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New energy vehicles are crucial for low carbon applications of renewable energy and
energy storage, while effective fault diagnostics of their rolling bearings is vital to ensure the
vehicle’s safe and effective operations. To achieve satisfactory rolling bearing fault
diagnosis of the new energy vehicle, a transfer-based deep neural network (DNN-TL)
is proposed in this study by combining the benefits of both deep learning (DL) and transfer
learning (TL). Specifically, by first constructing the convolutional neural networks (CNNs)
and long short-term memory (LSTM) to preprocess vibration signals of new energy
vehicles, the fault-related preliminary features could be extracted efficiently. Then, a
grid search method called step heapsort is designed to optimize the hyperparameters
of the constructed model. Afterward, both feature-based and model-based TLs are
developed for the fault condition classifications transfer. Illustrative results show that
the proposed DNN-TL method is able to recognize different faults accurately and robustly.
Besides, the training time is significantly reduced to only 18s, while the accuracy is still over
95%. Due to the data-driven nature, the proposed DNN-TL could be applied to diagnose
faults of new energy vehicles, further benefitting low carbon energy applications.
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INTRODUCTION

New energy vehicles such as the electrical vehicle and hybrid electrical vehicle play a vital role in
achieving low carbon industrial and energy economy, where the rolling bearing is a key component
within new energy vehicles. To ensure the effective operations and satisfactory functions of new
energy vehicles, the health state of rolling bearings must be well-kept during new energy vehicle
operations. However, due to complex working conditions, faults of the rolling bearing in the inner
and outer races, the rolling element or gearwheel, such as pitting, peeling, crack, or indentation, are
not rare in practice (Zhao et al., 2019). According to statistics, bearing failures account for 45–55% of
equipment destruction (Hoang and Kang, 2019). Therefore, the study of effective fault diagnosis is of
great significance to improve the safety and reliability of new energy vehicles, further benefitting a
low carbon society.

Recently, based on the artificial intelligence technologies, data-driven fault diagnostics methods
have received extensive attention from researchers (Liu et al., 2020; Ren et al., 2020; Li et al., 2021a;
Liu et al., 2021a; Li et al., 2021b; Liu et al., 2021b; Hongcan andWang, 2021). On the one hand, after
predefining the features, faults could be classified by conventional machine learning (ML)
algorithms. Popularly used conventional ML algorithms include the support vector machine
(SVM) (Feng et al., 2020), logistic regression (LR), nearest neighbor algorithm (KNN)
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(Syaifullah et al., 2021), and random forest (RF). The
characteristics of these algorithms are easy training and good
computing performance. For traditional ML-based methods,
their effectiveness largely depends on features. In order to
facilitate the methods, signal processing algorithms have been
designed as data preprocessors to support feature acquisition.
However, it is time-consuming and labor-intensive and even
needs manual efforts by professional technicians.

On the other hand, feature extraction is conducted
autonomously by DL algorithms from large-volume data
and fault classification (Li et al., 2021c), where artificial
neural network (ANN) (Lecun et al., 2015), stacked
autoencoder (SAE) (Chine et al., 2016), CNNs (Zhang et al.,
2018; Wang et al., 2020a), deep belief network (DBN) (Shujaat
et al., 2020), and recurrent neural network (RNN) (Szegedy
et al., 2017a; Chen and Pan, 2021) have been widely used for
fault diagnostics in new energy vehicles. For example, Jia et al.
(2016a) proposed stacked multiple AEs to extract features
from raw bearing vibration signals. The average accuracies
of both training and testing are 100%. Because of the
complexity of the original signal data, the AE method lacks
robustness. To overcome the drawback of AE, Shao et al.
(2017a) proposed a novel loss for AE by adopting
maximum correntropy. The average accuracy of the method
is 94.05%. The original AE and its deformation cannot
guarantee the usefulness of feature extraction (Shao et al.,
2017a). Shao et al. (2017b) proposed an improved depth AE
model from combination of DAE and comparative AE (CAE).
After feature fusion, the average testing accuracy of the
method is 95.19%. Because of applying the CD algorithm,
some researchers study RBM widely. Chen et al. (2017)
proposed methods for extracting bearing fault features DBM
and DBN. The accuracy of classification achieves more than
99%. Shao et al. (2015) proposed PSO to the DBN for fault
diagnosis. Janssens et al. (2016) proposed feature learning based
on CNNs using two sensors to collect vibration signals. The
CNN-based method yields an overall increase in the accuracy of
classification around 6 percent, without relying on extensive
domain knowledge for detecting faults. Guo et al. (2016)
proposed a hierarchical CNNs method with an adaptive
learning rate to classify bearing faults. The model achieved a
high accuracy and offered an automatic feature extraction
procedure which is practical and convenient for use in fault
diagnosis. Wang et al. (2020b) proposed multi-head attention
and a convolutional neural network. The diagnosis rates of
bearing states under working loads of 0–3 hp all reach over 99%.
All the above research studies illustrate that DL-based methods
can autonomously retrieve features from the monitoring signals
of new energy vehicles, which has great flexibility instead of
transforming and extracting features manually. In a sense, RNN
is the deepest model (Schmidhuber, 2015). RNN can only deal
with short-term dependency problems. LSTM is a special RNN
that can handle both short-term and long-term dependency
problems. Signals from new energy vehicles are time series data
in nature, so LSTM is also a promising tool for fault diagnosis.
However, some limitations are still required to be solved by
using DL methods such as 1) a large amount of data are

generally required for the DL training process, especially DL;
2) Most of DL algorithms have various hyperparameters, and
the optimization process of these hyperparameters is
cumbersome with high computational burden; and 3) Some
assumptions must be met such as the source domain and the
target domain. When the above conditions are not met, the DL
algorithm could not be able to extract effective features outside
these assumptions, further resulting in the underfitting or
overfitting issues. As the DL-based methods are only suitable
for specific conditions (Jia et al., 2016b), it is difficult to meet in
practice.

Table 1 illustrates the difference between ML and TL. In
general, TL methods could be divided into four categories:
instance-based transfer learning (ITL), feature-based transfer
learning (FTL), model-based transfer learning (MTL), and
relation-based transfer learning (RTL). ITL transfers the
samples of the source domain to the target domain through
weight reuse. FTL transforms features to find a common latent
space. MTL is to build a feature sharing model. Some features
are pre-trained in the source domain and transferred to the
target domain for use. Neural networks mainly useMTL because
the neural network can be directly transferred. MTL often uses
the most classic fine-tune method. The RTL method is less
applied, mainly for mining and for analogue transfer (Weiss
et al., 2016).

It should be known that TL-based methods have been
utilized in many real applications, such as natural language
processing, image classification, and pattern diagnosis (Lu et al.,
2015; Patel et al., 2015). For example, based upon the FTL
method, Long et al. (2014) proposed a method of joint matching
with transfer (TMJ) and instance selection while minimizing the
distribution distance. Jing et al., (2017) proposed different
transformation matrices for the source domain and target
domain to achieve the goal of transfer learning. Based on the
MTL method, Zhao et al. (2011) proposed the Trans EMDT
method, which uses a decision tree to build a robust behavior
diagnosis model based on the labeled data. It should be known
that limited research studies use the RTL method (Davis and
Domingos, 2009). Besides, Ganin et al. (2016) proposed the
DANN method, which adds a confrontation to train neural
networks. Bousmalis et al. (2016) from Google Brain extended
DANN by proposing a DSN network.

According to the abovementioned discussion, TL methods
could well benefit the computational efficiency and diagnostic
accuracy, which is promising to be used in the rolling bearing
fault diagnosis of new energy vehicles. Driven by this, a novel
data-driven method named the transfer-based deep neural
network (DNN-TL) through integrating CNN, LSTM, and
transfer learning is designed in this study. In the DNN-TL
method, the characteristics and advantages of the algorithms
are used to improve the overall performance of new energy
vehicles’ fault diagnostics in terms of diagnostics accuracy and
training efficiency. More specifically, CNNs and LSTM can
intelligently extract preliminary features, but alleviate the
complicated training and fine-tuning process of CNNs
hyperparameters. Then, the preliminary features are refined,
and the accuracy of the fault condition classification is
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enhanced by the TL algorithm with maximum mean discrepancy
(MMD) and deep domain adaptation (DDA).

The logic of designing the DNN-TL method is detailed below:
First, CNNs and LSTM are designed to extract fault-related
features from the signals on a rolling bearing of new energy
vehicles. To get the appropriate value of hyperparameters, the
Grid Search method is improved, namely, step heapsort. Second,
the excellent parameter model is saved for transfer learning.
Moreover, the loss function is also improved by introducing
MMD to optimize the features by eliminating those less relevant
to faults. Finally, DDA is developed to fine-tune the extracted
feature values to the target data for transfer learning and obtain

the final fault diagnosis classification. Case studies with different
complexities evince the superiority of the DNN-TL method in
comparison with each of the individual base models and other

FIGURE 1 | Flowchart of the DNN-TL approach.

FIGURE 2 | Flowchart of the model.

FIGURE 3 | Translational overlap sampling method.

TABLE 1 | The difference between ML and TL.

Compare items Traditional machine learning Transfer learning

Data distribution The training and testing data obey the same distribution Training and testing data obey different distributions
Data labeling Need enough labeled data to train the model Need not require enough labeled data
Model Model each task separately Transfer models between different tasks
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existing TL approaches. The case studies also exemplify the
industrial applicability of the DEL approach under real-world
environments with noises and signal interferences.

The rest of this study is organized as follows.DNN-TL Method
details the framework to derive the DNN-TL method.
Experiments and Results illustrates the experiments and
analyzes the corresponding results. Finally, conclusions are
summarized and further applications, shortages, and
challenges are discussed in Conclusion.

DNN-TL METHOD

Figure 1 illustrates the flowchart of the derived DNN-TLmethod.
Specifically, Step 1 to Step 4 are used for feature extraction of the
data set. Step 5 is to classify the data set. Step 6 is to show the
evaluation index. After that, the comparison tests would be
carried out to verify the effectiveness of the derived DNN-TL
method.

FIGURE 4 | Types of related hyperparameters.

TABLE 2 | Procedure of step heapsort.

Steps Descriptions

Step1 Preprocess raw data: training data, verification data, test data
Step2 Build a combined model based on CNN and LSTM.
Step3 Define the hyperparameter F (xi), the number of layers of convolution [1-5], the size of the convolution kernel [32-128], the

number of fully connected layers [0-4] etc.
Step4 Define a fixed step size step. The number of convolutional layers is fixed. The step size of the convolution kernel is 3, the

range of the number of fully connected layers [0-4], etc.
Step5 Define loss
Step6 Start to compile and train the model and get the classification results of the model matching to each parameter
Step7 Compare the result of step 6 with the training result of the last time. If the result F (Eq. 8) this time is better than the last time,

the hyperparameter is set to F (xi), otherwise it is F (xi-1)
Step8 Until the loop reaches the maximum range of hyperparameters, the optimal parameter F (x) is finally obtained

TABLE 3 | Choices of classification function.

Category name Activation function Corresponding loss function

Dichotomous Sigmoid binary_crossentropy
Multi-category Softmax categorical_crossentropy
Multi-label classification Sigmoid binary_crossentropy

FIGURE 5 | Flowchart of model training.
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Deep Neural Network Establishment
To observe a better pre-training model in rolling bearing fault
diagnosis of new energy vehicles, this study proposes DCNNL by
combining CNN and LSTM for pre-training, as illustrated in

Figure 2. Specifically, first, after adding batch normalization
(Szegedy et al., 2017b) between the convolutional layer and
the pooling layer, the input would be pulled into the
convolutional layer back forcibly to the standard normal

FIGURE 6 | The transfer of model. (A) Flowchart of the transfer model. (B) Flowchart of model fine-tuning. (C) Model structure of DCNNL. (D) Adaptive method.
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distribution. This could avoid disappearing from the gradient,
further speeding up the convergence and the training speed.
Second, by adding the LSTM network (Chi et al., 2020; Landi
et al., 2021) after the pooling layer, the long-term dependency
problem (gradient explosion) could be solved to better refine the
feature. Finally, a dropout layer is added to the fully connected
layer for preventing overfitting and improving the
generalization ability (Lei et al., 2020). The flowchart of
DCNNL based on combined CNN and LSTM is shown in
Figure 2.

Raw Data Preprocess
To avoid the overfitting issue and increase the generalization
ability of the entire network, the original data will be

processed by data expansion (Wong et al., 2016), as
illustrated in Figure 3. Here, a translational overlap
sampling processing method through the sliding window
overlap sampling is adopted for 2048 samples. The offset
step size (S) is 28. The standard deviation is to standardize
the data. Finally, the data encode is one-hot. Through this
method, data set N has 620,544 data. Training samples are N-
(L-S). According to the Andrew course (Zonneveld, 1994), the
processed data sets include the training set, validation set, and
test set. The ratio is of 7:2:1. In this context, overlap sampling
can increase the data. Standardization makes each of the input
close. The network can converge well. Hyperparameters are
same for each training. The way can simplify processing
hyperparameters later.

FIGURE 7 | Experimental platform deployment. (A) The experimental platform, (B) end cap north, (C) end cap south, (D) box, (E) base, (F) faulty parts of rolling
bearings of new energy vehicles, and (G) part of the original data.
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FIGURE 7 | Continued
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Design Hyperparameters of DNN
Deep neural networks (DNNs) have many parameters, which
would have a great influence on performing the network.
Figure 4 illustrates the types of these hyperparameters. The
common hyperparameters include network structure,
optimization parameters, and regularization coefficients. The
parameter settings include manual search, grid search, and
random search (Li et al., 2021d). An improved grid search
method of step heapsort is utilized in this study. Table 2
illustrates the detailed procedure of this step heapsort
method. Specifically, first, an initial value and maximum
value are set for the parameters in the network. Second, a
fixed step size is given to get the next parameter, while the
result of the corresponding parameter is calculated. Third, the
ideal result is obtained through using the Heapsort method.
Finally, the computer automatically calculates the comparison
result to get the idea hyperparameters.

The number of neurons in the layers, the size of convolution
kernel, and the fully connected layer are obtained through the
step heapsort method. The activation includes saturated and
unsaturated functions (Testoni et al., 2017). The former can
solve the gradient disappearance and speed up the
convergence speed. The latter cannot. So, this study selects the
unsaturated function. Unsaturated functions have ReLU and
related variants. The methods of gradient descent include
batch gradient descent (BGD), stochastic gradient descent
(SGD), mini-batch gradient descent, AdaGrad, and Adam.
Adam is better than other adaptive learning methods (Wang
et al., 2010), so Adam is selected as the gradient descent method.

The regularization coefficient L2 is adopted due to its smooth
nature.

The choice of hyperparameters eventually needs the loss. The
smaller the loss, the closer the predicted value from the model is
to the true value. The loss mainly includes regression loss and
classification loss. The choice of commonly used classification is
illustrated in Table 3. Many faults belong to the multi-
classification problem. Here, the activation for the output layer
selects Softmax, and the loss is the cross-entropy loss. The
formula is as follows:

loss � − ∑
outputsize

i�1
yi. log pi, (1)

whereyi is the expected output, and pi is the probability of the
actual output of neuron.

Considering the CNN and LSTM within the model, the loss
function is improved as follows:

loss � − ∑
outputsize

i�1
yi. log pi + λ, (2)

with

λ � F max
Fcnn + F lstm

, F max � max(Fcnn, F lstm), λ ⊂ (0.01, 1),
(3)

where Fcnn is the comprehensive evaluation index for single CNN
model training, while Flstm is the comprehensive evaluation index
for single LSTM model training.

TABLE 4 | Descriptions of the rolling bearing data set.

Fault mode Load Speed (RPM) No. of training/Validation/Testing
samples

Label

N 4/8/16 500/1,000/1,425 700/200/100 1
OF 4/8/16 500/1,000/1,425 700/200/100 2
IF 4/8/16 500/1,000/1,425 700/200/100 3
BRF 4/8/16 500/1,000/1,425 700/200/100 4
GPF 4/8/16 500/1,000/1,425 700/200/100 5
GBTF 4/8/16 500/1,000/1,425 700/200/100 6
OGPF 4/8/16 500/1,000/1,425 700/200/100 7
IGPF 4/8/16 500/1,000/1,425 700/200/100 8
OGBTF 4/8/16 500/1,000/1,425 700/200/100 9
IGBTF 4/8/16 500/1,000/1,425 700/200/100 10

TABLE 5 | The hyperparameters of different models.

Model name Hyperparameters Number of iterations

CNN Architecture:(2048,1)-(256,32)-(64,32)-2048-100-10 10000
LSTM Architecture:(2048,1)-(2028,32)-65536-32-32-10 10000
DBN Momentum: 0.5 10000
AE Encoder:2048-128-64-10 decoder 10-64-128-2048 10000
KNN N_neighbors:5, weights: uniform, leaf_size:30 10000
SVM C:1.0, cache_size:3000 10000
DNN-TL Architecture:(2048,1)-(128,16)-(128,16)-(64,16)-(64,32)-(64,32)-(32,32)-(32,32)-(32,32)-(16,32)-(16,32)-512-512-32-

32-10
10000
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Model Training and Generation
The flowchart of model training is shown in Figure 5.
Through the step heapsort method, accuracy rate, training
time, and other parameters will be written into the array after
each training. The next training can compare with the
previous results to get the ideal hyperparameters of the
model. Finally, the model is saved to promote the transfer
of the model.

Transfer of the Pre-Trained Model
To find an ideal TL method, after the training model is built,
the model in the source domain would be transferred to the
target domain and fine-tuned. The fine-tuning of the pre-
training model is to freeze the bottleneck layer of the
model. The bottleneck layer is from the convolutional layer
to the fully connected layer. It uses the weight of the pre-
trained model to freeze the layer, extract the feature value of
the target domain, and then, add in the source domain and the
target domain adaptive layer. The flowchart of the transfer is
shown in Figure 6A. The steps of fine-tuning are shown in
Figure 6B. 1) Use the data of CWRU as the source data set.
Then, train a deep neural network model DCNNL based on

CNN + LSTM. Its specific is shown in Figure 6C. In the source
model, the model has 18 layers. The previous 12 layers use
three layers as a series: convolution, standardization, and
maximum pooling. The 13th layer is to add the LSTM
network, and the 14th layer is the Flatten layer; the 15th
layer performs dropout processing on the Flatten layer. The
16th layer is a fully-connected layer. The 17th layer adds an
activation, and the 18th layer is also a fully-connected layer
for predicting classification. 2) Create the target model, and
copy all the features of the source model except the
penultimate fully-connected layer. 3) Add multiple fully-
connected layers, add the actual number of target sets, and
initialize the model parameters randomly. 4) Train the target
model on the target data set, and then, train the classification
results of the output layer from scratch. The parameters of
other layers are fine-tuned based on the features of the
source model.

The deep network adaptation layer mainly completes two
tasks: (i) Which layers can adapt? (ii) What measurement is
for adaptation? The network adaptation method in this study is
DDA. Feature extraction is from the bottleneck layer of the
transfer model. A layer using an adaptive measurement

TABLE 6 | Training accuracy, loss rate, and time consumption of the DCNNL model.

Methods name Value Training time (s)

Accuracy/loss

Training Validation

1-Conv-128-filters-LSTM-0-dense 0.9949 0.01936 0.9795 0.08273 19
1-Conv-32-filters-LSTM-0-dense 0.9996 0.0064901 0.98 0.07256 19
1-Conv-64-filters-LSTM-0-dense 0.9986 0.008698 0.9485 0.02531 19
2-Conv-128-filters-LSTM-0-dense 0.9877 0.04326 0.9585 0.1859 23
2-Conv-32-filters-LSTM-0-dense 0.9891 0.03862 0.9 0.449 15
2-Conv-64-filters-LSTM-0-dense 1 0.0059819 0.989 0.05334 17
3-Conv-128-filters-LSTM-0-dense 1 0.017 0.972 0.1429 26
3-Conv-32-filters-LSTM-0-dense 1 0.009069 0.987 0.07128 13
3-Conv-64-filters-LSTM-0-dense 0.9994 0.01478 0.942 0.2929 17
1-Conv-128-filters-LSTM-1-dense 0.9957 0.01277 0.939 0.3136 21
1-Conv-32-filters-LSTM-1-dense 1 0.0026428 0.9665 0.2281 20
1-Conv-64-filters-LSTM-1-dense 0.9993 0.0058698 0.9485 0.3028 20
2-Conv-128-filters-LSTM-1-dense 0.9966 0.01346 0.9905 0.06993 24
2-Conv-32-filters-LSTM-1-dense 0.9976 0.0085782 0.9055 0.3469 16
2-Conv-64-filters-LSTM-1-dense 1 0.004928 0.972 0.1665 18
3-Conv-128-filters-LSTM-1-dense 1 0.01677 0.9695 0.1643 27
3-Conv-32-filters-LSTM-1-dense 1 0.0073519 0.989 0.06609 14
3-Conv-64-filters-LSTM-1-dense 0.987 0.05905 0.8115 0.6976 17
1-Conv-128-filters-LSTM-2-dense 0.9937 0.01994 0.9785 0.09017 21
1-Conv-32-filters-LSTM-2-dense 0.9989 0.007199 0.9785 0.2052 20
1-Conv-64-filters-LSTM-2-dense 0.9999 0.00301616 0.974 0.1823 20
2-Conv-128-filters-LSTM-2-dense 0.9989 0.086123 0.9715 0.1778 24
2-Conv-32-filters-LSTM-2-dense 0.9989 0.0083185 0.981 0.1487 16
2-Conv-64-filters-LSTM-2-dense 0.9999 0.0059706 0.9735 0.1757 18
3-Conv-128-filters-LSTM-2-dense 1 0.0178 0.987 0.1078 27
3-Conv-32-filters-LSTM-2-dense 0.9999 0.01051 0.9925 0.05091 14
3-Conv-64-filters-LSTM-2-dense 0.9997 0.0073519 0.988 0.08197 17

Bold values indicate the method corresponding to the best result.Remarks.
The rule of the table Name: x1-Conv-x2-filters-LSTM-x3-dense.
x1: Conv layer is the number of convolutional layers, which can be 1–5. Each layer of convolution includes one-dimensional convolution, batch processing, activation function, and
pooling layer.
x2: The size of the convolution kernel of the fully connected layer, which can be 32–128.
LSTM: Indicates using long and short-term memory networks.
x3: The number of the dense layer, which can be 0–4.
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criterion adds the first three layers of the classifier. The adaptive
method is shown in Figure 6D. The paper uses the loss function
to measure. The first is multi-class cross-entropy loss. The
second half is MMD. The formula of loss is as follows (4)
and (5).

loss � − ∑
outputsize

i�1
yi. log pi + λMMD2(Ds,Dt), (4)

MMD2(X,Y) �
����������
∑
n1

i�1
φ(xi) −∑

n2

j�1
φ(yi)

����������

2

H

. (5)

Model Evaluation
Evaluation for classification issues is to explore model’s accuracy.
To quantify model’s performance, the precision rate (P), recall
rate (R), comprehensive evaluation index (F), and weighted
average (weighted avg) are adopted. P and R is single induce.
F takes both P and R into consideration. These evaluation metrics
are described as follows:

P � TP
TP + FP

, (6)

R � TP
TP + FN

, (7)

TABLE 7 | DCNNL deep neural network topology map.

Layers Parameters Activation Output size

Input — — (None, 2048,1)
Conv1D filters � 16, kernel size � 64, strides � 16 Relu (None,128,16)
Batch Normalization — — (None,128,16)
MaxPooling1D pool size � 2 Relu (None,64,16)
Conv1D filters � 16, kernel size � 64 Relu (None,64,32)
Batch Normalization — — (None,64,32)
MaxPooling1D pool size � 2 Relu (None,32,32)
Conv1D filters � 16, kernel size � 64 Relu (None,32,32)
Batch Normalization — — (None,32,32)
MaxPooling1D pool size � 2 Relu (None,16,32)
LSTM recurrent activation � “hard sigmoid” Tanh (None,16,32)
Flatten — — (None,512)
Dropout 0.2 — (None,512)
Dense — Relu (None,32)
Dense regularizer � l2(1e-4) Softmax (None,10)

TABLE 8 | 15 average training results of different methods.

Method name Training accuracy Validation accuracy Testing accuracy Training time (s)

(A) Average training results of different models for 15 times
DNN-TL 0.9998 ± 0.32 0.9998 ± 0.33 0.9870 ± 0.35 18
CNN 0.9877 ± 0.43 0.9305 ± 0.52 0.9221 ± 0.58 20
LSTM 0.9672 ± 0.51 0.8980 ± 0.62 0.8970 ± 0.62 30
DBN 0.7019 ± 3.52 0.6310 ± 3.52 0.6400 ± 3.54 52
AE 0.6402 ± 3.52 0.5623 ± 3.87 0.52453.72 25
KNN 0.6524 ± 1.22 0.5061 ± 1.29 0.5060 ± 1.32 227
SVM 0.9794 ± 3.82 0.6505 ± 3.38 0.661 ± 3.38 21

(B) Average training results of different models with transfer for 15 times
DNN-TL 0.9998 ± 0.24 0.9998 ± 023 0.9870 ± 0.24 15
CNN with transfer 0.9878 ± 0.31 0.9401 ± 0.42 0.9312 ± 0.48 19
LSTM with transfer 0.9678 ± 0.52 0.8980 ± 0.64 0.8970 ± 0.65 25
DBN with transfer 0.7501 ± 3.42 0.6401 ± 3.63 0.5800 ± 3.24 41
AE with transfer 0.9876 ± 0.52 0.9340 ± 0.87 0.9164 ± 0.72 22
KNN with transfer 0.6643 ± 3.24 0.2040 ± 3.29 0.2080 ± 3.23 94
SVM with transfer 0.9416 ± 0.10 0.6585 ± 3.48 0.531 ± 3.45 17

(C) Average training results of different methods for 15 times
DNN-TL 0.99977 ± 0.32 0.9998 ± 0.33 0.987 ± 0.35 18
VGG16 0.9571 ± 3.62 0.9402 ± 3.44 0.935 ± 3.58 25
ResNet50 0.9957 ± 3.52 0.3331 ± 3.87 0.333 ± 3.72 20
InceptionV3 0.6463 ± 3.22 0.100 ± 0.29 0.100 ± 0.32 27
Xception 0.9274 ± 0.82 0.100 ± 0.38 0.100 ± 0.37 45

(D) Average training results of different transfer methods for 15 times
DNN-TL 0.9997 ± 0.34 0.9998 ± 0.33 0.9870 ± 0.35 18
FTL 0.9994 ± 0.22 0.9307 ± 0.29 0.9342 ± 0.32 18
MTL 0.9994 ± 0.46 0.7595 ± 0.38 0.7530 ± 0.45 18

Bold values indicate the method corresponding to the best result.Remarks: The format of the result is the mean value (accuracy rate ± standard deviation).
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F � 2 pP pR
P + R

, (8)

weighted avg � TP p (supportT/support all) + FP p (supportF/support all)
2

,

(9)

where TP is true positive, FP is false positive, FN is false negative,
SupportT is the support degree to reflect the actual number of
positive categories in the data, and SupportF is another support
degree to reflect the actual number of negative categories in
the data.

EXPERIMENTS AND RESULTS

Experimental Platform Construction and
Data Preparation
To evaluate the effectiveness of theDNN-TLmethod in the diagnosis
of new energy vehicles faults, the data set of Case Western Reserve
University (CWRU) and the rolling bearing data set of the laboratory
are utilized. Since rolling bearings are key components of new energy
vehicles, an experimental platform shown in Figure 7A is used to
collect vibration signals of rolling bearings. The platform is powered
by a SEW DRE100M4/BE5/HF/V/FI motor. The specifications of
the motor are as follows: the output power is 2.2 kW, the rated speed
is 1,425 RPM, and the rated torque is 4 Nm. The rolling bearing is a
6,209 deep groove ball bearing. Its inner diameter is 45mm, outer
diameter is 85 mm, and width is 19mm.

The platform has different faults to verify the correctness of the
prediction classification of the transfer model. They are the outer ring,
inner ring, rolling, and gear of the bearing. To collect different fault
signals, there are vibration acceleration sensors on the north of the end
cover, the south of the end cover, the box, and the base. The locations of
fault point sensors are shown in Figures 7B–E. Vibration signals of the
rolling bearings were collected by four vibration sensors deployed
on the platform at a sampling frequency of 10.24 kHz for each
fault. The data sets include 10 faults in Table 4. The faults are
normal (N), bearing outer ring fault (OF), bearing inner ring
fault (IF), bearing rolling fault (BRF), gear pitting fault (GPF),
gear broken tooth fault (GBTF), bearing outer ring and gear
pitting fault (OGPF), bearing inner ring and gear pitting fault
(IGPF), bearing outer ring and gear broken tooth fault
(OGBTF), and bearing inner ring and gear broken tooth
fault (IGBTF). The motor speed and load of different faults
are shown in Table 4. There are 30 samples. Each sample is
transformed into 1,000 samples using the transnational overlap
sampling method. Each contains 1,024 sampling points. The
training data set, the verification data set, and the test data set
are divided into 700, 200, and 100, respectively. Figure 7G
shows a typical part of the original data.

Experimental Results
To verify the versatility of the proposed pre-training model and
the possibility of the transfer learning method, this study
compares various methods.

FIGURE 8 | Accuracy rate of different methods in 15 experiments.
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FIGURE 9 | P, R, and F of different methods. (A) P; (B) R; and (C) F.
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The Comparison of the Results of Different Models
Without Transfer
The study sets up seven models. They are DNN-TL, CNN, LSTM,
DBN, AE, KNN, and SVM. The parameters of the model are
shown in Table 5. The size of each model input is self-defined
dimensions according to requirements. Training iteration is all
set to 10,000. AE encoding layer is as 2048-128-64-10; decoding is

the opposite of encoding. The weights of all points in each field of
KNN are equal. The penalty parameter in SVM is C. It is 1.0 to get
accuracy and generalization. Kernel is Gaussian kernel. The losses
in CNN and LSTM are cross-entropy. This study improves the
loss of DNN-TL, see Eq. 3. The data are collected by the test
platform. The coefficients (λ) of the loss in DNN-TL are
calculated as 0.5123 by the training results of CNN and LSTM.

FIGURE 10 | Accuracy of different transfer models.

TABLE 9 | The weighted avg values of P, R, and F of different methods.

Method name weighted avg (precision) weighted avg (recall) weighted avg (F)

(A) The weighted avg values of P, R, and F of different models
DNN-TL 0.99 0.99 0.99
CNN 0.96 0.95 0.96
LSTM 0.93 0.92 0.93
DBN 0.71 0.74 0.73
AE 0.62 0.61 0.60
KNN 0.63 0.58 0.55
SVM 0.59 0.66 0.60

(B) The weighted avg values of P, R, and F for different models with transfer
DNN-TL 0.99 0.99 0.99
CNN with transfer 0.96 0.95 0.96
LSTM with transfer 0.93 0.92 0.93
DBN with transfer 0.61 0.64 0.63
AE with transfer 0.88 0.91 0.90
KNN with transfer 0.15 0.20 0.09
SVM with transfer 0.53 0.43 0.43

(C) The weighted avg values of P, R, and F for different transfer models
DNN-TL 0.985 0.992 0.99
VGG16 with transfer 0.904 0.950 0.93
ResNet50 with transfer 0.603 0.598 0.602
InceptionV3with transfer 0.702 0.478 0.573
Xception with transfer 0.666 0.314 0.43

(D) The weighted avg values of P, R, and F for different transfer methods
DNN-TL 0.985 0.992 0.988
MTL with transfer 0.76 0.75 0.75
FTL with transfer 0.96 0.95 0.95

Bold values indicate the method corresponding to the best result.
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FIGURE 11 | P, R, and F of different transfer models. (A) P; (B) R; and (C) F.
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The hyperparameters of DCNNL are trained by the step heapsort
algorithm. Specifically, the data sets of CWRU are as the training
data of the domain. Part of the training results are shown in Table 6,
and the number of iterations is 11. The training time is at least 13 s,
followed by 14 s, and the most is 27 s. The highest accuracy of the
training set is 1, the highest accuracy of the validation set is 0.9925,
and the lowest loss rates of the training set and validation set are
0.0026428 and 0.05091, respectively. For the shortest time-
consuming 13 s, the accuracy rates of the training set and
validation set of 3-Conv-32-filters-LSTM-0-dense are 1 and 0.987,
and the loss rates are 0.009069 and 0.07128. In the highest accuracy
rate of 1, 3-Conv-32-filters-LSTM-1-dense takes the smallest time to
be 14 s and the accuracy rate of the validation set is 0.989. The loss
rates of the training and validation sets are 0.0073519 and 0.06609,
respectively. Considering comprehensively, the accuracy of the 3-
Conv-32-filters-LSTM-1-dense training result is the highest with

100%, the loss rate is 0.007352, the lowest is 0.002643, and the time is
shorter than 14 s, second only to the lowest 13 s. Considering the
highest accuracy rate, 3-Conv-32-filters-LSTM-1-dense is as the
transfer model of DNN-TL. So the structure is shown in Table 7.

The experimental results are as follows. First, the average
accuracy and time-consuming of the training set, validation set,
and test set of the sevenmodels are shown inTable 8A. These results
are an average accuracy of 15 times. The results show that accuracy
rates of DNN-TL in the training set, validation set, and the test set are
0.99977, 0.9998, and 0.987, respectively. The accuracy rates in the
other six models without transfer are 0.9877, 0.8005, and 0.802. The
standard deviations of DNN-TL are 0.32, 0.33, and 0.35, and the loss
rates are 0.006469, 0.00067, and 1.6763. The minimum deviations of
other models without transfer are 0.43, 0.52, and 0.68, and the loss
rates are 0.0.0475, 0.1.6824, and 1.6863. The training time of DNN-
TL is 18 s, while the lowest CNN of the other six models without

FIGURE 12 | Accuracy and loss rate in the pre-trained model training set based on different models.
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FIGURE 14 | Accuracy and loss rate of training and validation sets based on DNN-TL pre-training.

FIGURE 13 | Accuracy and loss rate in the pre-trained model validation set on different models.
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FIGURE 15 | P, R, and F of different methods with transfer. (A) P; (B) R; and (C) F.
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FIGURE 16 | P, R, and F of the test set of different transfer methods. (A) P; (B) R; and (C) F.
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transfer takes 20 s. So DNN-TL takes the shortest time, has the
highest accuracy rate, and rather small deviation. This result shows
the proposed method has a higher accuracy and robustness than
other comparable methods in fault diagnosis. Since the DNN-TL
model is trainedwith data fromCWRU, it proves that thismodel has
a strong ability to learn and has a good generalization.

Figure 8 shows the specific test accuracy of different methods
in 15 experiments. In Figure 8, it shows that the accuracy of the
DNN-TL model is the highest, which is close to about 99%, and
the results are steady, while the results of the other six methods
are low and unstable, and the robustness is not good. This result
further shows the DNN-TL method is more accurate and more
stable than the other six methods.

To further verify the proposed DNN-TL method, more specific
experiments were tested. This study gets the P, R, F, and weighted
avg of differentmethods. Figure 9A shows the accuracy of DNN-TL
and the other six methods in the test set. The accuracy of DNN-TL
is higher than that of other methods, especially in N, IF, OF, and
GBTF. The accuracy of other methods is less than 60%. Among
them, the diagnosis rate of KNN inmost faults is low, not exceeding
40%, and the DNN-TL method reaches more than 95% and has a
stable accuracy rate for all faults.

Figure 9B shows the recall rate of DNN-TL and six other
methods on the test set. The recall rate of DNN-TL is higher than
that of other methods, especially in N, IF, OF, BRF, OGPF, and
IBGPF. And, the recall rate of other methods is less than 85%. The
DNN-TL method reaches more than 95%.

Although the results of precision and recall are well displayed
in the DNN-TL, they cannot evaluate a method comprehensively
and objectively. Figure 9C shows the F of different methods. The
value of F of the DNN-TLmethod is above 97% in different faults,
especially in N, OF, IF, BRF, GBTF, and OGPF. The most in the
other methods are less than 75%.

Table 9A shows the weighted avg of different P, R, and F,
which can be clearly seen from the table. The weighted avg of
DNN-TL is the highest, so the accuracy and stability of DNN-TL
in the overall fault diagnosis are the best.

Based on results, it can be implied the DNN-TL method can get
higher accuracy, precision, recall, comprehensive evaluation
indicators, and weighted avg. The results are more accurate, stable,
andhave generalization abilities. Besides, because it is transfer learning,
the fine-tuning of the parameters simplifies the training time.

TheComparison of Results of Different TransferModels
To further show the versatility, superiority, and feasibility of the model
DNN-TL, the previous training methods of CNN, LSTM, DBN, AE,
KNN, and SVM are kept as models, and the same transfer method is
used for transfer. The experiment is performed on the same data set.

Table 8B shows the accuracy and time consumption of the
training set, validation set, and test set 15 times. From
Table 8A,B, it can be seen that the accuracy of the result after
the transfer is better than that of the model without transfer; some
have been reduced, and the overall time consumption has been
shortened. The accuracy rates of the CNN, LSTM, DBN, AE, KNN,
and SVM test sets without transfer is 0.9221, 0.8970, 0.6400, 0.5245,
0.5060, and 0.661, respectively; time consumption is 20 s, 30, 52, 25,
227, and 21 s. After transfer, the matching accuracy rate is 0.9312,

0.8970, 0.5800, 0.9164, 0.2080, and 0.531, and the time
consumption is 19, 25, 41, 22, 94, and 17 s. It illustrates the
versatility and feasibility of the DCCNLTL proposed in this study.

Figure 10, Figures 11A–C, and Table 9B respectively show the
specific test accuracy, P, R, F, and weighted avg results of different
transfer methods in 15 tests. On the test set, the effect of the DNN-
TL method is overall higher than the results of other methods.

To further clarify what conditions can transfer learning and
what conditions will have a negative transfer, this study uses
mature models in other fields to experiment on the same data set.

The popular deep models are transferred, such as VGG16,
ResNet50, InceptionV3, and Xception. The original data of these
models are from Image net, which is not in the same field on the
data set of this study. This directly fine-tunes and transfers this
model to our experimental platform, using the alike measurement
of DNN-TL, see Eq. 4. The training results are as follows.

Figures 12–14 and Table 8C show the accuracy and loss rate
and time consumption of the training set, validation set, and test set 15
times. It shows that in the 6th training, DNN-TL can quickly achieve a
high-accuracy rate of about 99%, and a low loss rate, which is close to
about 0.007.The accuracy of theVGG16methodon the verification set in
the 10th is relatively high at about 95%. The accuracy of othermethods is
very low, and the loss rate is very high. It shows theDNN-TLmethod can
get better results in a short time and is convenient for rapid transfer. The
time is about 18 s. The results are stable, and the accuracy is higher.

To further verify the effect of the DNN-TLmethod, quantitative
results of different methods are also explored and illustrated. In
Figure 15A, the accuracy rate of DNN-TL reached above 95%
except for the OF. The accuracy rate of N, IF, GBTF, and IGPF
reached 100%. The transfer results of ResNet50, InceptionV3, and
Xception were unstable, good, or bad. The accuracy rate of VGG16
with the transfer is about 80%, which is lower than DNN-TL, so the
accuracy rate of DNN-TL is the highest and most stable.

Similarly, in Figure 15B, the recall rate of DNN-TL is less than
90% except for OF, BRF, and OGPF. The other recall rates have
reached more than 90%, while the recall rate of other methods is
low and unstable.

According to Figure 15C, the F value of DNN-TL also
presents the highest value.

Table 9C shows the weighted avg of P, R, and F. It can be
clearly seen that the weighted avg in DNN-TL reaches more than
95%. VGG16 is higher than 90%, and other transfer models are less
than 60%. Table 9A,C show in models, the highest weighted avg
without transfer is 0.96 (CNN) and the lowest is 0.58 (KNN). In
image-related transfer models, the weighted avg is the highest 0.93
(VGG16), and theminimum is 0.314 (Xception). The weighted avg
in Table 9 is stable. In Table 9C, the weighted avg of P, R, and F is
different. So, the accuracy rate in fault diagnosis is unstable.

The Comparison of the Results of Different Transfer
Methods
Next, this study will further verify the accuracy and stability of the
proposed DNN-TL in fault diagnosis. Because FTL and MTL are
widely used, the DNN-TL uses MTL- and FTL-based transfer
methods. This study compares DNN-TL and separate MTL- and
FTL-based methods. The method based on MTL is to directly load
the pre-trainedmodel to predict the result. The FTL-basedmethod is
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to extract the feature value of the Flatten layer of the pre-trained
model as the input of the model, and then, add a fully connected
layer for classification training.

Table 8D shows the accuracy and loss rate and time
consumption on the training set, validation set, and test set 15
times. The time consumption of the three transfer methods is 18 s.
The DNN-TL has the highest accuracy rate of 0.9997 and the lowest
loss rate of 0.006469. The accuracy rate and loss rate of the other
method verification sets are lower. So, the transfer method of DNN-
TL is superior to the separate transfer methods such as FTL and
MTL. The DNN-TL is convenient for rapid transfer and has stable
results and high accuracy.

In Figure 16A, the accuracy rate in DNN-TL has reached 95%
except for OF faults. The accuracy rates of N, IF, GBTF, and IGPF
have reached 100%. The accuracy rates of FTL and MTL are only
100% in OF. So, overall the accuracy rate of DNN-TL is higher
and more stable.

Similarly, in Figure 16B, the recall rate of DNN-TL is more
than 90% except OF, BRF, and OGPF. The recall rates in GBTF,
OGPF, IGTF, OGBTF, and IGBTF based on MTL are 82, 79, 93,
93, and 93%, respectively. These based on FTL are 83, 79, 93, and
92%. The recall rate of DNN-TL is as high as 95%.

According to Figure 16C, the F value of DNN-TL, except that
OF is lower than FTL and MTL methods, for the F value of other
faults, DNN-TL is the highest.

Table 9D shows the weighted avg. The weighted avg of DNN-
TL has reached more than 98%. FTL is 95%, andMTL is only 75%.

Experiment Analysis
Based upon the comparisons of the model without transfer, the
model with transfer, and the different transfer methods, the
following observations can be summarized: 1) It is obvious that
the DNN-TL model is superior to other models with transfer,
without transfer, and other transfer methods. It explains the
relative versatility of the DNN-TL model. 2) Compared with
models with transfer and without transfer, DNN-TL can get
higher diagnosis results and does not need professional manual
extraction of feature values. It directly uses original signal data,
which reflects the advantages of unsupervised learning of deep
transfer learning. 3) Compared with several other transfer models
in different fields, the accuracy of DNN-TL on the training set and
validation set ismuch higher than that in othermodels, and the loss
rate is low. VGG16, ResNet50, InceptionV3, and Xception perform
well in image and Visio. But these transfer models are poor in
recognizing faults. The adaptive layer and the judgment between
the source domain and the target domain are added before the
classification layer of all transfer models. It can be concluded that the
deep transfer learning cannot give full play to its advantages in
unrelated fields. Even there may be a negative transfer. It also shows
that the similarity domain judgment proposed in this study has a
certain meaning. 4) Different transfer methods show that DNN-TL
is better than the MTL and FTL methods alone.

The above conclusions show that DNN-TL l is in related or
similar fields, and the likeness can be measured by certain rules.
According to the loss rate of Table 8C, if the likeness should be
less than 0.007, the accuracy of the transfer is better. At the same
time, deep neural networks in feature extraction are better, and the

possibility of negative transfer is reduced. The DNN-TL is better
than the transfer method alone. So, the DNN-TL with combined
adaptive deep transfer learning proposed in this study has certain
general and advanced research significance in fault diagnosis.

CONCLUSION

In this study, to achieve an effective rolling bearing fault diagnosis of
new energy vehicles for low carbon economy, a novel DNN-TL
method is developed. Specifically, through extracting features by
CNNs and LSTM, more effective features can be obtained in
supporting new energy vehicles’ fault diagnostics. Besides,
through assigning optimized MMD costs and DDA to different
faults, the proposed DNN-TL could classify the fault conditions
more accurately. According to the case studies of using different
methods to validate the accuracy and robustness of the DNN-TL
method, some conclusions can be observed as follows: 1) The pre-
training model of DCNNL proposed can be used as a better model
for feature extraction. 2)MTL- and FTL-based transfermethods that
are used in classification issues (such as identifying fault categories)
are also applicable. The combined transfer method is better than the
individual transfer method. 3) The likeness judgment between the
source domain and the target domain is a certain effect. 4) The step
heapsort method can quickly and accurately determine the
hyperparameters of the model and improve the model accuracy.
5) Areas with low likeness may not be suitable for deep transfer
learning. As the remaining life prediction of new energy vehicles has
not been considered in this study, our future work would focus on
designing the automatic calculation of residual service life prediction
in the later stage of bearing fault diagnosis research.

DATA AVAILABILITY STATEMENT

The raw data supporting the conclusion of this article will be
made available by the authors, without undue reservation.

AUTHOR CONTRIBUTIONS

YW is responsible for providing experimental design, data analysis,
and code implementation. WL is responsible for providing ideas.

FUNDING

This research was supported by the National Natural Science
Foundation of China (Project No. 51975444) and an advanced
manufacturing lab establishment funding supported by the
Wuhan University of Technology.

ACKNOWLEDGMENTS

The authors would also acknowledge the review comments from
mentors WL and colleagues in the universities of the authors.

Frontiers in Energy Research | www.frontiersin.org December 2021 | Volume 9 | Article 79652820

Wang and Li Transfer-Based Deep Neural Network

https://www.frontiersin.org/journals/energy-research
www.frontiersin.org
https://www.frontiersin.org/journals/energy-research#articles


REFERENCES

Bousmalis, K., Trigeorgis, G., Silberman, N., et al. (2016). Domain Separation
Networks[J]. Adv. Neural Inf. Process. Syst. 29, 343–351.

Chen, Q., and Pan, G. (2021). A Structure-Self-OrganizingDBN for Image Recognition.
Neural Comput. Applic 33 (3), 877–886. doi:10.1007/s00521-020-05262-2

Chen, Z., Deng, S., Chen, X., Li, C., Sanchez, R.-V., and Qin, H. (2017). Deep
Neural Networks-Based Rolling Bearing Fault Diagnosis. Microelectronics
Reliability 75, 327–333. doi:10.1016/j.microrel.2017.03.006

Chi, Y., Yang, S., and Jiao, W. (2020). Multi-label Classification Method of Rolling
Bearing Fault Based on LSTM-RNN[J]. J. Vibration, Measurement& Diagn. 40
(3), 563–629.

Chine, W., Mellit, A., Lughi, V., Malek, A., Sulligoi, G., and Massi Pavan, A. (2016).
A Novel Fault Diagnosis Technique for Photovoltaic Systems Based on
Artificial Neural Networks. Renew. Energ. 90, 501–512. doi:10.1016/
j.renene.2016.01.036

Davis, J., and Domingos, P. (2009). “Deep Transfer via Second-Order Markov
Logic[C],” in Proceedings of the 26th annual international conference on
machine learning, 217–224.

Feng, H., Li, S., and Li, H. (2020). Identification of Key Lines forMulti-Photovoltaic
Power System Based on Improved PageRank Algorithm[J]. Front. Energ. Res. 8,
341. doi:10.3389/fenrg.2020.601989

Ganin, Y., Ustinova, E., Ajakan, H., et al. (2016). Domain-adversarial Training of
Neural Networks[J]. J. machine Learn. Res. 17 (1), 2096–2030.

Guo, X., Chen, L., and Shen, C. (2016). Hierarchical Adaptive Deep Convolution
Neural Network and its Application to Bearing Fault Diagnosis. Measurement
93, 490–502. doi:10.1016/j.measurement.2016.07.054

Hoang, D.-T., and Kang, H.-J. (2019). A Survey on Deep Learning Based Bearing
Fault Diagnosis. Neurocomputing 335, 327–335. doi:10.1016/
j.neucom.2018.06.078

Hongcan, L. I. U., and Wang, X. (2021). Recent advance in Screening Lithium
Solid-State Electrolytes through Machine Learning[J]. Front. Energ. Res. 9, 9.

Janssens, O., Slavkovikj, V., Vervisch, B., Stockman, K., Loccufier, M., Verstockt, S.,
et al. (2016). Convolutional Neural Network Based Fault Detection for Rotating
Machinery. J. Sound Vibration 377, 331–345. doi:10.1016/j.jsv.2016.05.027

Jia, F., Lei, Y., Lin, J., Zhou, X., and Lu, N. (2016). Deep Neural Networks: A
Promising Tool for Fault Characteristic Mining and Intelligent Diagnosis of
Rotating Machinery with Massive Data. Mech. Syst. Signal Process. 72-73,
303–315. doi:10.1016/j.ymssp.2015.10.025

Jia, F., Lei, Y., Lin, J., Zhou, X., and Lu, N. (2016). Deep Neural Networks: A
Promising Tool for Fault Characteristic Mining and Intelligent Diagnosis of
Rotating Machinery with Massive Data. Mech. Syst. Signal Process. 72-73,
303–315. doi:10.1016/j.ymssp.2015.10.025

Jing, Z., Li, W., and Ogunbona, P. (2017). “Joint Geometrical and Statistical
Alignment for Visual Domain Adaptation[C],” in CVPR.

Landi, F., Baraldi, L., Cornia, M., et al. (2021). Working Memory Connections for
LSTM[J]. Neural Networks.

Lecun, Y., Bengio, Y., and Hinton, G. (2015). Deep Learning. Nature 521 (7553),
436–444. doi:10.1038/nature14539

Lei, Y., Yang, B., Jiang, X., Jia, F., Li, N., and Nandi, A. K. (2020). Applications of
Machine Learning to Machine Fault Diagnosis: A Review and Roadmap.Mech.
Syst. Signal Process. 138, 106587. doi:10.1016/j.ymssp.2019.106587

Li, G., Wang, W., Zhang, W., Wang, Z., Tu, H., and You, W. (2021). Grid Search
Based Multi-Population Particle Swarm Optimization Algorithm for
Multimodal Multi-Objective Optimization. Swarm Evol. Comput. 62,
100843. doi:10.1016/j.swevo.2021.100843

Li, J., Li, Y., and Yu, T. (2021). Temperature Control of Proton Exchange
Membrane Fuel Cell Based on Machine Learning[J]. Front. Energ. Res., 582.

Li, R., Li, W., Zhang, H., Zhou, Y., and Tian, W. (2021). On-Line Estimation
Method of Lithium-Ion Battery Health Status Based on PSO-SVM[J]. Front.
Energ. Res., 401.

Li, S., Siu, Y. W., and Zhao, G. (2021). Driving Factors of CO2 Emissions: Further
Study Based on Machine Learning[J]. Front. Environ. Sci., 323.

Liu, K., Hu, X., Meng, J., et al. (2021). RUBoost-Based Ensemble Machine Learning
for Electrode Quality Classification in Li-Ion Battery Manufacturing[J]. IEEE/
ASME Trans. Mechatronics.

Liu, K., Hu, X., Zhou, H., et al. (2021). Feature Analyses and Modelling of Lithium-
Ion Batteries Manufacturing Based on Random forest Classification[J]. IEEE/
ASME Trans. Mechatronics.

Liu, K., Shang, Y., Ouyang, Q., and Widanage, W. D. (2020). A Data-Driven
Approach with Uncertainty Quantification for Predicting Future Capacities and
Remaining Useful Life of Lithium-Ion Battery[J]. IEEE Trans. Ind. Electron. 68
(4), 3170–3180. doi:10.1109/TIE.2020.2973876

Long, M., Wang, J., Ding, G., Sun, J., and Yu, P. S. (2014). “Transfer Joint Matching for
UnsupervisedDomainAdaptation,” inCVPR, 1410–1417. doi:10.1109/cvpr.2014.183

Lu, J., Behbood, V., Hao, P., Zuo, H., Xue, S., and Zhang, G. (2015). Transfer
Learning Using Computational Intelligence: A Survey. Knowledge-Based Syst.
80, 14–23. doi:10.1016/j.knosys.2015.01.010

Patel, V. M., Gopalan, R., Li, R., and Chellappa, R. (2015). Visual Domain
Adaptation: A Survey of Recent Advances. IEEE Signal. Process. Mag. 32
(3), 53–69. doi:10.1109/msp.2014.2347059

Ren, H., Hou, Z. J., Vyakaranam, B., Wang, H., and Etingov, P. (2020). Power
System Event Classification and Localization Using a Convolutional Neural
Network[J]. Front. Energ. Res. 8, 327. doi:10.3389/fenrg.2020.607826

Rui, Z., Yan, R., Chen, Z., Maob, K., Wangc, P., and Gaoc, R. X. (2019). Deep
Learning and its Applications to Machine Health Monitoring[J]. Mech. Syst.
Signal Process. 115, 213–237.

Schmidhuber, J. (2015). Deep Learning in Neural Networks: An Overview. Neural
networks 61, 85–117. doi:10.1016/j.neunet.2014.09.003

Shao, H., Jiang, H., Wang, F., and Zhao, H. (2017). An Enhancement Deep Feature
Fusion Method for Rotating Machinery Fault Diagnosis. Knowledge-Based Syst.
119, 200–220. doi:10.1016/j.knosys.2016.12.012

Shao, H., Jiang, H., Zhang, X., and Niu, M. (2015). Rolling Bearing Fault Diagnosis
Using an Optimization Deep Belief Network. Meas. Sci. Technol. 26 (11),
115002. doi:10.1088/0957-0233/26/11/115002

Shao, H., Jiang, H., Zhao, H., and Wang, F. (2017). A Novel Deep Autoencoder
Feature Learning Method for Rotating Machinery Fault Diagnosis. Mech. Syst.
Signal Process. 95, 187–204. doi:10.1016/j.ymssp.2017.03.034

Shujaat, M., Wahab, A., Tayara, H., and Chong, K. T. (2020). pcPromoter-CNN: A
CNN-Based Prediction and Classification of Promoters. Genes 11 (12), 1529.
doi:10.3390/genes11121529

Syaifullah, A. H., Shiino, A., Kitahara, H., et al. (2021). Machine Learning for
Diagnosis of AD and Prediction of MCI Progression from Brain MRI Using
Brain Anatomical Analysis Using Diffeomorphic Deformation[J]. Front.
Neurol. 11, 1894. doi:10.3389/fneur.2020.576029

Szegedy, C., Ioffe, S., Vanhoucke, V., et al. (2017). “Inception-v4, Inception-Resnet
and the Impact of Residual Connections on Learning[C],” in Thirty-first AAAI
conference on artificial intelligence.

Szegedy, C., Ioffe, S., Vanhoucke, V., et al. (2017). “Inception-v4, Inception-Resnet
and the Impact of Residual Connections on Learning[C],” in Thirty-first AAAI
conference on artificial intelligence.

Testoni, R., Levizzari, R., and De Salve, M. (2017). Coupling of Unsaturated Zone
and Saturated Zone in Radionuclide Transport Simulations. Prog. Nucl. Energ.
95, 84–95. doi:10.1016/j.pnucene.2016.11.012

Wang, C., Han, F., Zhang, Y., and Lu, J. (2020). An SAE-Based Resampling SVM
Ensemble Learning Paradigm for Pipeline Leakage Detection. Neurocomputing
403, 237–246. doi:10.1016/j.neucom.2020.04.105

Wang, C., Wang, D.-Z., and Lin, J.-L. (2010). ADAM: An Adaptive Multimedia
Content Description Mechanism and its Application in Web-Based
Learning. Expert Syst. Appl. 37 (12), 8639–8649. doi:10.1016/
j.eswa.2010.06.089

Wang, H., Xu, J., Yan, R., Sun, C., and Chen, X. (2020). Intelligent Bearing Fault
Diagnosis UsingMulti-Head Attention-Based CNN. Proced. Manufacturing 49,
112–118. doi:10.1016/j.promfg.2020.07.005

Weiss, K., Khoshgoftaar, T. M., and Wang, D. D. (2016). A Survey of Transfer
Learning[J]. J. Big Data 3 (1), 1–40. doi:10.1186/s40537-016-0043-6

Wong, S. C., Gatt, A., Stamatescu, V., et al. (2016). “Understanding Data
Augmentation for Classification: when to Warp? [C],” in 2016 international
conference on digital image computing: techniques and applications (DICTA)
(Gold Coast, QLD, Australia: IEEE), 1–6.

Zhang, W., Li, C., Peng, G., Chen, Y., and Zhang, Z. (2018). A Deep
Convolutional Neural Network with New Training Methods for
Bearing Fault Diagnosis under Noisy Environment and Different

Frontiers in Energy Research | www.frontiersin.org December 2021 | Volume 9 | Article 79652821

Wang and Li Transfer-Based Deep Neural Network

https://doi.org/10.1007/s00521-020-05262-2
https://doi.org/10.1016/j.microrel.2017.03.006
https://doi.org/10.1016/j.renene.2016.01.036
https://doi.org/10.1016/j.renene.2016.01.036
https://doi.org/10.3389/fenrg.2020.601989
https://doi.org/10.1016/j.measurement.2016.07.054
https://doi.org/10.1016/j.neucom.2018.06.078
https://doi.org/10.1016/j.neucom.2018.06.078
https://doi.org/10.1016/j.jsv.2016.05.027
https://doi.org/10.1016/j.ymssp.2015.10.025
https://doi.org/10.1016/j.ymssp.2015.10.025
https://doi.org/10.1038/nature14539
https://doi.org/10.1016/j.ymssp.2019.106587
https://doi.org/10.1016/j.swevo.2021.100843
https://doi.org/10.1109/TIE.2020.2973876
https://doi.org/10.1109/cvpr.2014.183
https://doi.org/10.1016/j.knosys.2015.01.010
https://doi.org/10.1109/msp.2014.2347059
https://doi.org/10.3389/fenrg.2020.607826
https://doi.org/10.1016/j.neunet.2014.09.003
https://doi.org/10.1016/j.knosys.2016.12.012
https://doi.org/10.1088/0957-0233/26/11/115002
https://doi.org/10.1016/j.ymssp.2017.03.034
https://doi.org/10.3390/genes11121529
https://doi.org/10.3389/fneur.2020.576029
https://doi.org/10.1016/j.pnucene.2016.11.012
https://doi.org/10.1016/j.neucom.2020.04.105
https://doi.org/10.1016/j.eswa.2010.06.089
https://doi.org/10.1016/j.eswa.2010.06.089
https://doi.org/10.1016/j.promfg.2020.07.005
https://doi.org/10.1186/s40537-016-0043-6
https://www.frontiersin.org/journals/energy-research
www.frontiersin.org
https://www.frontiersin.org/journals/energy-research#articles


Working Load. Mech. Syst. Signal Process. 100, 439–453. doi:10.1016/
j.ymssp.2017.06.022

Zhao, Z., Chen, Y., Liu, J., et al. (2011). “Cross-PeopleMobile-Phone Based Activity
Diagnosis[C],” in International Joint Conference on Artificial Intelligence (Palo
Alto, California, U.S.: AAAI Press).

Zonneveld, I. S. (1994). “Basic Principles of Classification [M],” in Ecosystem
Classification for Environmental Management (Dordrecht: Springer), 23–47.
doi:10.1007/978-94-017-1384-9_2

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated organizations, or those of
the publisher, the editors, and the reviewers. Any product that may be evaluated in
this article, or claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Copyright © 2021 Wang and Li. This is an open-access article distributed under the
terms of the Creative Commons Attribution License (CC BY). The use, distribution
or reproduction in other forums is permitted, provided the original author(s) and the
copyright owner(s) are credited and that the original publication in this journal is
cited, in accordance with accepted academic practice. No use, distribution or
reproduction is permitted which does not comply with these terms.

Frontiers in Energy Research | www.frontiersin.org December 2021 | Volume 9 | Article 79652822

Wang and Li Transfer-Based Deep Neural Network

https://doi.org/10.1016/j.ymssp.2017.06.022
https://doi.org/10.1016/j.ymssp.2017.06.022
https://doi.org/10.1007/978-94-017-1384-9_2
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/energy-research
www.frontiersin.org
https://www.frontiersin.org/journals/energy-research#articles

	Transfer-Based Deep Neural Network for Fault Diagnosis of New Energy Vehicles
	Introduction
	DNN-TL Method
	Deep Neural Network Establishment
	Raw Data Preprocess
	Design Hyperparameters of DNN

	Model Training and Generation
	Transfer of the Pre-Trained Model
	Model Evaluation

	Experiments and Results
	Experimental Platform Construction and Data Preparation
	Experimental Results
	The Comparison of the Results of Different Models Without Transfer
	The Comparison of Results of Different Transfer Models
	The Comparison of the Results of Different Transfer Methods

	Experiment Analysis

	Conclusion
	Data Availability Statement
	Author Contributions
	Funding
	Acknowledgments
	References


