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The accurate estimation of the battery state of charge (SOC) is crucial for providing
information on the performance and remaining range of electric vehicles. Based on the
analysis of battery charge and discharge data under actual vehicle driving cycles, this
paper presents an online estimation method of battery SOC based on the extended
Kalman filter (EKF) and neural network (NN). A battery model is established to identify and
calibrate battery parameters. SOC estimation is conducted in the low-SOC area by
exploring the relationship between battery parameters and SOC through many
experimental results. In the fusion online estimation method, the NN is carried out to
propose the estimation as the global mainstream trend providing a high precision feasible
region; the EKF algorithm is used to provide the initial assessment and the local fluctuation
boundary revision. Verified results show that it can improve the SOC estimation in low-
battery capacity accuracy. It has achieved good adaptability to the estimation accuracy of
low battery capacity SOC in different cycle conditions.
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INTRODUCTION

As the ecological environment gradually deteriorates, designing the cleaning and efficient vehicle has
attracted significant attention. Among various cleaning vehicles, pure electric vehicles (PEVs) are
popular best with their environmental friendliness. Compared to other forms of energy, Lithium-ion
batteries as the power source have the merits of lightweight, long cycle life, high energy, and low self-
discharge rate. The State of Charge (SOC) is an essential state of battery parameter. It is defined as the
ratio of remaining power to total power. The accurate estimation of the battery status not only helps
to provide information about the current and remaining performance of the battery but also provides
a guarantee for the reliable and safe operation of the PEV (Ranjbar et al., 2011; Xiong et al., 2017; Xu
et al., 2021). Over-discharging and overcharging a battery can seriously affect its condition, as doing
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so accelerates battery degradation. Achieving a good accuracy of
SOC, furthermore, is essential for the battery management system
(BMS) controlling and updating data, detecting faults, equalizing
battery voltage to avoid any overcharging/over-discharging. The
SOC value cannot be measured directly due to its complicated
electrochemical reactions and performance degradation over
time caused by various internal and external factors. The
estimation of SOC can only be obtained indirectly based on
the measurement of other parameters. Factors such as estimation
methods, battery models, and optimization methods will all have
a direct impact on the accuracy of SOC estimation (Zheng et al.,
2018). However, some critical parameters will be easily affected
when age, environmental temperature changes, and discharges at
high rates.

Literature Review
There are many studies on how to improve the accuracy of the
SOC estimation. The ways of SOC estimation can be classified
into three groups: character-based methods, model-based
methods, and data-driven methods.

Character-Based Methods
This method mainly relies on the battery parameters, like the
open-circuit voltage (OCV), battery current, or some other
characteristic curves. It requires a non-linear relationship
between the electromotive force and the SOC when the battery
is not loaded. For example, Barai A et al.have proved that a
battery OCV is directly related to the discharge capacity by testing
and found that the battery capacity can change up to 5.0% (Barai
et al., 2015; Ali et al., 2019). S Lee et al.proposed a modified OCV-
SOC relationship to solve the problems caused by the extended
Kalman filter, which can be easily affected by varying
relationships (Lee et al., 2008). The open-circuit voltage can be
obtained by OCV testing, but it is a time-consuming period. So
this method cannot meet the requirements of real-time
measurement. Besides, the non-linear relationship varies from
battery to battery. What is more, there exist hysteresis
characteristics in Li-ion batteries.

The Ampere-hour Integration method calculates the SOC by
integrating the current over time. This method is also be called as
coulomb counting method. The researchers take the charging and
operating efficiencies into consideration to enhance estimation
based on column counting (Ouyang et al., 2014; Meng et al.,
2018). Moreover, the intelligent estimation method was
demonstrated effective by many experiments. Xu J
et al.combined the OCV method with the ampere-hour
method to make up for the lack of ampere-hour integration
method in real-time estimation (Zhang et al., 2018). As the name
showed, The Ampere-hour Integration method needs to know
the accurate current at every moment. So an excellent current
sensor is required. Especially in high temperature environmental
and a large scale of current fluctuations, the current must be
captured accurately. Otherwise, the error will be accumulated
continuously. Although the difference is not apparent in the short
term, the error will get out of control after a long period. So, on
the one hand, we can quickly get the accurate SOC without
modeling in theory with this method; on the other hand, only

having a precise current sensor and testing in a short time can we
use this method.

The Model-Based Method
The Kalman filtering algorithm is a standard adaptive filtering
algorithm that is used in model-based methods. The typical
estimation process commonly found in this type of algorithm
includes prediction-measurement-correction. The core is a set of
recursive equations, including the SOC estimated value and
reflecting the estimated error. The estimated error is given in
the covariance matrix (Zhou and Li, 2015; Qiu et al., 2020).
However, this method is only suitable for linear systems, but the
battery is a nonlinear system. Thus, the Extended Kalman Filter
Method, which can be applied in the nonlinear system, occurs. It
performs Taylor expansion on the state filter value, omitting the
second and above high terms. Only with the higher battery model
accuracy and the computing power of the battery management
system, it could be applied to the situation where the current
fluctuates wildly, and the SOC estimation error could also be
improved. Besides, we can obtain some battery model parameters
by taking aging and lifetime into consideration with the help of
some appropriate tools such as MATLAB Simulink. J Lee et al.
introduce a reduced-order EKF so that the calculation time can be
decreased a lot (Yang et al., 2021). With the Dual Extended
Kalman Filter (DEKF) algorithm, Hu et al. estimated the SOC and
capacity by linking the battery OCV with SOC and capacity
(Zhang and Xia, 2011; Bai et al., 2014; Shrivastava et al., 2019).
However, with the modified EKF, the previous studies only
improved the limited accuracy of the SOC estimation in the
normal range; it is far from fulfilling the demands for low-range
SOC estimation (Xiong et al., 2014; Wang et al., 2019; Fu et al.,
2021). In general, filter-basedmethods can achieve high-precision
estimation under certain conditions. For the non-linear scenario
of battery SOC estimation, the extended Kalman filter method
applies linearization approximation to the non-linear system to
solve this problem. However, the stability of linearization error
still needs to be improved (Xiong et al., 2014). The unscented
Kalman filter method is used to enhance the accuracy of the
sampling process and the estimated state, but the convergence
speed is still insufficient (Zhang and Xia, 2011).

Data-Driven Methods
The Neural Network method uses a mathematical model
composed of interconnected artificial neurons stimulated by a
biological neural network to predict the past data output of a
nonlinear system. This method has parallel structure and learning
ability and can solve the problem in a nonlinear system.
According to its form, we can easily know that much
reference data is needed to train the system. Proper selection
of variables and training methods are also vital to the final
estimation accuracy. Thus this method depends too much on
the designer’s experience. Based on Neural networks, Neuro-
fuzzy prediction makes the neural network fuzzy and uses fuzzy
logic to simulate people’s fuzzy thinking. It is also essential to
choose the correct number of variables--too few variables will
lower the accuracy of the prediction; on the contrary, too many
variables will make the prediction process more complicated.
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Compared with the Neural Network, this method is more
convenient for dealing with qualitative issues, but it can not
offer a pretty exact solution. O’Gorman et al.pioneering proposed
the Neural Network method, which makes the models difficult to
describe using mathematical models (Lipu et al., 2018; Yang et al.,
2019; Hannan et al., 2020). Gerard O et al.establish a battery
neural network performance model, using neuron weights to
replace difficult-to-measure state variables (He et al., 2014).The
shortcoming of this kind of approach is time-consuming and the
low efficiency in the estimation process (Kang et al., 2014; Tian
et al., 2017). Overall, the data-driven method is not sensitive to
the performance of the model and external environmental
factors. In the case of sufficient training data samples, its
estimation accuracy can achieve relatively ideal results.

The above-mentioned various battery SOC estimation
methods require more battery dynamic and steady-state
information in electric vehicle applications (Hannan et al.,
2018). Furthermore, character-based methods, model-based
methods, and data-driven methods provide a higher accuracy
SOC estimation for LIBs in the normal range, but there is still
room for improvement. A good balance between the current state
of the battery, the estimation accuracy, and the calculation cost
has always been a significant problem that researchers are trying
to solve. However, few researches have been found on batteries at
low-capacity range with the fact that the estimation of SOC
cannot get accurate for its non-linearity (Ouyang et al., 2014).
Also, with the capacity-induced error, initial SOC error, current
measurement error, and voltage measurement error, the error in
the model estimation intensifies the difficulty of SOC estimation
in the low-capacity range, leading to a more conservative SOC
range. Accurate SOC estimation in the low-capacity range can
improve the efficiency of battery capacity, which is of great
significance for reducing mileage anxiety.

Motivation and Original Contribution
When the battery SOC is close to 0%, the discharge would be
stopped to protect the battery from over-discharging. The
estimation is quite crucial for the low-SOC range (Xing et al.,
2014; Lee et al., 2017; Yang et al., 2017). In EV applications, the
battery management system is conservative if the battery SOC
estimation is inaccurate at the low-SOC range, which makes it
challenging to bring accurate mileage information to the driver
and lead to usage anxiety and troublesome, to name a few, the
EVs may stop working in advance, change the trip plan for extra
charging behaviors, or break down en route, etc. Therefore,
accurate estimation of the low capacity area not only helps to
prolong the driving range but also gives assurances of safe and
reliable vehicular operation.

There are indeedmany estimationmethods for SOC, and good
estimation results have been achieved. However, from the
conclusion, the overall low-capacity range is the interval with
a more significant estimation error. Whether Lithium iron
phosphate (LiFePO4) or Nickel Manganese Cobalt Oxide
(NCM) cells have a significant drop in voltage at the end of
discharge, and much attention has been paid to the fact that low
capacity SOC estimates have an obvious error (Hannan et al.,
2020; Yang et al., 2021). And the influencing factors are also

various (such as the continuous reduction of the capacity, the
accuracy of the battery model parameters with the voltage and
current changes, etc.). Moreover, many studies are based on the
laboratory conditions of the battery (such as constant current and
constant voltage (CCCV) and dynamic stress test (DST)). The
estimation effect is still to be tested under the actual driving cycle.
Based on the above reasons, it is recommended to delineate a
more conservative SOC use range and a few studies to further
optimize the SOC estimation in the low-capacity range. To fill the
above gap, this paper proposes an estimation method countering
the low capacity situation. The presented process explores the
relationship between battery parameters and SOC
and,accordingly, establishes the appropriate model and
estimation algorithm. The experiments on the low-capacity
area of lithium batteries are carried out and analyzed.Then we
use a fusion-based method based on neural network and EKF to
conduct the SOC online estimation in the low-SOC area.

Configuration of This Paper
The remainder of this paper is organized as follows: Modeling
Study introduces the primary methods for this study, illustrates the
setup of the experiment, the battery model used, and parameter
identification, and SOC Estimation algorithm discusses the
methodology for SOC estimations. Results and discussion
presents the estimation results of the low capacity range SOC
based on the proposed method with necessary discussions. Finally,
the conclusion of our approach is given in Conclusion.

MODELING STUDY

The experiment setup is shown in Figure 1. Based on the three
driving cycles which are the Urban Dynamometer Driving Schedule
(UDDS), Extra Urban Driving Cycle (EUDC), and New York City
Cycle (NYCC), the Arbin LBT is used to collect the charging/
discharging data of the battery to construct the training and
verifying data set for the follow-up steps. The ambient
temperature is set to 20°C when the battery is placed in the
temperature chamber. Different driving cycles represent the
battery responsiveness to different working conditions, and further
characterize the adaptability of SOC estimation to different
environments. To avoid the difference in battery operation cycles
caused by the selected driving cycle duration, the battery parameters
are normalized to ensure a basis for comparison and provide a more
reliable guarantee for future SOC estimations applications.

Figure 2 shows the whole battery voltage and current variation
trend against the three driving cycles (UDDS, EUDC, and NYCC.
Different from the traditional laboratory battery test cycles, for
example, the UDDS driving cycle corresponds to variable road
requirements, and the output of the battery is more close to the
actual vehicle operation states of the battery voltage and current
changes, without considering the temperature fluctuation.
According to the battery voltage and current state, it is the
purpose of this study to improve the accuracy of the NCM
(Nickel Manganese Cobalt Oxide) battery SOC estimation
when the battery voltage drops from the low-capacity range
state to the cut-off voltage. Figure 2A1,A2,B1,B2, and C1,C2
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FIGURE 1 | Schematic diagram of the experimental setup.

FIGURE 2 | Three driving cycles’ voltage and current undercharging and discharge operations.
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are the variation curves of voltage and current in the three driving
cycles, respectively. This article defines the low-capacity range as
the SOC variation range between 0.2–0. Based on this, further
reconstructed voltage and current change curves of the selected
area are shown in Figures 2A3,B3, and C3, which are the data set
of this research.

Among them, the reference value of SOC is obtained using the
coulomb counting method given later. In the training process of
the neural network, the initial state unit is set as zero, and the
weight is randomly selected. The amount of data in the research is
about 22,000. To verify the effectiveness of the algorithm, 50–80%
of the data is used to train the network, and the remaining data is
used to test the network. After weighing, representative data in
the low-capacity interval are selected as training samples, and the
rest data are used for verification (for example, some data in the
data segment of 1000 ∼ 4000 s, 5000-8000 s,9000 ∼ 10000 s in
Figure 2B3 are used for training, and the rest are used for
verification). In actual application scenarios, voltage, current
signals, and SOC values recorded in real-time by selecting a
suitable time window can meet the requirements of training
samples. Therefore, combined with the actual data volume,
this paper establishes 30% for testing.

The equivalent circuit model with one RC item (Lu et al., 2018)
is used in this study, as shown in Figure 3, where IL is the load
current with a positive value when discharging and a negative
value when charging, Uoc is the open-circuit voltage (OCV), UL is
the terminal voltage, Up is the polarisation voltage, Ro is the
equivalent ohmic resistance, Rp is the equivalent polarisation
resistance, and Cp is the equivalent polarisation capacitance. The
battery cell characteristics are shown in Table 1.

To evite the estimation errors caused by the operating
environment and aging arising in the traditional offline
identification method, online model parameters identification
has been put forward. The electrical behavior of the Thevenin
model can be expressed as follow by Eq. 1.

UL(s) − Uoc(s) � −IL(s)(Ro + Rp

1 + RpCps
) (1)

where s is the frequency operator.
By combining the adaptive techniques, the model can

automatically adjust to changing systems. The influence of
temperature is neglected and then the Eq. 1 can be rewritten as

UL(k) � (1 − a1)Uoc(k) + a1UL(k − 1) + a2IL(k) + a3IL(k − 1)
(2)

where k � 1,2,3. . ., a1, a2, and a3 are coefficients that are
defined by

a1 � −T − 2RpCp

T + 2RpCp

a2 � −RoT + RpT + 2RoRpCp

T + 2RpCp

a3 � −RoT + RpT − 2RoRpCp

T + 2RpCp

(3)

where T is the constant sample time.
According to Eq. 2, we can define three new vectors as follow:

φ(k) � [ 1 UL(k − 1) IL(k) IL(k − 1) ]
θ(k) � [ (1 − a1)Uoc(k) a1 a2 a3 ]T
yk � UL(k)

(4)

then the Eq. 2 can be expressed by

yk � φ(k)θ(k) (5)

The terminal voltage UL(k) and current IL(k) are sampled at a
constant period, and according to Eq. 5, the vector θ can be
identified by the recursive least squares algorithmwith an optimal
forgetting factor, described as

e(k) � UL(k) − φ(k)θ̂(k − 1)

K(k) � P(k − 1)φT(k)
λ + φT(k)P(k − 1)φ(k)

P(k) � P(k − 1) − K(k)φT(k)P(k − 1)
λ

θ̂(k) � θ̂(k − 1) + K(k)e(k)

(6)

where θ̂(k) is the estimated value of the parameter vector
θ(k) at a time; e(k) is the prediction error of the terminal
voltage, K(k) is the gain of the RLS algorithm, p(k) is the
covariance matrix, λ is the forgetting factor which is a constant,
generally λ∈[0.95,1], and setting an optimal value for λ is very
important to get the good identified result of the parameter
vector θ.

According to the identified vector θ, the model parameters of
the battery, Ro, Rp, and Cp, can be solved by the expressing of a1,
a2, and a3, which is shown as

FIGURE 3 | Schematic of the Thevenin model.

TABLE 1 | List of main parameters of the experiment.

Type of the battery
cell

18650-type cylindrical NCM
lithium cells

Nominal cell capacity (0.3C) 2.0 Ah
Average battery cell voltage 3.6 V
End of discharge voltage 2.5 V
High voltage protection 4.2 V
Operation temperature range −20°C∼55°C
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Ro(k) � a3 − a2
1 + a1

Rp(k) � 2(a1a2 + a3)
a21 − 1

Cp(k) � − (1 + a1)2
4(a1a2 + a3)

(7)

SOC ESTIMATION ALGORITHM

The presented method is to obtain the precise estimation for the
battery with low capacity. Concerning the extreme non-linear
characteristics of the battery in the low SOC range, the EKF and
NN are combined to improve the estimation accuracy. The algorithm
contains two steps: in the first step, the EKF is conducted to achieve a
preliminary estimation; then, the NN is used for the correction based
on the EKF results. The overall framework of the presentedmethod is
shown in Figure 4. The voltage and current parameters of the
lithium-ion battery are collected when the battery is in the low
SOC capacity, rather than the data in the full SOC range. The RC
model is used to predict the response characteristics of the battery.
Then, the characteristic parameters of the battery model are provided
to the EKF algorithm for estimation and correction of the battery
SOC. The EKF based estimation algorithms in the low capacity SOC
estimation are not satisfactory in most situations. When the SOC is
lower than 0.3, the SOC error seems to be higher, which indicates that
the non-linear behavior of the battery under low SOC becomes more

complicated, making it more challenging to estimate the SOC. So, we
use the EKF SOC estimation data set in the low SOC range as a
training parameter to train the NN network to improve the SOC
estimation accuracy, especially in the low capacity area of the battery.
At the same time, the SOC result identified by themodel, by the EKF,
and by NN algorithms are appraised the effect of the estimation after
comprehensive analysis and data fusion.

Step 1: Coulomb counting method

Although it is generally believed that Coulomb counting is
regarded as a more traditional SOC estimation method, it is still
widely used in actual implications, especially in the initial stage of
battery use. The initial SOC of the battery has been with high
accuracy. After the battery is fully rested, excluding the influence
of hysteresis and relaxation effects, and accurately obtaining battery
capacity information, the estimation effect of its SOC is trustworthy.
For this current-basedmethod, the SOC can be calculated as the ratio
between the remaining coulombs and the assumed battery capacity.
The Coulomb counting method for SOC estimation can be
approximated as follows:

soc(t) � soc(t0) + ηbat
Cbat

∫t

0
i(t)dt (8)

Where ηbat is the Coulomb efficiency of the battery and can be
further expressed as:

ηbat � { ηbat c i(t)> 0
ηbat d i(t)< 0 (9)

FIGURE 4 | Estimation method framework.
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In the above equation, t is the unit of time (seconds), i (t) is the
current through the battery at time t, soc (t0) is the SOC at the
instant t � 0, and soc (t) is the interval SOC at t, Cbat is the battery
capacity.

Step 2: initial estimation based on EKF

Here EKF is used as an optimum state estimator for nonlinear
systems and works by recursion. A nonlinear discrete system can
be defined by ⎧⎪⎪⎪⎨⎪⎪⎪⎩

xk � fk−1(xk−1, uk−1, wk−1)
yk � hk(xk, vk)
wk ∈ (0, Qk)
vk ∈ (0, Rk)

(10)

where xk is the estimated state of the nonlinear system at time k;
uk-1 is the external input variable at time k-1; yk is the output of
the nonlinear system at time k; wk and vk are respectively the
system process noise array and the measurement noise array,
which are uncorrelated zero-mean white Gaussian noise with
covariance matrixes Qk and Rk.

To apply the EKF algorithm to battery SOC estimation, we
express the electrical behavior of the Thevenin model in the
discrete form, which is shown as⎧⎪⎨⎪⎩UL(k) �Uoc(k) −UP(k)− IL(k)Ro(k)
UP(k) � exp(−Δt

τ
)pUP(k−1)+(1− exp(−Δt

τ
))pIL(k−1)Rp(k)

(11)

where Δt equals sampling time.
SOC can be updated by

SoC(k) � SoC(k − 1) − IL(k)Δt
Ca

(12)

where: Δt equals sampling time; Ca is the usable capacity of the
battery.

Thus, the state space equation and the measurement equation
can be described by

{ xk � Ak−1xk−1 + Bk−1uk−1 + wk−1
yk � Ckxk +Dkuk + vk

(13)

where xk is the state variable, which is consist of Up and SOC; yk is
the observable variable including UL; vector xk, yk, and matrix Ak,
Bk, Ck, and Dk is expressed as

xk � ⎡⎣ Up,k

SoCk

⎤⎦ yk � [UL,k]
Ak �

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
exp(−Δt

τk
) 0

0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ Bk �

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
Rp,k(1 − exp(−Δt

τk
))

Δt
Ca

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
Ck � [−1 dUoc

dSoC
] Dk � [−Ro,k] (14)

The iterative formulas of the algorithm are shown as

x̂k− � Ak−1xk−1 + Bk−1uk−1
Pk− � Ak−1Pk−1AT

k−1 + Q
(15)

Kk � Pk−C
T
k(CkP

−
kC

T
k + R)−1

xk � x̂k− +Kk(yk − Ckx̂k−)
Pk � (1 − KkCk)Pk−

(16)

The use of the EKF method needs to meet certain
assumptions, the OCV characterization that represents the
battery voltage as a function of SOC, and the functional
relationship for the voltage drop due to impedance and
hysteresis within the battery could be a nonlinear
relationship. Battery model parameters and noise-related
statistics need to be known.The process and measurement
noise need to have a clear distribution law (such as normal
distribution) with the mean and variance available.

However, there are more or less aspects in our
previous research that lead to violations of general model
assumptions, such as the initial SOC error, the OCV-
SOC modeling error, parameter estimation error, statistical
parameters of the process noise. The source of these
inaccuracies is incorrect parameter values or model
structure.

Furthermore, in most practical applications, the battery
capacity will change a lot with the battery aging process,
and it is not easy to re-calibrate the battery capacity in
time. The initial SOC error accumulation is an essential
factor that cannot be ignored.The noise matrixes of the
system and measurement in the method of EKF are not the
same for the whole SOC estimation process, and its
assumptions about the EKF application conditions are
difficult to meet in actual operation. These all have
generated the need for a more flexible estimation algorithm
to make a reasonable and accurate estimation of the battery
state. So the next introduction of NN-based algorithms meets
the above requirements.

Step 3: Neural network and fusion frameworks

The inputs of the neural network are battery current and
voltage, while the output is the battery SOC. The nodes
between two adjacent layers are interconnected with
weights. On the premise of meeting the error allowance,
feedforward neural networks are selected in this paper from
the perspective of simplicity of network architecture, real-time
performance of future vehicle applications and reduction of
computing requirements, but it is not limited to this method.
Other neural network algorithms are also applicable to the
SOC estimation scenarios with sufficient training data
samples. The structure process of the network used in this
article is divided into four steps.

1) Initialization: set the weight and bias value of the network as
random variables and ensure that the selected value is within
the feasible range. At the same time, set an appropriate
number of iterations.
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2) Selection of the transfer function: activate the network
according to the input and expected output of the network,
and select the appropriate transfer function to calculate the
output of the corresponding neuron in the hidden layer and
the output layer.

The hidden layers and output layers are processing layers with
the activation function at each node. The hyperbolic tangent
sigmoid function is often used in the hidden layer as an activation
function. It is defined as:

f(x) � tanh(x) � 2
1 + e−2x

− 1 (17)

In the choice of activation function, a linear transfer function
is selected in the output layer to deal with regression and fitting
problems. The output of a processing node in the first hidden
layer is written as:

y1 � F(x1) � F⎛⎝∑M
m�1

ωm1[ I1
U1

I2
U2

I3
U3

. . .
In
Un
]
m

+ θ1⎞⎠ (18)

where I and U are the inputs of the network, ωm1 is the weight of
the initialized, where M denotes the number of neurons in the
hidden layer and θ1 is the initialized bias.

The output of a processing node j in the hidden or output layer
is given by:

yk � F(xk) � F⎛⎝∑
p

ωpkαp + θk⎞⎠ (19)

where αp is the output from the p th node at the previous layer,
ωpk is the weight of the interconnection from the p th node of the
previous layer to k th node of the present layer, and θk is the bias.
The net weights ωpk and biases θk need to be determined based on
training data.

3) Error calculation: Calculate the error in the output layer
and the hidden layer, and the error will be passed back to
the previous network layer. The output error is
calculated as,

ϑk � Fk(1 − fk)(Tk − Fk) (20)

Tk is the desired output value. The hidden error is computed as,

ϑp � Fp(1 − fp)ϑkωpk (21)

4) Update: According to the error situation, adjust the
corresponding weight and biases value within the
threshold range.

In this study, the input of the neural network is the current
and voltage measurements, and the output is the SOC. The
sample number of the input parameter K refers to data before
the present moment as input, which is [I(t), I(t-1), I(t-2), . . .,
I(t-k), U(t), U (t-1), U(t-2), . . ., U(t-k)], the output is the
present SOC(t), k is the parameter that needs to be determined
before training.

In the choice of NN network, this research follows some
empirical rules to determine the appropriate neural network
structure. First of all, according to the literature (He et al.,
2014; Lipu et al., 2018; Hannan et al., 2020), the two-layer
neural network can meet the demand. In the subsequent
analysis of the results, the comparison of the impact of the
two-layer and multi-layer neural networks on the accuracy is
selected. Second, the number of suitable neurons (M in Eq. 18)
will cause the overfitting and underfitting of the data. Therefore,
the parameter selection process is determined through the
appropriate NN network selection, that is, the values of k and
M. The principle of selecting network parameters is to acquire the
smallest values of k and M under an acceptable degree of error. If
the error is unacceptable, increase the values of k and M
accordingly, the final selected result is K � 25, M � 15. The
flowchart is in Figure 5, and the specific selection process is as
follows:

1) Initialize the values of k and M: k � 1, M � 1, which
respectively determine the dimension of the input vector
and the value of the hidden layer neuron.

2) Train the network based on the current k and M values, and
output SOC(t);

3) Calculate the RMSE of the output SOC(t) and the reference
SOC value;

4) Determine whether the RMSE is less than 1%. If RMSE<1%,
the value of k and M ends; otherwise, such as k ≤ 2M, k � k+1,
M � M; otherwise, k � k, M � M+1.

According to the test results, the nonlinearity of battery
model parameters is quite evident in the low SOC range, so
a neural network is used to obtain the implicit association
between battery parameters and SOC. Considering the
local outlier fluctuations that may occur in the NN method
and the relative stability of EKF, according to the actual
situation, the results of the two estimations are fused to
obtain better estimation accuracy. The NN is trained based
on the test data of the lithium-ion battery at a low SOC
range. The inputs of the neural network are the battery
current and voltage, while the output is battery SOC. In

FIGURE 5 | The selection process of the main parameters of the NN
network.
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the local low capacity area, the abnormal value based on
the NN-based SOC estimation is corrected by EKF which
is as the boundary reference value, and the NN that
realizes the global trend is guaranteed to be supplemented
by EKF calibration to achieve the integration of the
advantages of the two estimations and improve algorithm’s
effectiveness. The scheme of the fusion algorithm is
illustrated in Figure 6. In this step, the SOC estimation
from EKF is firstly used to train the NN and also as the
fluctuant boundary to improve the local algorithm’s
effectiveness.

In Figure 7, the flowchart briefly describes the fusion
process of the two estimation methods, and SOCREF,
SOCEKF, SOCNN represents the reference SOC from the
Coulomb counting, SOC estimation from EKF, and SOC
estimation from NN.

When the battery is in the low-capacity range, the voltage and
current changes bring many challenges to the estimation of SOC.
The basic idea of battery SOC estimation is to assume that the
effect of NN estimation is a more accurate output choice. Still,
EKF and NN are estimated in parallel during constant
competition. When NN outputs appear local abnormal value,
the fusion algorithm optimizes the final output estimation result

according to the current EKF and the NN estimation result to
achieve the overall estimation accuracy. Figure 8, shows the
fusion process in the form of a schematic diagram. Although
the Coulomb counting method has an inevitable accumulated
error, its value in a single period could still be regarded as a
reference. In the previous training, the error of the NN estimation
result regarding the reference value is relatively low, so the
abnormal data here refers to the absolute value of the NN
estimated relative to the reference value is greater than the
EKF estimated relative to the reference value, as shown in
Figures 6, 7. Here, the deviation of the positive and negative
two-way error from the reference value is considered.

RESULTS AND DISCUSSION

According to the aforementioned battery model-based estimation
method, a fully charged battery is recorded as SOC 1. The open-
circuit voltage data is recorded after the battery is fully static.
Discharge the battery with a current of 0.2C and take breaks to re-
record the open-circuit voltage again when the SOC is 0.9. Repeat
the above process until the SOC is 0.1 to obtain the functional
relationship between SOC and OCV, as shown in Figure 9. The
results of other parameters identified in the battery model are
shown in Table 2.

FIGURE 6 | The structure of the fusion estimation.

FIGURE 7 | The flowchart of integration NN and EKF.

FIGURE 8 | The schematic diagram of the fusion estimation.
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As mentioned earlier, this study selected 70% of the data volume
as the training basis of the neural network, the temperature remains
constant, and the actual changing voltage and current in the low-
capacity range corresponding to the driving cycle have been used as
input. Considering the voltage and current unit and variation range
differences, the input parameters are all normalized, and the output
is the corresponding SOC change. The neural network training
method is Levenberg-Marquardt, and the maximum number of

iterations is set to 1000. Figure 10 shows the training result, which
contains two hidden layers, and each hidden layer contains 15
neurons. The training program stops at 767 epochs. At this time,
theMSE value drops to 8.213×10−5, indicating that the error between
the estimated value and the true value is minimal, which proves the
effectiveness and reliability of the training.

Generally speaking, the root mean square error (RMSE) and
mean absolute error (MAE) are selected to evaluate the accuracy
of the battery SOC estimation method, and the calculation
expression is as follows:

RMSE �
����������������
1
n
∑n
k�1
(sock − socref)2√√

(22)

MAE � 1
n
∑n
k�1

∣∣∣∣sock − socref
∣∣∣∣ (23)

Where n is the number of SOC data, socref represents the reference
SOC value at time k (from the Coulomb counting), and sock
represents the SOC estimated by the estimation method at time k.
Table 3 compares the computational cost, which is on an Intel®
Core™ i7-4790 CPU T6600@3.6GHz, 3.6GHz, with 12 GB RAM
and 64-bit OS, of using the RMSE referring to different SOC
estimation algorithms accuracy for the simulated use time of
different driving cycle conditions. The results show that the
increase of calculation cost for the fusion algorithm of the three
selected working conditions is acceptable. Still improvement of the
estimation accuracy is indeed significant, which can be seen in the
subsequent analysis. For example, the computational cost is about
32.37 s for UDDS. Compared with the same type of driving cycle
and estimation accuracy in the literature (Lipu et al., 2018), the
simulation time has certain advantages.

To evaluate the effect of the presented method, the
experiments are carried out. Figure 11A illustrates the voltage
and current variations under the UDDS driving cycle and the
estimation analysis. In this study, we are mainly concerned with
the situation when the battery pack is short of energy. Therefore,
we only discuss the results in the low battery capacity area.
Through literature review, some EKF methods could obtain
relatively good SOC estimation accuracy for laboratory
conditions (such as constant current and Constant Voltage
(CCCV)), and the MAE is about 3%. When the test condition
changes to the Dynamic Stress Test (DST), the MAE is about 6%
(Ranjbar et al., 2011). The actual working conditions used in our
case are equivalent to or more complex than DST, and the MAE
estimated by EKF is about 3%, depending on the different test
cycles. Therefore, the estimated level of EKF can be considered as
reaching the mainstream level, and having reference value.

FIGURE 9 | The relationship between SOC and OCV.

TABLE 2 | Other relevant parameters corresponding to SOC in the model.

SOC Ro/Ω Rp/Ω Cp/kF

1 0.127 0.045 350.8
0.9 0.137 0.035 310.5
0.8 0.111 0.054 562.8
0.7 0.12 0.049 462.5
0.6 0.119 0.046 493.3
0.5 0.116 0.053 417.4
0.4 0.107 0.039 366.6
0.3 0.108 0.041 303.8
0.2 0.111 0.065 254.5
0.1 0.113 0.065 196.1

FIGURE 10 | The training result of the NN.

TABLE 3 | Computational cost results for different estimation algorithms and
driving cycles.

Method Simulation time (seconds)

EUDC NYCC UDDS

NN 9.37 55.83 32.37
Fusion 9.76 56.37 33.03
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The SOC obtained from the coulomb counting method is used
as the benchmark for estimation analysis, as shown in Figure 11B.
From the results, we can notice that the presented NN-based SOC
estimation can achieve more approaching values compared with
only using the EKF. To better observe the estimation precision, the
error distributions are illustrated in Figure 11C, where indicates
that the NN-revised SOC estimation is lower in the entire range.
The RMSE andMAE of the NN estimation in this range are 0.0162
and 0.008, respectively, reduced by 45.7 and 77.7% compared with
EKF. That is of great significance for fully exploring the potential of
battery driving range, reasonable specification of battery charging
strategy, ultimately improving the accuracy of battery SOC
estimation, and expanding the acceptance of electric vehicles. It
can be noticed that the SOC estimation values of the NN-based
algorithm is always lower than EKF for UDDS driving cycle and
fluctuates around the baseline (of course, this does not exist in the
real-time situation), and there is no NN-based SOC estimation that
is higher than the EKF estimation situation. Compared with the
results of the literature (He et al., 2014; Kang et al., 2014; Xu et al.,
2021), when the NN method is used for the same or similar actual
driving cycle conditions, the SOC estimation results are improved
by about 3%. At the same time, for the UDDS driving cycle, the
SOC estimation based on the BP neural network algorithm is
carried out for low-capacity area. The accuracy of the estimation is
basically similar to the feedforward neural networks as shown in
Figures 11B,C. Several local areas SOC estimations are better than

the method selected in this article. However, the simulation time is
34.75s, which is slightly increased compared to the corresponding
situation inTable 3. After comprehensive consideration, this paper
selects feedforward neural networks.

In Figure 12A, for the EUDC driving cycle, the current discharge
range is deep, and the voltage drop is pronounced compared to
UDDS. We found the same problem in the low-capacity SOC
estimation; that is, the EKF estimation method generally has a
higher error. Also, the estimated results of the trained NN in the
low SOC range for the EUDCdriving cycle are shown inFigure 12B.

The solid red SOC line is the comparison benchmark for the
estimated effect calculated by coulomb counting. In Figure 12B,
there are three SOC observation windows as A, B, and C. A better
reflects the accuracy of the NN algorithm. In the two observation
windows B and C, the EKF algorithm has obvious advantages.
Therefore, the fusion estimation based on the above two methods is
based on theNN algorithmwith better global accuracy, but there will
inevitably be local data abnormalities. Therefore, the boundary effect
of EKF is used to improve the local SOC estimation accuracy. As
shown in Figure 12C, after the improvement, the SOC estimation
curve in the two observation windows of B and C refers to the
tendency of the EKF estimation value with a more minor error,
which overcomes the abnormal value fluctuation of the NN
algorithm and achieves the fusion of the two estimation methods.
For the fusion-based estimation, the absolute error is mostly within
2%, but the maximum error of the EKF method at some points is

FIGURE 11 | The evaluation results for low battery capacity area under UDDS driving cycle. (A) The battery voltage and current (B) The SOC estimations for UDDS.
(C) The error analysis.
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greater than 4%, in Figure 12D. Considering the discharge
characteristics of NMC batteries, which do not have a long
discharge plateau, the SOC estimation error mainly appears in
the low-capacity area at the end of discharge. In this attempt, by
using more hidden layers training the neural network, although a
lower error can be obtained, it is also accompanied by the potential
risk of overfitting. For example, the selected multi-layer neural
network already has a lower EMS error. However, the test results
are not significantly improved compared to the two-layer results and
increase the computational demand. SeeTable 4 below for a detailed
comparison.

Due to the frequent charging and discharging behavior in the
driving cycle, the low-capacity area of NYCC runs for a long time,
making the battery voltage and current changes show prominent
periodic characteristics, shown in Figure 13A In the SOC estimation
for the NYCC driving cycle, it can be seen from Figure 13B that the
comparison between the EKF-based and NN-based methods in the
low SOC range. By analyzing the SOC estimation error by the two
estimation methods, it can be seen that comparing with EKF, the
estimated value by the NN-basedmethod can bemaintained around
the baseline in the low SOC range with relatively smaller errors. At
the same time, it is also noticed that EKF is not always helpless in the
low-range SOC estimation in the face of different driving cycles. The
performance in the NYCC driving cycle is acceptable, and it can be
considered that there is a particular adaptability problem for EKF.

The NN-based method shows a relatively stable ability to estimate
the low SOC range of the three operating conditions tested above
and has a wide range of adaptability. It could be regarded as a
potentially better solution to the low SOC range estimation. By
further observation, in the inspection windows A and B in
Figure 13B, the estimation results of EKF gain a local advantage
over NN. Therefore, under the framework of the fusion algorithm,
this situation can further improve the estimation accuracy. It is still
based on the NN algorithm, EKF is used as a reference for the
fluctuation boundary, and the fusion estimation result obtained by
fusing the advantages of the two estimation methods is shown in
Figure 13C. The SOC estimation method based on the fusion still
achieves high accuracy locally. After zooming in the local area of the
low-capacity interval in Figure 13C, it shows that the SOC
estimation error based on fusion is ideal. The designed
estimation method could obtain an RMSE error value of 0.0097
and an MAE error value of 0.0066, achieving an MAE of 1.34%,

FIGURE 12 | The evaluation results for low battery capacity area under EUDC driving cycle. (A) The battery voltage and current (B) The SOC estimations for EUDC
without fusion. (C) The SOC estimations for EUDC with fusion (D) The error analysis.

TABLE 4 | Error comparisons for EUDC.

MAE RMSE

Estimation by EKF 0.0482 0.0514
Estimation by Fusion-two-layer 0.0087 0.0215
Estimation by Fusion-muti-layer 0.0079 0.0209
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while the error distributions are shown in Figure 13D. The results
shown above indicate that the proposed method is accurate, robust,
and superior to the reference SOC estimation approaches under
different operating conditions.

CONCLUSION

This study investigates the online estimation of SOC for lithium-
ion batteries at the low-capacity range. Based on the analysis of
battery charge and discharge data under real vehicle cycle
conditions, the battery model is established to identify and
calibrate battery parameters and then focuses on the low-
capacity SOC estimation analysis based on the EKF method. A
fusion online estimation method is verified based on NN
algorithms, which are the global mainstream trend, and the
EKF, which is the local fluctuation boundary. The estimation
results are evaluated by using the experiments under the UDDS,
EUDC, and NYCC driving cycle, which results show that the
proposed method can achieve a precise estimation result and the
errors are as low as the RMSE of 0.0097 and the MAE of 0.0066.
The method presented in this study could provide the precise
information for expanding the driving range of electric vehicles
and alleviate driver’s mileage anxiety.
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