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Though flexible DC distribution system (FDCDS) is becoming a new hotspot in power
systems lately because of the rapid development of power electronic devices and massive
use of renewable energy, the failure to realize accurate fault location with high precision
restricts its further application. Thus, a novel precise pole-to-ground fault location method
of FDCDS based on wavelet transform (WT) and convolution neural network (CNN) is
proposed in this paper for the limitation on the number of measuring points and high
difficulty in extracting characteristics of FDCDS. The fault voltage signal is decomposed
with multi-resolution by discrete wavelet transform (DWT), and then the transient energy
function is constructed to select the frequency bands containing rich fault characteristics
for signal reconstruction. The reconstructed signal forms two-dimensional time-frequency
images through continuous wavelet transform (CWT), which are used as the input of CNN
classifier after image enhancement to form the mapping relation between the fault feature
and fault position using the powerful generalization ability of CNN, so as to complete fault
location with high precision. The sample data on PSCAD/EMTDC verifies the accuracy and
reliability of the proposed method, which can achieve fault location with positioning
precision of 30 m. The proposed method overcomes the influence of the control
strategy of the converter and the number of input capacitors of the bridge arm in the
time-domain analysis, and still has strong robustness in the case that FDCDS is connected
with many distributed generations (DGs) with output fluctuation. Furthermore, four other
methods for fault location as comparisons are given to reflect the validity and anti-
interference ability of proposed methods in various noises.

Keywords: fault location with high precision, signal decomposition and reconstruction, transient energy, feature
extraction, wt, CNN

INTRODUCTION

FLEXIBLE DC distribution system (FDCDS) is becoming a new developing direction of power system
due to its advantages of being suitable for DGs multi-point access and asynchronous interconnection
(Mohsenian-Rad and Davoudi, 2014). FDCDS based on Modular Multilevel Convertor (MMC) has
been widely applied in many demonstration projects. However, the characteristics of FDCDS are
different from traditional AC distribution networks in that the complex control strategies and dense
branches, which make it difficult to directly apply the protection principle and scheme of AC
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network to the fault detection and location of FDCDS, thus, its
large-scale engineering application is limited (Liu et al., 2020),
(Huang et al., 2011).When a short-circuit fault occurs, the voltage
drops rapidly and the current rises fast, seriously endangering the
safe and stable operation of the power system, so it is necessary to
quickly identify, locate the fault, and remove it.

Nowadays, the fault location method for FDCDS can be
roughly divided into two approaches, the first is that the fault
characteristics are analyzed and the fault distance equation is
solved to obtain the fault location. The second approach is to
utilize an intelligent algorithm to locate the fault.

Copied from the traditional line protection method of high
voltage direct current transmission (HVDC) (Zheng et al., 2021),
(Tang et al., 2019), three ways of line protection are introduced to
FDCDS, which are the travelling wave method, the active
injection method, and the fault analysis method (Dhar et al.,
2018). Lin et al. (2017) proposed extracting travelling waves by
using wavelet modulus maximum, which only needs to record the
first time of travelling waves arriving at each terminal and select
the nearest fault occurring time (FOT) to achieve location.
Though the method performs better than traditional travelling
wave method, it is restricted by the blind zone and the number of
the measuring points. Additional signals are injected by the
injection device and further detected to obtain additional
signals to calculate the fault distance in the active injection
method (Christopher et al., 2011), (Mohanty et al., 2016). But
this method is strict with the topological structure of the network
and is easily affected by noise. Apart from these two, most of the
current research on fault location of FDCDS is based on the
analysis of its fault characteristics and the corresponding
algorithm is introduced to construct the relationship of fault
location and transient component (Wang et al., 2019; Li et al.,
2020; Yan et al., 2020; Yuan et al., 2020). Except the basic fault
feature analysis, the fault’s modal parameters and time domain
characteristics are also utilized to the fault location. Tawfik
and Morcos (2005) use the Prony method to extract modal
information of fault current waveform which is strongly
relevant to the fault location. But the fundamental frequency
component’s damping coefficients will cause influence on the
accuracy of the location. On this basis, the linear relation
between fault location and damping coefficient is established
in the Prony method to locate the fault, which eliminates the
effect of load fluctuation and fault types. However, the influence
of transient resistance is not considered (Gou and Owusu,
2008). References (Jia et al., 2020) and (He et al., 2014)
analyze the relationship between the frequency feature of
fault voltage or current and fault distance, but it also means
that the selection of frequency range will have an impact on the
final positioning result.

The development of intelligent algorithm provides a novel
solution for fault location, such as expert system (Lee et al.,
2000), fuzzy algorithm (Huisheng Wang and Keerthipala,
1998), improved genetic algorithm (Li et al., 2012), and
deep learning (Guomin et al., 2018). Both bionic algorithm
and deep learning based on neural network have the
problems in convergence performance and easily falling into
local optimal when facing complex situations, hence, the

directions to increase the accuracy of methods are
divided into two categories: enhancing the characteristics
information of sample data and multiple algorithms fusion.
The time delay, characteristic frequency, energy attenuation,
and high-frequency energy via the Hilbert-Huang Transform
(HHT) are used as the input of support vector regression (SVR)
to get fault distance, then the parameters of the model is
optimized by the bat algorithm (BA) (Hao et al., 2018).
Based on the feature extraction ability of the convolution
neural network (CNN), reference (Liang et al., 2020) adopts
the improving pooling model and the result shows the method
improves the accuracy greatly.

In general, the current fault location problems of FDCDS are
mainly reflected in the difficulty to extract fault features.
Especially the location accuracy is easily affected by noise and
converter, which cause the low location precision. Therefore, the
main contribution of this paper is a novel pole-to-ground fault
location method of FDCDS, it can identity fault position with
high precision, even under the interference of transient resistance,
output fluctuation of DGs, and different noises. In addition, the
proposed method eliminates the influence of the converter
control strategy and the switching of sub-modules (SMs).
Compared with the existing methods, this paper adopts
wavelet transform to enhance the sample feature, magnify the
sample characteristics, and increase the number of the input data,
to solve the problem of difficulty in feature extraction and
insufficient feature quantity under the limited fault
information. Convolutional neural network is used to mine
the mapping relationship between fault features and fault
positions to solve the problem of insufficient accuracy of
existing algorithms.

FIGURE 1 | Fault analysis. (A) The discharging circuit of SM’s capacitor.
(B) Fault equivalent circuit.
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FAULT LOCATION METHOD

Fault Analysis
In FDCDS, pole-to-pole faults do great harm to the system and
have obvious fault characteristics, most of the current fault
location research is focused on pole-to-pole faults. While
single-pole faults do not have obvious fault features due to
transition resistance, there are few studies on its fault location.
In fact, pole-to-ground fault is the fault with the highest
frequency, so the fault location of the distribution line for
pole-to-ground is mainly studied in this paper. The transient
process after short-circuiting mainly can be divided into
two processes: SM’s capacitor discharging; the grid side
feeds the short-circuit current into the DC system through
the bridge-arm reactor and the anti-parallel diode when the
DC side’s voltage drops to less than the peak voltage of the
AC side. Considering that the fault current rises fast when
the fault occurs, which will cause a huge impact on
expensive converter equipment, so the SM’s capacitor
discharging stage of the transient process is taken to locate
the faults in this paper.

Figure 1A shows the discharging circuit of SMs, in which
FDCDS converter transformer valve side is grounded, and the
current direction has been marked. To analyze the pole-to-
ground fault from the fault equivalent loop in Figure 1B, the
quantity of the input capacitor and the value of transient
resistance need to be considered. But at the fault initial time,
the input capacitor of the upper and lower bridge arm is unknown
as the SMs are normally switched under the control strategy and
transient resistance is also changing, making it difficult to utilize
the fault loop to deduce the relationship between voltage (or
current) and fault location. But it is clear that the electric data
emerged at different fault locations on the line are different,
although the relationship between these two cannot be explicitly
given by an equation. Therefore, this paper decided to use deep
learning and wavelet transform to fit the relationship between
fault features and fault locations instead of manual formula
derivation.

Signal Analysis Based WT
Wavelet transform is a time-frequency analysis tool, which can
show the amplitude of a signal in a different frequency domain
over a period of time. WT mainly includes discrete wavelet
transform (DWT) and continuous wavelet transform (CWT).
DWT is used to decompose the fault voltage signal into multiple
frequency bands in this paper, and then the selected frequency

band signals are reconstructed to obtain the reconstructed signals
with rich fault features. CWT is applied to the processed signals to
generate two-dimensional grayscale images that serve as the
inputs of CNN to complete fault location.

Themulti-resolution analysis (MRA) is used to decompose the
signal in multiple frequency bands, it is applied to DWT to divide
signals to approximate component A (t) and detail component D
(t), which represent the low and high frequency bands,
respectively, and the decomposition tree of DWT-based MRA
is shown in Figure 2.

If the Fourier transform of function φ (t) satisfies the
admissibility condition shown in Equation (1), then φ (t) is
called a fundamental wavelet, also known as a mother wavelet
function.

Cφ � ∫ ∣∣∣∣φ̂(ω)∣∣∣∣2
|ω| dω<∞ (1)

The integral transforms of the following formulas are defined
as the CWT and DWT based on φ(t).

CWTx(a, b) � |a|12 ∫f(x)�φ(x − a

b
)dx, f(x) ∈ L2(R) (2)

DWTx(u, v) �
∣∣∣∣au0 ∣∣∣∣12 ∑

v

f(x)φ(x − vau0b0
au0

) (3)

where a is a scale parameter, b is a translation parameter in CWT.
For DWT, a0

uis a scale parameter and va0
ub0 is a translation

parameter.

FIGURE 2 | The decomposition tree of DWT-based MRA.

FIGURE 3 | The structure of CNN.

Frontiers in Energy Research | www.frontiersin.org December 2021 | Volume 9 | Article 8044053

Wang et al. Fault Location in DC Networks

https://www.frontiersin.org/journals/energy-research
www.frontiersin.org
https://www.frontiersin.org/journals/energy-research#articles


The Structure and Principle of CNN
The typical structure of CNN is depicted in Figure 3. The 2D gray
image as input is expanded to the fully connected layer after
passing though the convolutional layer (Conv layer) and sub-
sampling layer (S layer) and outputs the results via softmax
classification. The Conv layer is composed of a 2D image
convolution, batch normalization (BN), and Rectified Linear
Unit (ReLU) (Gu et al., 2015). The 2D gray value matrix after
padding is mapped to the next layer through the convolution
kernel. BN is set to prevent gradient explosion. ReLU, as the
activation function, effectively solves the problem of gradient
dispersion. The two main methods of sub-sampling are
maximum pooling (max-pooling) and mean pooling (mean-
pooling) (Zhao et al., 2018), and they are mainly used to
extract the signal features more finely. Through multi-level
non-linear transformation, the neural network would
automatically extract and recognize the feature of input set
and classify mass data according to the labels.

A fully connected layer is a one-dimensional vector to store an
eigenvector after the Conv layers and S layers. The column
vectors are mapped to an output layer, and then the
classification results are generated via softmax function, which
calculation formula is denoted as Equation (4).

yi � φ(vi) � evi

ev1 + ev2 + ev3 +/evM
� evi∑

i∈M
evk

(4)

where M is the number of the output nodes. According to
Equation (4), the sum of the vectors output after the
classifier is 1.

CNN neural network training process involves the adjustment
of many weights. In order to speed up the training and improve
the stability, the concept of “momentum” in physics is introduced
(Kim, 2017). In physics, momentum is a concept similar to
inertia, which can prevent objects from rapidly changing the
motion state. The momentum term is used in weight adjustment
to push the weight to adjust to a certain direction to a certain
extent, instead of causing immediate changes.

Proposed Method
The proposed method is illustrated in Figure 4, and it is mainly
divided into two parts: signal processing based WT and
classification based CNN. The main problem to be solved in
this paper is fault location with high precision, so it is necessary to
extract rich and effective fault features in the signal processing
stage. First, DWT-based MRA is used to decompose the signal,
and then the transient energy of each frequency band is
constructed to select the frequency band where the useful
signal is and complete the signal reconstruction. Then, CWT
is applied to generate a two-dimensional time-frequency image
with rich characteristic information. Apart from signal
processing, fault location mainly relies on CNN to process a
grayscale image with characteristic information. After
initialization and a lot of trainings, the fault location task with
high precision can be accurately completed. The following part
will explain the feature extraction in signal processing in detail,
and the steps of CNN classification will be given in the third part
combined with experiments.

DWT-Based MRA
In wavelet transform, db4 wavelet with good regularity is used as
the wavelet basis function. According to Nyquist sampling
theorem, the frequency band of the high-filter of each
decomposition level is [FS/2

n+1, FS/2
n], then [0, FS/2

n+1] is for
low-filter of each level. The principle of signal decomposition is to
make the reconstructed signal contain the most unique features as
far as possible. If the decomposition level is too little, the feature

FIGURE 4 | The flowchart of the proposed method.

FIGURE 5 | Transient energy proportion of each level.
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information and irrelevant information will be overlapped
together, affecting the final location results. If the
decomposition level is too much, according to the MRA
principle, the frequency of decomposition has dropped below
39 Hz after level 8, and there is no need to continue
decomposition. So, the decomposition level is set to 8. In the
preliminary simulation test process, the sampling rate of 20 kHz
is found to be sufficient and brings the right balance between
accuracy and speed, guaranteeing high precision of fault location
and quick and timely response. So, the original signal is
decomposed into 8 frequency bands covering frequencies from
39.163 Hz to 10 kHz. Frequency band after multi-resolution
decomposition is shown in Figure 5.

Decomposition Level Selection
To extract effective fault feature information and select the
frequency bands where the useful signal is located, define the
voltage transient energy Eh as shown in Equation (5), which can
reflect the richness of fault characteristics in each frequency
band.

Eh � ∫T
0

dn(t)2dt (5)

where dn is a high-filter coefficient, T is integral time. Figure 5 is
the ratio of the transient energy of each frequency band to the
sum of the energy of the 8 frequency bands when pole-to-ground
fault occurs at a distribution line. As can be seen from Figure 5,
the energy in the transient process is mainly concentrated in Level
1, 2, and 3 (the frequency band covering from 1.25 to 10 kHz),

which indicates that this part of the frequency band contains most
of the characteristic information. Therefore, it is more accurate to
select the fault information within these three levels to complete
the fault location in the next step.

Signal Reconstruction
Signal reconstruction of the frequency band selected in the
previous step can effectively eliminate noise interference
caused by external factors such as sensors (noise occupies a
low proportion of energy). According to Mallat’s algorithm
(Mallat, 1989), in multi-resolution decomposition, signals are
decomposed via high-pass and low-pass filters, and
reconstruction is the convolution of decomposed signals, and
the mirror filter banks. Suppose that D−1 is the reconstructed
signal of detail coefficient D, the reconstructed signal is denoted
as S(t),

S(t) � D−1
1 (t) +D−1

2 (t) +D−1
3 (t) (6)

Figure 6 shows the process of signal reconstruction, in which
Figure 6A is the original signal. Figures 6B–E are part of the
signal (D1-D4) after decomposition, and it can be clearly seen
that the transient energy of signal is mainly concentrated in D1,
D2 and D3, D4, and the other bands contain only a small amount
of useful information. The decomposition levels D1, D2, and D3
are used to reconstruct a new signal (Figure 6F), which not only
can extract the effective feature information, but also can
eliminate the noise interference.

Grayscale Image and Image Preprocessing
CWT is applied to the reconstructed signal to generate a two-
dimensional time-frequency image (grayscale image) for CNN
classifier. In order to enhance the effect of image recognition, the
image is preprocessed before the CNN training. Figure 7 is the
grayscale image after image enhancement, and the fault features
are more obvious. Meanwhile, the noise influence of the
reconstructed signal of the selected frequency band is
eliminated in this step, and the accuracy of positioning is
further improved.

SIMULATION RESULTS

FDCDS Model
A typical FDCDS of 10 kV voltage class (adapted from the
demonstration project of flexible DC distribution system in

FIGURE 6 | Signal reconstruction. (A) original signal (B) detail coefficient
D1 (C) detail coefficient D2 (D) detail coefficient D3 (E) detail coefficient D4 (F)
reconstructed signal.

FIGURE 7 | Grayscale image and image preprocessing.
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Shenzhen) in Figure 8 is built in PSCAD/EMTDC to verify the
reliability and accuracy of the proposed method. The selected
topology in this paper is the loop structure, which has the
highest power supply reliability and the highest requirements
for protection. In addition, the adaptive feature extraction based
on transient energy method according to different topologies is
adopted in the paper, theoretically applicable to the relatively
simple radial structure and other topologies. Cable #1 connects
two AC grids (10 kV) through two MMCs (5MVA) that are
operated at the constant DC voltage mode and the constant
active/reactive power mode to carry out rectifier and inverter.
Generally, the length of the distribution line is no more than
2 km, so Cable #1 with 0.71Ω /km resistance and 8.9 mH/km
inductance is set as 1.5 km. In addition, Cable #2 and Cable #3
connect photovoltaic (PV) arrays, energy storge system, DC
loads (5 MW), and AC loads, respectively.

Considering the limitations of simulation time-step and
resolution for finding the fault location (Li et al., 2018), a
frequency dependent π cable model is adopted under small
time-step simulation speed (50 μs), which is a lumped π
model with frequency dependent resistance and inductance.

In Figure 8, Cable #1 is divided into 50 sections equally (each
section is 30 m), and Loc. #1 to Loc. #50 denote the end point of
each section, respectively. Segments between every two Loc. # are
marked as Sec. #1 to Sec. #50. Because the minimum distance is
30 m in each section, the resolution for fault location using the
proposed method is 30 m.

Sample Data
DC loads fluctuation has a pretty big impact on power flow of
FDCDS, so five types of DC loads are set to simulate the
fluctuation (the rated power of DC loads is SN, the actual
power is Sreal, and k represents the proportion of actual power
in rated power, i.e., k � Sreal/SN): k is 80, 90, 100, 105, 110%,
respectively. In order to make the fault location more accurate
and give full play to learning and generalization ability of CNN, it
is necessary to traverse the faults in various cases. In the training
process of CNN, the following factors that may affect the location

results need to be traversed: fault distance, fault pole, transient
resistance, DC loads fluctuation, and distributed capacitance
are considered during the training process of CNN. The
traversal table of sample parameters is shown in Table 1, it
can be worked out that the total sample number is 9000.The
sampling frequency is 20 kHz, and the fault data is the
fundamental frequency period after the fault is taken,
therefore, the number of sampling points is 400. To sum up,
the sample set from the measured voltage is 9000 × 400, and the
output set is a matrix with dimension of 9000 × 50 after CNN to
produce the results of the fault location.

Verification of the Proposed Method
Verification of Signal Analysis
The signal processing and CNN classification are all carried out
on MATLAB 2020b. The PC used in the test platform with RAM
of 12 GB has a CPUmodel of Inter (R) Core (TM) i7-10510U and
a GPU model of NVIDIA GeForce MX250.

The correctness of the signal analysis is verified first.
According to the signal processing procedure mentioned
above, the voltage signals at 50 positions of Cable #1 in
Figure 8 were extracted, respectively. After signal
decomposition and transient energy calculation, the transient
energy values of each signal decomposition frequency band as
shown in Figure 9 were obtained. Most of the energy in the fault
is concentrated in Level 1, 2, and 3, which is consistent with the
previous analysis. Moreover, from the perspective of the transient
energy of each frequency band from Loc. #1 to Loc. #50, the
transient energy trend of Level 1, 2, and 3 are obvious and regular.
Compared with other frequency bands, it is easier to form a
mapping relationship between fault features and fault positions to
complete high precision fault location.

Verification of CNN Classification
The structure, convolution kernel, and way of sub-sampling of
CNN will have a big impact on the learning effect. In order to get
the best parameters of CNN, many CNNs with different
structure, convolution kernel, way of sub-sampling, and batch
size are tested in this paper, and the most appropriate CNN
structure was selected by comparing the training speed and
accuracy. Finally, a typical structure of CNN is picked out
after numerous experiments, in which its topology structure is
8C-2S-16C-2 S. The sub-sampling layer adopts mean-pooling,
and the kernel size of convolution is 7 and 9, respectively. The
gradient calculation method is stochastic gradient descent with
momentum.

Figure 10 shows the changing trend of training accuracy and
learning rate with epochs. In the early stage of training, the
learning rate is relatively high, which ensures the training speed
and accuracy. In the middle and late part of learning, when the
training model tends to be stable, the learning rate is also
significantly reduced, which ensures the effectiveness of the
training model. The training process tends to be stable
roughly at 2000 epochs, which is consistent with the change of
learning rate. Finally, the accuracy of the fault location model
obtained by training can reach more than 99%, almost close
to 100%.

FIGURE 8 | The structure of FDCDS.
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The output of softmax function is 50 values with a sum of one
according to (1), and the category of the largest value is selected as
the output result. Hence, when the fault occurs at the Loc. #1 to

Loc. #50, the classification directly output the specific number of
Loc. #, which is shown in Figure 11A. In addition, when there is a
Sec. # fault, the output of the softmax function is two bigger
values, which signifies that the fault is between these two
locations, also known as Sec. # fault, just as shown in
Figure 11B. Therefore, no matter which point on the line
occurs the fault, the classifier will output the corresponding
results (Loc. # fault or Sec. # fault).

TABLE 1 | The traversal table of sample parameters

Parameter type Variables Number

Fault location Loc.#1 to Loc.#50 50
Fault pole Positive, negative 2
Transient resistance (Ω) 0.001, 0.01, 0.05 0.1, 0.2, 0.5 6
DC loads fluctuation (%) 80, 90, 100, 105, 110 5
Distributed capacitance (nF/km) (Jia et al., 2020) 0, 8.34, 20.34 3

FIGURE 9 | The transient energy of each signal decomposition level from Loc.#1 to Loc.#50.

FIGURE 10 | The curve changing of training accuracy and learning rate.

FIGURE 11 | The location results. (A) Loc.# fault. (B) Sec.# fault.
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To test the performance of trained CNN network in location
accuracy, two fault types, Loc. # fault and Sec. # fault, with
different transient resistances are tested, and the result is
illustrated in Table 2. The fault positions on the line are
random and do not always fall on the set fault points.
Therefore, most of the fault points in the test fall randomly
on the positions between the set fault points, i.e., Sec. # fault.
Although the training data required in the process of model
building is obtained by setting Loc. # fault, the test results
show that the CNN model trained has a very high accuracy for
Sec. # fault, which demonstrates the feasibility of softmax
classifier in solving the fault location. When the location
precision reaches 30 m, the final positioning can be carried
out through manual inspection or UAV. Compared with the
traditional line inspection method, the proposed method
greatly reduces the time of fault location and improves the
accuracy.

In the literature (Jia et al., 2020), the control strategy
of MMC converter has an impact on the location accuracy,
so the reliability of the proposed algorithm is tested by
changing the control strategy of the MMC converter at
both ends of Cable #1, when MMC1 is constant DC
voltage control mode, MMC2 is constant power control
mode and vice versa, and the test results are shown in
Table 3.

As MMC adopts the modulation mode of step wave
approaching the sinusoidal wave, the switching frequency
of MMC is low, usually around 150 Hz. In the procedure of
signal reconstruction, the frequency band range selected is
from 1.25 to 10 kHz, which exceeds the switching frequency
of the MMC converter. Therefore, the control strategy will
not affect the location results. The input capacitor of the
upper and lower bridge arm is unknown during the fault in
the aforementioned analysis, which may cause the difficulty
of the time-domain analysis. The frequency band range
selected in this paper is 1.5–2 kHz, which belongs to the
high frequency range. The SM’s capacitor impedance is -j/
ωC0, in which C0 is the SM’s capacitor and ω � 2πf. In a high
frequency domain, it is known that ωLarm >> j/ωC0.
Therefore, the effect of the number of SM’s capacitor can
be ignored at this stage.

Verification of the Fluctuation of PV’s Output Power
Most of the existing fault location methods in the flexible DC
distribution network have poor application effects in practical
projects, the main reason is that the location results are easily
influenced by fluctuation of PV’s output power. In addition, the
robustness of the proposed method is tested with the actual PV
output power in a day. The output power of PV is mainly affected
by illumination intensity. According to Equation (7), the per-unit
value of PV’s output power in a day (assuming the maximum
output power as the rated value) is calculated on the basis of the
change of illumination intensity in a day. The accuracy of locating
results is shown in Figure 12.

PPV �
⎧⎪⎪⎨⎪⎪⎩ Pr

pv

I

Ir
I≤ Ir

Pr
PV I> Ir

(7)

where I is illumination intensity and Ir is rated intensity; and PPV
r

represents the rated value of PV’s output power and PPV is the
true output power of PV.

TABLE 2 | The performance of the trained CNN

Fault type Sample number Location accuracy (%)

Loc. # fault 50 100
Sec. # fault 115 96.5217
Total 165 97.5758

D. verification of influence of control strategy.

TABLE 3 | Control strategy interference test results

MMC1 MMC2 Number Accuracy (%)

Constant voltage mode Constant power mode 120 100.00
Constant power mode Constant voltage mode 120 100.00

FIGURE 12 | The influence of PV’s output power fluctuation on location
accuracy.

FIGURE 13 | The classification accuracy of different methods under
different SNRs.
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The major influence of PV’s output fluctuation on the FDCDS
is the change of power flow distribution in the system, so the
changes of transient quantity in the fault are mainly concentrated
in the low frequency band. In this paper, the frequency bands are
selected by comparing the transient energy of each
decomposition level, and the low frequency bands are filtered
out because they contain only a small amount of feature
information, already analyzed in the section on Fault Location
Method. Therefore, PV’s output fluctuation has almost no effect
on the accuracy of location, as shown in Figure 12. Furthermore,
FDCDS has many branches connected to various types of loads
and DGs, affecting the magnitude and distribution of the fault
component. The boundary conditions of FDCDS at the line exit,
composed of DC reactor and parallel filter, absorb and block the
high frequency components of voltage and current, resulting in
high frequency component of branches entered into the studied
line being greatly reduced (Karmacharya and Gokaraju, 2018).
Because the data used in the paper is the high frequency band of
voltage, the influence of branches on positioning can be ignored.
So, the fault location method proposed has a high robustness in
the situation of massive branches access and is more valuable to
the engineering application.

COMPARISONS WITH EXISTING METHOD

There are a lot of intelligent algorithms being applied to fault
location of FDCDS, but few methods have solved the problems of
long distribution lines and short resolution for located distance.
In this paper, the resolution is set at 30 m, and the accurate
location of 50 faults distances is realized. To verify the superiority
of method in this paper, methods in literatures (Ye et al., 2020),
(Chen et al., 2017), (Li et al., 2018), (Guifeng et al., 2014) are
introduced to tested in FDCDS presented in article. Table 4.
illustrates the comparing result of different methods when the
noise’s SNR is 45dB. The evaluation criterions involve calculation
time and iterations in the training phase, mean absolute error
(MAE), root mean squared error (RMSE), and accuracy in the
testing phase. The equation of MAE, RMSE, and accuracy is in
(Equations 8–10):

MAE � 1
N

∑N
i

∣∣∣∣yi − ŷi

∣∣∣∣ (8)

RMSE �

������������
1
N

∑N
i

(yi − ŷi)2
√√

(9)

accuracy � n

N
× 100% (10)

here, N is the number of testing samples, yi is the output value, ŷi
is the true value, and n represents the number of samples whose
output value is consistent with the true value in the testing
process.

The literature (Ye et al., 2020) develops a single pole-to-
ground fault location method using wavelet decomposition
and deep belief network (DBN), in which the low-frequency
components and high-frequency components after three levels
wavelet decomposition are used to characterize the fault’s overall
trend. Although DBN with a stack of multiple RBMs is a strong
classification, the feature extraction in frequency-domain is not
sufficient to form a strong mapping relationship between fault
distance and signal, so its performance is inferior to the proposed
method in this paper.

Back-propagation (BP) optimized by genetic algorithm (GA)
presented in the literature (Chen et al., 2017) utilizes wavelet
packet decomposition to gather the signal energy of each
frequency band and construct an energy feature vector. The
test results show that the more detailed fault feature extracted,
the more accurate the fault location. Aimed at ungrounded
photovoltaic system, the literature (Li et al., 2018) proposes a
location method that the high-frequency signal of fault
information is extracted by DWT, and then the norm of
different frequency bands’ detail coefficients is used as the
input data vector for artificial neural network (ANN). Though
this method ranging accuracy is accurate enough, the required
sample frequency is quite high, which is up to 340 kHz. Therefore,
at the sample frequency of 20 kHz, the method is difficult to
identify 50 fault locations. To reflect the availability of signal
analysis, the literature (Guifeng et al., 2014), which directly
applies the radial basis function (RBF) neural network to use
fault information to find fault distance, is regarded as a
comparison to other smart algorithms with signal processing.
The results in Table 4 show that the location method via RBF has
the worst performance compared to the others though the
training time is the shortest, so the signal analysis is necessary
to extract fault characteristics when the location resolution
is short, and the distribution line is quite long in FDCDS. It
should be noted that the structures in the four classification
methods are all optimized models based on the methods in
the original literature under the environment created in this
paper after vast tests, to guarantee the fairness and reliability
of comparisons. From the comparison results, the MAE,
RMSE, and accuracy criterions of the proposed method are

TABLE 4 | Comparisons result of different methods when the SNR is 45 DB

Methods Calculation time (s) Iterations (s) MAE RMSE Accuracy (100%)

CNN-WT 773.21 1450 0.0599a 0.250a 99.130a

DBN-DWT (Ye et al., 2020) 685.66 2000 0.233 0.907 90.120
GA-BP-WPT (Chen et al., 2017) 1037 9013 0.304 1.103 88.400
ANN-DWT (Li et al., 2018) 9983 26a 0.417 1.682 77.700
RBF (Guifeng et al., 2014) 276.14a 50 0.759 2.324 60.800

aNote: indicates that this criterion is significantly better than other algorithms.

Frontiers in Energy Research | www.frontiersin.org December 2021 | Volume 9 | Article 8044059

Wang et al. Fault Location in DC Networks

https://www.frontiersin.org/journals/energy-research
www.frontiersin.org
https://www.frontiersin.org/journals/energy-research#articles


significantly better than those of other methods under the same
conditions.

In signal analysis and fault location, noise will affect the result,
and Gaussian white noise following normal distribution is an
important factor affecting fault location in the power system
because of its strong randomness. In order to test the anti-
interference ability of different methods aforementioned to
noise, 9 groups of different signal-to-noise ratios (SNRs) from
5 dB to 45 dB are set for testing, and the SNRs reflect the ratio
between normal signal and noise, whichmeans that the higher the
SNR, the closer the signal is to the normal signal.

Figure 13 gives the classification accuracy of different
methods under different SNRs. When the signal
interference is not large (more than 25dB), CNN with WT
can have a better performance than other methods.
Furthermore, when the SNRs are less than 20dB, the signal
collected at this time contains a lot of interference, the
proposed method still be much more accurate. But when
the SNR comes to 5dB, the signal is already so distorted
that any algorithms will lose accuracy. Due to the effective
feature extracted in the signal processing and the elimination
of noise interference, the proposed algorithm can achieve high
precision fault location under noise interference comparing to
four other methods.

CONCLUSION

In this paper, a fault location method with high precision is
presented. DWT-based MRA is applied to decompose the voltage
signal into 8 levels, and the signal bands with a large proportion of
transient energy are selected for reconstruction. Then CWT is
used to produce the grayscale images, which serve as the input of

the CNN with the optimal structure and parameters under
various tests after image enhancement.

A large number of simulation data show that the proposed
method based on WT and CNN has a remarkable effect in the
fault location of FDCDS, and eliminates the influence of the
converter control strategy and the switching of SMs. Due to the
effectiveness of the signal feature extraction, the method
proposed in this paper still has high accuracy in the case of
large-scale access of DGs with output fluctuation. Verification
results of comparisons show that the proposed method has better
performance and is more accurate and efficient than four other
methods under various noises, thus it can be extended to complex
FDCDS with little measuring points, which is of great significance
to development of the DC system.
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