model, the original wind power series is scaled by
a convolutional neural network, from which the features of
different time scales are extracted. The sub-sequences of

different time scales after convolution are taken as the inputs
of the Informer network, and the Informer generates five outputs.
These outputs are inputted to the concatenated layer for feature
fusion, and the final forecast result is outputted through a fully
connected layer. The overall framework of the proposed model is
shown in Figure 3.

EXPERIMENT OF WIND POWER
PREDICTION

Description of Wind Power Datasets
In this study, historical wind power datasets of a region in
China from March 1, 2020, to April 30, 2020, are employed,
and the interval of datasets is 1 minute. The dataset is
collected by SCADA. Figure 4 shows the historical wind
power curve of the region. The fluctuation range of the
wind power data is 0–21 MW, and the wind power
strongly fluctuates.

Table 2 gives descriptive statistics, including measured values:
minimum, mean, maximum and median are selected to describe
the characteristics of the distribution. The minimum value, mean
value, maximum value and median of the dataset are 0.03717,
6.68971, 20.4642, and 6.32673 MW. Table 2 shows that the mean
and median of the dataset are similar.

Average Wind Power Prediction
The average value of real wind power data can better reflect the
centralized trend of wind power over this period, and the
general trend of wind power over a certain period can be
employed to assess the generation status of wind power.
Therefore, this paper uses the method of the mean
prediction of wind power to forecast the centralized trend
of generation power over the next 3 hours. The power curve

FIGURE 5 | Three-hour wind power and mean.

FIGURE 6 | Partition of wind power datasets.
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for 3 hours is shown in Figure 5. The fluctuation range of the
wind power data is 2–5.5 MW. The mean value of the wind
power of 3 hours is 4. 2421MW.

Data Standardization and Missing Value
Processing
Due to the fluctuation of actual wind power data, extensive data
will cause numerical problems. To accelerate the speed of
gradient descent to obtain the optimal solution, this paper
standardizes the original power data before constructing the
model, as shown in Equation 6, and converts the predictive
results to the final predictive results, as shown in Equation 7.

x′ � x − xmean

xstd
(6)

x � x′pxstd + xmean (7)

x′ is the normalized variable, x is the original variable, xmean is the
mean of the variable, and xstd is the standard deviation of the
variable. For missing values of wind power datasets, this paper
uses mean interpolation to process missing values.

Division of Datasets
The partitioning of datasets is an important step and a prerequisite
for training wind power data. To obtain reasonable forecasting
results, wind power datasets are divided into training sets, testing
sets, and validation sets at a ratio of 8.5:1:0.5. As shown in Figure 6,

FIGURE 7 | Metrics of the proposed models: (A), MAE, (B), MSE, (C), RMSE, and (D), MAPE.
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the training set and validation set are employed to train the model.
We then input the testing set into the trained model for prediction.

Evaluation Metrics
The forecasting of the average wind power uses 6 hours of wind
power to forecast the average wind power over the next 3 hours.

To evaluate the predictive performance of the model, this
paper uses four evaluation metrics to evaluate the performance of
the model. Four evaluation metrics are the mean absolute error
(MAE), mean square error (MSE), root mean square error
(RMSE) and mean absolute percent error (MAPE). The MAE
is the average of the sum of the absolute difference between the
true value and the predicted value. The MSE is the mean of the
sum of the squares of the errors between the true value and the
predicted value. The RMSE is the square root of the MSE. The
MAPE is the percentage of the MAE. The four error evaluation
indices are shown in Eqs 8–11.

MAE � 1
n
∑n
i�1

∣∣∣∣ŷi − yi

∣∣∣∣ (8)

MSE � 1
n
∑n
i�1
(ŷi − yi)2 (9)

RMSE �
												
1
n
∑n
i�1
(ŷi − yi)2√

(10)

MAPE � 100
n

∑n
i�1

∣∣∣∣∣∣∣∣ŷi − yi

yi

∣∣∣∣∣∣∣∣ (11)

where n represents the number of predicted points, ŷi represents
the predicted value, and yi represents the real value.

Experimental Environment and Strategies
In this paper, the experimental code is Python 3.7; the deep
learning framework is PyTorch 1.8; and the experiment is
implemented on a PC (Windows 10 operating system, Intel
(R) core (TM) I7-9750 h CPU 2.6 GHz, 16 Gbyte RAM, and
NVIDIA GeForce RTX 3070 GPU).

This paper adopts the cross-validation (Bokde et al., 2020)
training strategy. In the experiments of out study, we divide the
training data into training set and validation set and perform 100
iterations on each epoch. We take the average loss value over 100
iterations as the final loss value of each epoch. We test the model
on the testing set and achieve the final forecasting results. The
Gelu activation function is utilized as the activation function of
the model; MSE is employed as the loss function of the model;
and Adam is applied as the optimizer of the model. The Adam
algorithm has no smoothing requirements for the objective
function, and its loss function changes with time, so it can
better handle noise samples. In the experiment, the batch size
was 16, and the methods of early stopping and reducing the
learning rate were adopted to prevent overfitting.

The forecasting time horizons of all the simulation results
presented in this study were 3-h ahead forecasting. This paper
uses 6 h of historical wind power data to predict the average wind
power in the next 3 hours.

Comparison of the Proposed Model
To achieve the best predictive performance, this paper compares
CNN-Informer models with different time scales. To achieve the
best predictive performance, this paper divides the original wind
power data into four types of time scales. The first type is 15 and
30 min; the second type is 15, 30, and 60 min; the third type is 15,
30, 60, 90 min; and the fourth type is 15, 30, 60, 90, and 120 min.
As shown in Figure 7, the error metrics reached the highest error
metrics, while the time scales were 15, 30, and 60 min. The fourth
type had the lowest error metrics.

FIGURE 8 | Predictive results of CNN-Informer models.

TABLE 3 | Hyperparameters of these methods.

Method Parameters

Proposed Kernel size:15*1, 30*1, 60*1, 90*1, and 120*1
DeepAR LSTM units: 16 LSTM layers: 1
LSTM LSTM units: 16 LSTM layers: 2
RNN RNN units: 16 RNN layers: 2
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As shown in Figure 8, the performance of CNN + Informer
models is similar, while the fourth type has less fluctuation and a
forecast closer to the true value than other types. Furthermore,
the convergence speed of the model slows with an increase in the
number of convolution kernels, and the performance of the

model with more convolution kernels show minimal
improvement. Therefore, this paper selects the fourth
type—15, 30, 60, 90, and 120 minutes—as the proposed model.

Comparison of the Previous Model
To verify the comprehensive performance of the proposed CNN-
Informer model, five algorithms are selected and developed for
comparison, including the proposed model, Informer, Long-
Short Term Memory (LSTM), DeepAR, and Recurrent Neural
Network (RNN). The hyperparameters and neural network
topology of all comparison models have been optimized and
summarized in Table 3.

Six hours of historical wind power data are used to predict the
mean value of wind power in the next 3 hours, as shown in
Figure 9, which is the prediction diagram of the experimental

FIGURE 9 | Curve of the forecast results: (A), Proposed model, (B), Informer, (C), DeepAR, (D), LSTM, and (E), RNN.

TABLE 4 | Metrics of five models.

Method MAE MSE RMSE MAPE (%) Time(s)

Proposed 0.063611 0.007379 0.085901 1.118828 672.23
Informer 0.088493 0.011234 0.105994 1.709026 668.47
DeepAR 0.351596 0.182385 0.427006 4.724828 780.59
LSTM 0.815108 1.155223 1.074813 11.213216 1278.05
RNN 0.711205 0.794341 0.891258 10.223156 1423.82

The minimal error results and shortest convergence time are bold.
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results of the proposed CNN-Informer, Informer, DeepAR, LSTM
and RNN models. The performance of the proposed model is the
best, slightly higher than that of Informer, while the performance of
RNN and LSTM is poor, which is far from the performance of the
proposed model CNN-Informer, Informer and DeepAR.

The experimental error results and convergence time of the
proposed model, Informer, LSTM, RNN and DeepAR are shown
in Table 4. Among the five models mentioned in Table 4, the
minimal error results and shortest convergence time are bold. As
shown in Table 4, for the proposed model, the MAE, MSE,
RMSE, MAPE, and convergence time are 0.063611, 0.007379,
0.085901, 1.118828%, and 672.23 s. For the Informer, the MAE,
MSE, RMSE, MAPE, and convergence time are 0.088493,
0.011234, 0.105994, 1.709026%, and 668.47s. Although the
convergence time of the proposed model is higher than that of
Informer, the performance of the proposed model is improved
compared with that of Informer. Compared with the traditional
model, the proposed method significantly improves the
prediction performance and the convergence time.

In conclusion, convolution of the original wind power series to
a certain extent can improve the predictive performance of the
model. The prediction performance of the model can obtain
better performance when the original wind power sequence is
convoluted to time scales of 15, 30, 60, 90, and 120 min.

CONCLUSION

Due to the instability and intermittency of wind power generation in a
complex environment and to better obtain the historical wind power
data, this paper proposes a composite network that is composed of a
convolutional neural network and Informer and that uses this model
to improve the prediction accuracy ofwind power. The historical wind
power data of a wind farm in China are employed for verification and
compared with Informer, LSTM, RNN, and DeepAR. The detailed
contributions of this paper are listed as follows:

The original historical wind power data are divided into
multiple time scales by using a convolution neural network,
and more time series features are extracted. This method can
make better use of historical wind power data.

Based on the Informer network, this paper establishes a
wind power prediction model that can input a long time series

and predict the average power in the next 3 hours. Compared
with Informer, LSTM, RNN, and DeepAR, the proposed
CNN-Informer model can more accurately predict
wind power.

Several limitations deserve further study. The model
parameters proposed in this paper are large. In future
research, we intend to propose a lightweight network. For the
method of temporal feature extraction, in follow-up research, we
hope to establish a more effective method to extract temporal
features. In the task of short-term wind power prediction, the
model has high requirements for convergence speed and accuracy
that require the algorithm to balance time cost and accuracy. How
to optimize the model to achieve this balance is worthy of further
research.
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