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Rechargeable multivalent ion batteries are promising tools to complement current lithium-
ion batteries for a future of diverse energy storage needs. Divalent Mg and Ca are attractive
candidates for their high crustal abundance, high volumetric anode capacity, and
infrequent dendrite formation during electrochemical cycling. Electrolyte research is
central to these efforts and continually improves coulombic efficiencies towards the
ideal 100%. This mini-review discusses recent work towards fundamental
understandings that push these chemistries towards practical use. Piecing together
compatible cathode and electrolytes for a complete practical multivalent ion battery
lacks a cohesive method for further development and refinement. Understanding liquid
solvation, utilizing rational design, and probing interfacial interactions are focal points that
govern electrolyte performance. The combination of these areas will be critical for
meaningful development.
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INTRODUCTION: BEYOND LITHIUM

As the anthropogenic effects of growing populations and global warming increasingly loom before
us, the need for zero-emissions energy storage and delivery is the sine qua non of our technologically
crowded lives. Of the energy produced in 2019, renewable sources account for only 11 percent, while
natural gas (32%) and petroleum (37%) makeup the majority. Among residential, commercial, and
industrial use, transportation leads the group with 28% of the total energy consumed and was almost
exclusively driven by petroleum (Lawrence Livermore National Laboratory, 2020). Energy transfer
efficiencies of up to 80% of battery power can be converted to movement at the wheels as opposed to
20–30% in internal combustion engines for cars. (Thomas, 2014; Carlson et al., 2016). Technology
for renewable energy sources continues to lower in cost and has become a real competitor to
conventional fossil-fueled energy production. A significant issue facing renewable energy
technologies is the asynchronous moments of peak production and consumption. As a result,
the introduction of large-scale energy storage, such as lithium-ion battery grid storage, has taken
place in areas like Hornsdale, South Australia, and continued research efforts prioritize energy-dense
storage technologies (Denholm et al., 2013).

Obstacles intrinsic to commercial LIB technology include the inability to use a metallic anode as
the propensity of lithium to form dendrites can contribute to battery short-circuits or separator
material rupture (Jäckle and Groß, 2014). Short circuits or exposure of internal components to the
atmosphere can cause gaseous buildup or uncontrollable fires. With LIB technology projected to
plateau and the high cost of scaling up, recent efforts have increased towards multivalent metal
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battery technology (Thackeray et al., 2012; Arroyo-De Dompablo
et al., 2019; Ma et al., 2020; Wu et al., 2021).

Metals that form multivalent ions for use in batteries have
garnered research popularity for their combination of earth-
abundance, multivalent charge, and safety advantages. With
relatively high theoretical volumetric energy densities (Mg:
3,832 mAh/cm3, Ca: 2072 mAh/cm3, as opposed to Li:
2061 mAh/cm3, or graphite: 777 mAh/cm3), low redox
potentials (Mg: −2.36 V, Ca: −2.86 V vs. SHE), and similar
ionic radii provide an attractive alternative to lithium/sodium
intercalation technology (Aurbach et al., 2000; Aurbach et al.,
2003; Fichtner, 2020).

These metals form dendrites less readily and are safer to
handle in moist open air (Jäckle and Groß, 2014; Davidson
et al., 2019; Ponrouch et al., 2019). Additionally, DV ion
technologies use reversible electrodeposition chemistry with
physically dense metallic anodes, unlike the graphite electrode
used in LIBs. A solid metal anode allows for more active
electron carriers to be contained in a smaller package,
making multivalent ion battery technology attractive for
transportation applications (El Kharbachi et al., 2020).
Unfortunately, the current state of DV ion batteries lacks
compatible components for commercial use.

RECENT WORK IN DIVALENT ION
ELECTROLYTES

Electrolytes facilitate movement of ions that shuttle between
electrodes during charge and discharge. LIB electrolyte
technology has not carried over despite generally sharing salt
and solvent components with multivalent systems.
Electrochemical plating, stripping, and intercalation behavior
have proven to behave differently with divalent (DV) ion

electrolytes due to more significant coulombic interactions and
the complexity at interfaces(Tian et al., 2020).

Regarding non-aqueous divalent electrolytes, magnesium and
calcium in particular, this text will serve as a short reminder of
recent work and changes in research progression moving the field
forward. The gap towards practical DV batteries reveals the need
to focus on multidisciplinary research with a more encompassing
approach involving all components of a battery. Research themes
incorporating electrolyte-electrode relationships will be discussed
further, including recent thrusts particularly driven by hubs like
the Joint Center of Energy Storage Research (JCESR, 2021) and
the European Magnesium Interactive Battery Community (E-
magic, 2021).

The bases for electrochemistry later used in multivalent
rechargeable batteries found its roots in the early 20th century
as Mg deposits were observed in the electrolysis of Grignard
solutions (Gaddum and French, 1927). While Mg electrolytes
hold the largest variety, the majority of divalent salts fall within
three major categories (i.e., halide-based anions, N-containing
anions, and weakly coordinating anions), resulting in pros and
cons for each type (Figure 1).

Halide-based Mg-Ion Electrolytes
The bulk of early advancements in magnesium electrolytes
involved halide-based salts, first investigated through Grignard
solutions in the 1990s (Gregory et al., 1990). The pioneering
concept of including a Lewis acid, like AlCl3, promoting MgCl+

formation for deposition, resulted in various analogs touting
reversible plating efficiencies above 90% and approaching
100% (Mizrahi et al., 2008; Pour et al., 2011; Doe et al., 2014;
Liu et al., 2014). The simple acid-base combination propelled a
niche area showcasing MgCl2, the Lewis base, as a key design
element for optimizing halide-based electrolytes (Pan et al., 2015;
Pan et al., 2016a; Pan et al., 2016b; Pan et al., 2017). The most

FIGURE 1 | An overview of four select types of MV electrolytes and the unique and shared pros (in black) and cons (in red) associated with them.

Frontiers in Energy Research | www.frontiersin.org January 2022 | Volume 9 | Article 8023982

Leon et al. Development of Divalent Electrolytes

https://www.frontiersin.org/journals/energy-research
www.frontiersin.org
https://www.frontiersin.org/journals/energy-research#articles


notable example, magnesium aluminum chloride complex
(MACC), displays stability up to 3.1 V vs. Mg. These systems
revealed a cationic dimer structure, [Mg2 (μ-Cl)3 (THF)6]

+, that
acts as the electroactive plating species. This system suffers from
the necessity for electrochemical conditioning of the fresh
electrolyte to provide Mg deposition with optimal
overpotentials and efficiencies (Barile et al., 2014). However,
these halide-based systems have shown compatibility issues
with cathode candidates like transition metal oxides, sulfides,
and borides (Kim et al., 2011; Verrelli et al., 2018; El Kharbachi
et al., 2020; Park et al., 2020). The main drawback for these
Grignard-based and other halide-containing electrolytes is the
poor oxidative stability and corrosivity towards stainless steel
battery parts, making it unrealistic in practical use.

N-Containing Anion Electrolytes
Cheap, simple, and halide-free electrolytes are attractive for
larger-scale applications. As such, imide and amide-based
electrolytes incorporating commercially available
hexamethyldisilazane (HMDS-) or bis(trifluorosulfonimide)
(TFSI-) (and the N-free triflate fragment) have become well-
studied candidates for MV electrolytes. Examples developed so
far perform relatively well with coulombic efficiencies
approaching 100% for Mg and <30% for Ca (with BF3
additive at high temperature) (Forero-Saboya et al., 2021).
Like most candidates mentioned so far, many simple
commercially available salts provide room for coordination
and contact ion pairing (CIP) with multivalent cations. These
systems are penalized either through lost energy during
dissociation and intercalation events or by enhanced
decomposition as CIPs. It is important to note that HMDS
electrolytes cannot operate without MgCl2, and TFSI
electrolytes are often plagued by larger overpotentials. (Han
et al., 2016; Lipson et al., 2016). To combat these
disadvantages, the addition of MgCl2 to relatively weakly
coordinating anion electrolytes tends to improve performance
through formation of complex [MgxCly]

+ species that reduce
cation-anion association (Shterenberg et al., 2015; Gao et al.,
2017; Shterenberg et al., 2017).

Weakly Coordinating Anion Electrolytes
Weakly coordinating anions (WCA) are employed for their
ability to delocalize a negative charge over an entire robust
structure, thus mitigating ion-pairing. The most common
WCA systems utilize carboranes, four-coordinate borates, or
aluminates (Carter et al., 2014; Herb et al., 2016; Zhao-Karger
et al., 2017). To overcome the poor anodic stability of early
Mg(BH4)2-based electrolytes (1.7 V vs. Mg) (Mohtadi et al.,
2012), a modified salt, [Mg2 (μ-Cl)3 (THF)6]
[MgCl(C2B10H11)2] utilizing carbaborates demonstrated
oxidative stability of 3.2 V vs. Mg. The chloride-free
Mg(CB11H11)2 and ArMg(CB11H12), improved oxidative
stability (≥3.8 V vs. Mg) (Carter et al., 2014; Tutusaus et al.,
2015; Jay et al., 2019). Ca(CB11H12)2 was later adapted as one of
few electrolytes to show room temperature reversible deposition
of calcium (Kisu et al., 2021). Unfortunately, these unique
carborane-type electrolytes present practical use issues as they

can be some of the least cost-effective options and their syntheses
cumbersome.

Building on early magnesium borohydride and organoborate
electrolytes, recent examples tend to focus on alkoxyborate and
aluminate species. The formation of E–O bonds (where E � Al:
512 kJ/mol, B: 806 kJ/mol) instead of E-C (Al: 225 kJ/mol, B
448 kJ/mol) is favorable in forming stable anions. The
combination of bond strength and commercially available
starting materials make aluminates and borates synthetically
accessible (Riddlestone et al., 2018). A strong and growing
literature presence of tetracoordinate anions has developed,
known for stability, tunability, and steric bulk (Krossing et al.,
2001; Krossing and Reisinger, 2005). Alkoxyaluminates
constructed with hexafluoroisopropanol (hfip) are stable to 4 V
vs. Mg, and trifluoromethylation of the tertiary C (sp3)-H extends
electrochemical windows by 1 V (Herb et al., 2016; Lau et al.,
2019). The borate analogs have found similar popularity for
relatively wide electrochemical windows and use in calcium
systems, further diversifying the viable electrolyte pool (Li
et al., 2019; Shyamsunder et al., 2019). Alkoxyaluminates and
borates are the most promising electrolytes as they provide
versatility and synthetic tunability with practical examples of
novel cathode compatibility. One caveat of this group of
electrolytes is many examples experience loss of performance
over extended cycling compared to carborane-type salts.

RECENT PROSPECTS AND FUTURE
DIRECTIONS

Progress has continually moved electrolytes towards practicality
with wider electrochemical stability windows and higher
coulombic efficiency. Electrolytes must function properly in a
full cell, meaning cycling efficiencies need to approach 100% in
practice. Early issues facing MV electrolytes (i.e., corrosion and
oxidative stability) have become well studied, but electrolytes that
plate and strip efficiently provide no use if their incompatibilities
with a cathode system are not understood. The success of divalent
batteries depends on a holistic approach to new or improved
intercalation mechanisms, the prospect of an adjustable interface,
and the availability of both efficient electrolytes and high voltage
cathodes. We encourage the reader to explore recent accounts in
these areas (Liang et al., 2020; Ma et al., 2020). With that said,
future viewpoints do look promising considering recent themes
as case studies in the following emerging themes: tools for
optimizing solvation characteristics, rational electrolyte design,
and understanding interfacial properties (Figure 2).

Solvation Environments
Electrolytes must have a high cation concentration to avoid issues
with mass transport and maintain high conductivity. Early work
focused on those electrolytes that displayed reversible plating and
high solubility (Carter et al., 2014; Herb et al., 2016; Muldoon
et al., 2017). While bulk solubility is essential, considering cation
solvation helps understand detailed intermolecular interactions
specific to plating and stripping. It is vital to both avoid CIP
formation and encourage desolvation. Significant strides have
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FIGURE 2 | Possible outcomes from studying a feedback loop of rational design, solvation, and interfacial understanding with case-studies from literature: (A)
computationally informed design of carbaborate electrolytes (Hahn et al., 2018), (B) electrochemical activity as a cause of varied additive binding (Connell et al., 2020), (C)
morphological features of calcium deposition as a cause of plating surface (Ta et al., 2019) Reprinted (adapted) with permission from references (Hahn et al., 2018; Ta
et al., 2019; Connell et al., 2020). Copyright (2021) American Chemical Society.
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occurred in studying liquid solvation properties and explaining
linked electrochemical phenomena. In their nascence as
electrolytes, WCAs had emerged to provide robustness and
stability, but the explanation for this functionality was less
understood.

Recent work studying the solvent-cation-anion relationship
has brought to light the complexity of electrochemical plating and
stripping in divalent electrolytes (Mohtadi et al., 2021). Despite
the general assumption of weak coordination and basicity, it has
been revealed that there is, in fact, cation-anion interaction in
bulky alkoxyaluminates (Lau et al., 2019). Disfavoring this
interaction by dilution helps avoid anion decomposition by
Mg+ reduction while increasing anodic stability. The added
stability was accomplished using a perfluoro-tert-butoxide
ligand to form the TPFA− anion (tetrakis (perfluoro-tert-
butoxy)aluminate) in place of the hfip ligand, with less
electron withdrawing character. Electrochemical and
computational data showed this system to further widen the
overall electrochemical window relative to its previous
counterparts. Using x-ray absorption measurements and
infrared spectroscopy, Zn2+ solvation was observed in the
analogous Zn [TPFA]2. Less CIP formation was seen with zinc
at higher concentrations compared to magnesium (Yang et al.,
2020). While the anion remains the same, each divalent system
poses unique challenges due to its size, electrostatic charge, or
even the anode surface reactivity.

Liquid solvation studies of commercial electrolyte systems
have revealed the drastic influence of anion or solvent
association on plating reversibility and stability. A seemingly
simple study of divalent cations (Mg2+, Zn2+, and Cu2+) with
TFSI− was used to describe the extent of anion association as a
common property to related to deposition. Electrochemical
methods revealed the role Cl− plays in improving divalent-ion
electrodeposition with mixed anion electrolytes. The work was
further bolstered by computational methods to generalize the
anion-effect to other coordinating mixed systems, ranking their
degrees of association (Figure 2B) (Connell et al., 2020).

In the absence of stronger associating X− ions, increased
solvent coordination to Ca2+ or Zn2+ results in the difference
between forming contact ion pairs or solvent separated ion pairs
(Han et al., 2021). Higher chelating ethers have even been shown
to block plating and stripping activity (Hahn et al., 2020). This
phenomena was further studied in the context of a Ca [B (hfip)4]2
electrolyte that found cyclic ethers provide a less rigid solvation
structure to Ca2+ as opposed to glyme solvents (Driscoll et al.,
2020). Solvation studies have provided a strong basis for
understanding how current anion systems may translate in
different cation-solvent environments. Understanding solvent
association gives the researcher an array of options to
consider. Ultimately, solvent and anion choice afford the most
tunability towards refining the practical system through ionic
interactions. Provided the price of custom electrolytes adjusts
with demand, they grant the best tools for future use in batteries.

Rational Design
Unfortunately, general screening and optimization used in
chemistries like catalysis provide slower improvements to

electrolytes. Traditionally, chemical intuition informs synthetic
modification, while working against the hurdles purification at a
multigram scale requires the luxury of time. This is particularly
true for carboranes, where syntheses can be challenging to
produce pure electrolytes at scale (Tutusaus et al., 2015; Hahn
et al., 2018; Fisher et al., 2019). It is often underappreciated the
care and proficiency required for pure electrolyte synthesis and
incredibly dry conditions, without which results are rendered
worthless.

Considering solvation studies, one can see the utility of cross-
discipline work by confirming experimental results with the
potential to expand observations with multiple electrolyte
combinations. Opening a link between computational and
experimental chemists can help lower the synthetic burden
through rational design, where experimental understanding
helps inform synthetic changes. This method has been
demonstrated in which computed redox stabilities and degrees
of ion-pairing were observed to change with corresponding
variation in C-functionalization of a carbaborate anion (Hahn
et al., 2018). Monofluorinated carbaborates were predicted to be
more oxidatively stable than the unfunctionalized counterpart
(Figure 2A). Confirmation of the model was carried out
synthetically to show that the monofluorinated example was
indeed more stable to higher potentials and maintained a
favorable voltammetric response.

So far, computational efforts have reinforced experimental work
in understanding the extents of ion-pairing, solvent-ion interaction,
and in one case, optimizing electrolyte design. Concentrating on
utilizing computation for rational design, and incorporating
characterization of interfacial interactions will provide the
feedback loop necessary for practical improvements.

Interfacial Understanding and Manipulation
The unique promise of divalent-ion batteries is the ability to
safely use a metal anode in an energy-dense package. As a
result, much of the field has focused on developing those DV
electrolytes for reversible deposition and understanding
mechanisms and resulting morphologies. Contrary to the
introduction of many publications, multivalent ion systems
still pose risks of irregular deposition morphologies, even
dendrites, under specific conditions (Bucur et al., 2015; Ta
et al., 2018; Ta et al., 2019).

As the cation solvation varies, so does the mechanism and
morphology of deposition. Comparing Mg and Zn deposition
mechanisms, zinc deposits through a simple two-electron transfer
while magnesium undergoes a chemical-electrochemical transition
involving a change in complexation (Ta et al., 2018). This study
exposes the dependence of magnesium on its dimeric solvation
structure discussed previously. Calciumborohydride electrolytes also
undergo chemical-electrochemical transitions in plating (Ta et al.,
2019). The complexity of the reactive calcium borohydride can also
be dependent on the surface as the reaction at gold occurs slower
than that at a platinum electrode. These different environments
result in smooth, uniform deposits on gold and patchier deposits on
platinum (Figure 2C).

In studying deposition, incompatible conditions have been
observed, resulting in insulating decomposition deposits. For
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example, while borohydrides and alkoxyborates perform relatively
well asmagnesium electrolytes, reproducing those efficiencies proves
difficult with the increased reactivity of a calcium system (Wang
et al., 2018; Li et al., 2019; Shyamsunder et al., 2019; Ta et al., 2019).
Unlike lithium ions, MV ions do not readily travel through
passivated layers. Given the reactivity of high-voltage cathodes
and metal anodes, what remains to be understood is the
decomposition pathways and methods to monitor them effectively.

In MV-metal batteries, the overall energy density is
determined by that of the cathode. Viable MV cathodes have
been limited to sulfides, selenides, and organic cathode materials,
but do not surpass the energy density of Li-ion batteries (Gu et al.,
2015; Kwon et al., 2020b; Kim et al., 2020; Liang et al., 2020).

Current efforts to expand investigation into high energy density
oxide cathodes have been plagued by irreversible electrochemistry
and parasitic electrolyte decomposition, reflecting the reality that
investigations of novel electrolytes at interfaces remain anode centric.
However, recent studies of cathode materials have used electrolytes
with greater stability at the electrolyte-cathode interface, such as those
based on the TFSI− and TPFA− anions, to probe cathodic reactivity
with greater confidence. Custom electrolytes, like MgTPFA, provide
the best chance to enable further cathode development as opposed to
commercial salts. Despite displaying the highest anodic stability,
parasitic decomposition reactions are still observed even in these
electrolyte systems, meaning that MV reactivity in cathode systems
has to be holistically verified by structural, elemental, and redox
probes as discussed in a recent perspective (Johnson et al., 2021).
Therefore, the development of electrolytes or interfaces that are more
stable with high voltage cathodes is crucial to advance MV battery
technologies. Only through concerted efforts from the three themes
discussed can we take lessons from cathode-electrolyte compatibility
and further improve electrolytes through solvation study and rational
design for practical gains.

CONCLUSION

Fundamental studies in solvation, rational design, and interfacial
understanding will continue to play a crucial role in pushing
electrolyte performance. There needs to be general methods and

descriptors to scrutinize electrolyte fitness and assess
intercalation in cathode materials to highlight high-performing
components. Current methods of analysis are often post-mortem
or bulk analyses. Discerning bulk behavior from anomalies at
surfaces will help assess shortcomings in full cell batteries.
Proposing theories to electrolyte incompatibility at the cathode
interface needs the development of methods to tease out
problems with the salt, solvent, and cathode. Coordinating
efforts from different fields has resulted in new ways to study
and develop pioneering MV ion electrolytes (Hahn et al., 2018;
Lau et al., 2019; Driscoll et al., 2020), which has enabled the
development of new cathode systems (Kwon et al., 2020a; Kwon
et al., 2020b). Effectively utilizing these three themes in a
circulating fashion holds promise as a robust framework to
bridge the gap for practical next-generation batteries. The
diverse crop of tools and components can lead us to fit the
correct pieces to each unique energy storage technology.
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