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In this research, we propose a multi-objective optimization framework to minimize the
energy cost while maintain the indoor air quality. The proposed framework is consisted
with two stages: predictive modeling stage and multi-objective optimization stage. In the
first stage, artificial neural networks are applied to predict the energy utility in real-time. In
the second stage, an optimization algorithm namely firefly algorithm is utilized to reduce the
energy cost while maintaining the required IAQ conditions. Industrial data collected from a
commercial building in central business district in Chengdu, China is utilized in this study.
The results produced by the optimization framework show that this strategy reduces
energy cost by optimizing operations within the HAVC system.
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INTRODUCTION

The building industry is one of the largest sectors in creating jobs and has made great impact on
the economy. Meanwhile, the buildings consume large amounts of natural resources such as
water and electricity and its adverse environmental impacts are widely concerned. According to
the World Business Council for Sustainable Development, buildings has contributed to more
than 40% of total energy consumption (Mull, 1998) and 30% of greenhouse has emission (Payne
et al., 2012). As a result, the high energy cost and environmental impacts from the buildings are
becoming a major issue (Li et al., 2021a).

The new concept Green Building (GB) is conceived as an opportunity to reduce adverse impacts
of buildings on the environment and energy cost. GB has been defined as a term that is
interchangeable with buildings that has efficient energy utility and high sustainability. An
increasing number of studies have been conducted on GB in the past decade and one major
research direction is the reduction of the energy cost. Heating, ventilation, and air-conditioning
(HVAC) systems are the major source of energy consumption in commercial buildings, and they
account for more than 60% of annual total energy utility.

Previous literature has invested significant research efforts related to the modeling and
optimization of the HVAC systems. They can be classified into two types of approaches: the
physics-based approaches and the data-driven approaches. Physics-based approaches are
generally developed over mathematical equations to depict the HVAC system modules and
have been extensively utilized in HVAC related research. Sakulpipatsin et al. (2010) proposed
extended physics-based models of HVAC systems and used TRNSYS software to perform the
simulation for optimization studies. Zhang et al. (2013) introduced a novel physics-based model
to study the HVAC energy consumption mechanism and a new model parameter namely
entrants is included in the model. Teodosiu et al. (2003) developed an analytical model to
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evaluate thermal comfort by considering indoor air moisture
and its transport by the airflow. Nassif et al. (2004) proposed a
supervisory control strategy to optimize set points of
controllers used in a multi-zone HVAC system.

The physics-based approaches are usually computationally
complex and can be only applied under certain conditions. In
comparison, data-driven approaches have reflected effectiveness
in modeling complex, dynamic, and non-linear systems in many
domains (He et al., 2017; He and Kusiak, 2017; Ouyang et al.,
2017; Li et al., 2018; Ouyang et al., 2018; Li et al., 2020). Kusiak
et al. (2011a) proposed a data-mining approach for the
optimization of the HVAC units. Chang et al. (2009)
constructed a Hopfield neural network to model the chilled
water supply temperatures in chillers. Fong et al. (2006) used
TRNSYS software to construct a data-driven model to optimize
the settings of chilled water and supply air temperature. Lv et al.
(2018) discussed various low carbon technologies and strategies
to optimize the green building HVAC energy consumption.
Kontes et al. (2013) proposed a stochastic optimization
algorithm to maximize the utility of renewable energy
proportion within the HVAC system. Lachheb et al. (2020)
studied parametric models to investigate the impact of HVAC
utility on the glazing size in various regions. Promising results
from the data-driven approaches have demonstrated the
effectiveness and robustness in modeling and optimizing the
HVAC systems.

Inspired by the recent advent of deep learning algorithms, in
this research, we would like to advocate a novel data-driven
framework to modeling and optimizing the energy cost. In this

modeling stage, the artificial neural network is constructed and
trained on the HVAC energy consumption dataset to study the
non-linear mapping between input features and energy cost. The
algorithm with the top performance is selected as the benchmark
for the following stage. In stage II, a firefly algorithm is utilized as
the optimizer to reduce the total energy consumption while
maintaining the air quality at an acceptable level.

HAVC SYSTEM AND PROBLEM
FORMULATION

HVAC System
HAVC systems are widely installed in the commercial buildings
located in the central business district (CBD). A schematic
diagram of a typical HVAC system installed in the
commercial buildings is illustrated in Figure 1. A typical
HVAC system consists an air handling unit (AHU) and
multiple thermal zones. For each thermal zone, a VAV
(variable air volume) box is connected to the air handling unit
to maintain the comfort temperature of the thermal zone.

The total energy utility by the HVAC system is consisted of the
utility from the AHU and VAV. Three major resources including
heat energy, fan energy, and pump energy, account for all energy
consumptions in the AHU. For the VAV, the reheat load
accounts for the maximum consumed energy (Kusiak et al.,
2011b). The VAV box basically supplied the conditioned air
for a specific thermal zone in order to satisfy the comfort
temperature of the zone envelope. By tuning the dampers in
the VAV box, the hot water flows through the coils adjusting to
the actual requirements of the zone comfort.

Data Collection
The HVAC system discussed in this research as our case study is
operated by a commercial building located in the central business
district in Chengdu, China. This building has 33 floors and many
big companies set their regional headquarter offices inside this
building.

The dataset provided contains the hourly data of the HVAC
system in the underlying building during the whole year of 2019.
Multiple features that are relevant to our study is provided
including total energy consumption, supply air temperature set
point, supply air duct static pressure set point, system load, supply
air humidity, barometric pressure, and outside air temperature.
The in-detail description of the features utilized in this study has
been summarized in Table 1 as follows.

FIGURE 1 | Schematic diagram of an HVAC system.

TABLE 1 | Introduction of the related features collected in the dataset.

Feature Description Unit

ETotal Total energy consumption KJ
xSAT Supply air temperature set point °F
xSATPS Supply air static pressure set point kPa
xLoad System load Discrete
xSAH Supply air humidity %
xBP Barometric pressure kPa
xOAT Outside air temperature °F
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Problem Formulation
In this research, the main goal is to develop a data-driven
framework to minimize the total energy cost which ensuring
the indoor air quality is maintained at a desirable level. The
setting of the two controllable parameters namely the supply air
temperature set point and the supply air static pressure set point
play the essential role in impacting the total energy consumption
of the HVAC system.

The total energy utility of an HVAC system comes from the
AHU and VAV and it can be expressed in eq. 1 as follows:

ETotal � EAHU + EAVA (1)

Based on prior domain knowledge, the input features are
associated with the AHU and VAV and we may re-formulate
the problem as a regression problem as expressed in eq. 2:

ETotal � f(xSAT, xSATPS, xLoad, xSAH, xBP, xOAT) (2)

Among them, the xSAT and the xSATPS are controllable features
and the rest are uncontrollable features.

In this research, the goal is to reduce the energy consumption
while maintaining the indoor air quality. Hence, according to
literature review (Kusial et al., 2011; Li et al., 2021b), we set the
following constrains to our optimization model: the supply air
temperature (xSAT) should be between 50°F and 65°F; the supply
air duct static pressure (xSATPS) must be between 0.2 and 0.5 kPa;
and the supply air humidity (xSAH) should be controlled below
25%. Consequently, it can be formulated in the following non-
linear optimization problem with the underlying constraints in
eq. 3 as follows:

minf(xSAT, xSATPS, xLoad, xSAH, xBP, xOAT) (3)

subject to:

50≤xSAT ≤ 65
0.2≤xSATPS ≤ 0.5

xSAH ≤ 25%

METHODOLOGY

Deep Belief Network
The number of applications of deep learning architecture in
regression, multi-class classification, collaborative filtering,
and graphic learning tasks has experienced rapid growing in
the recent decade (LeCun et al., 2015). In this section, a deep-
learning based framework is presented to predict wind
direction. The concept of deep learning originates from
research on artificial neural networks and it alleviates the
local optima problem in the non-convex objective function
of a neural network (Ouyang et al., 2020). The success of deep
learning architectures is contributed by three characteristics: a
large number of hidden neurons, better learning algorithms,
and better parameter initialization techniques (Deng and Yu,
2013).

In this paper, a widely utilized deep-learning algorithm
namely deep belief network (DBN) is selected to construct the

regression models to predict total energy consumption of the
HVAC system. Originally proposed by Hinton et al. (2006), a
typical DBN contains multiple restricted Boltzmann machines
(RBMs) which are stacked in a hierarchically manner. Each RBM
includes a visible layer and a hidden layer both are composed of
Boolean neurons (see Figure 2). The connection between the
hidden layer and the visible layer is bidirectional and symmetrical
without any inter-connections between neurons in the same layer
exists.

The optimization of the weight matrix between the two layers
is the main target in the training process in order to construct a
robust mapping. The configuration of weight matrix is based on the
energy function expressed in eq. 4 (Hinton et al., 2006). The joint
distribution of a visible layer vector and the hidden layer vector is
expressed in eq. 5. The activation functions of neurons in the visible
and hidden layer are presented in eqs. 6, 7 (Hinton et al., 2006):

E(v, h) � −∑nv

i�1 aivi −∑nh

j�1 bjhj −∑nv

i�1 ∑nh

j�1 hjwj,ivi (4)

P(v, h) � e−E(v,h)∑v∑he
−E(v,h) (5)

P(vi � 1|h) � sig(αi +∑nh

j�1wj,ihj) (6)

P(hi � 1|v) � sig⎛⎝bj +∑nv

i�1 wj,ivi⎞⎠ (7)

Layer-wise Training
Multiple layers of restricted Boltzmann machines (RBMs) are
hierarchically stacked within the DBN algorithm. The first
RBM is pre-trained as an independent RBM and the weight
matrix of the first RBM is computed. The output of the first
RBM is treated as the input to the second RBM. By training the
RBMs iteratively following the above strategy, the DBN is
trained and the weight matrices between the remaining hidden
layers are obtained.

During the training process of RBMs, the optimization problem
is formulated using a stochastic gradient ascent approach (SGA)
(Hinton et al., 2006). Based on vector (5) of the joint distribution
function between the visible and hidden layer, the objective function
of the stochastic gradient ascend method is expressed in eq. 8:

L(a, b, w) � ∑ logP(v, h) (8)

FIGURE 2 | Restricted Boltzmann Machine (RBM).
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Benchmarking Algorithms
Three benchmarking algorithms including support vector
regression machine (SVR), neural network (NN), and extreme
learning machine (ELM).

The support vector regression machine (SVR) is a supervised
classification/regression algorithm that includes a Gaussian
kernel function (Drucker et al., 1996). The neural network
(NN) is a machine-learning algorithm which contains the
input layer, hidden layer and the output layer. The extreme
learning machine (ELM) algorithm (Liang et al., 2006) is a
single hidden layer feedforward network. The ELM learning
model is expressed in eqs. 9, 10 (He and Kusiak 2017; Li
et al., 2018; Ouyang et al., 2019; Li et al., 2021c).

fL(xj) � oj,∀j (9)

∑L

i�1 βiG(ai, bi, xj) � tj, j � 1, 2, . . . , N (10)

Firefly Algorithm
The Firefly Algorithm (FA) (Bacanin et al., 2021) is a new swarm
intelligence algorithm that simulates the social behavior of
fireflies. In the nature, fireflies use flashing to attract mating
partners and the movement of the fireflies is determined by the
resulting attraction which is related to the intensity of the emitted
light. Similar to the particle swarm optimization (PSO) algorithm,
the FA algorithm is a population-based stochastic search
algorithm. Each firefly member in the population represents a
candidate solution in the search space. Fireflies move toward
other directions and search potential candidate solutions. Overall,
the attractiveness is determined by the intensity of the emitted
light that is measured by the fitness value (Wang et al., 2017).

In detail, the attractiveness between the two fireflies Xi and Xj

can be computed in eqs. 11, 12 as follows:

β(rij) � β0e
−cr2ij (11)

rij �
����Xi −Xj

���� � 













∑D

d�1 (xid − xjd)2√
(12)

where d � 1,2,3, . . . ,D and D is the problem dimension; rij is the
distance between Xi and Xj; xid and xjd are the dimension ofXi and
Xj respectively. Each firefly Xi is compared with all other fireflies
Xj, where j � 1,2, . . . ,N and j ≠ i. If Xj is brighter than Xi, the Xi

will be attracted by Xj and move towards Xj. The movement of Xi

can be computed by eq. 13 as follows:

xid(t + 1) � xid(t) + β0e
−cr2ij(xid(t) − xid(t)) + S∈i (13)

Therefore, the FA algorithm can be summarized into the
following three steps as follows:

• Step 1: Initialization. Randomly generate N solutions as an
initial population accordingly. Each individual solution
(firefly) is Xi.

• Step 2: Movement (attraction). For each solution Xi, we
compare with all other solutionsXj. IfXj is greater thanXi,

Xi moves towards Xj and changes its position according to
eq. 13.

• Step 3: Stopping. If the stopping criteria has been satisfied,
we can stop the algorithm.

Measurement Metrices
In this research, the prediction output is the energy consumption
and hence we may formulate this as a regression problem. Two
widely utilized metrics namely mean absolute percentage error
(MAPE) and root mean square error (RMSE) are selected in this
study to measure the performance of different DBN architectures
(Li et la. 2021b). TheMAPE and RMSE are expressed in eq. 8, 9 as
follows:

MAPE �
∑N

i�1

∣∣∣∣∣∣∣ŷi−yiyi

∣∣∣∣∣∣∣
N

(8)

RMSE �











∑N
i�1
∣∣∣∣∣∣ŷi − yi

∣∣∣∣∣∣√
N

(9)

EXPERIMENTAL RESULTS

Feature Analysis
In this research, the HAVC energy consumption dataset includes
six predictor variables (features) and the energy utility is the
dependent variable as indicated in Section “Data Collection”. All
features are continuous numerical features and the feature
preliminary analysis with min-max scaling and histogram are
performed in this section.

As illustrated in Figure 4, the histograms of the energy
consumption are presented. In order to investigate the energy
consuming behavior of the underlying commercial building in
different seasons, the hourly energy consumption in summer
season (Jun-Aug) and winter season (Dec-Feb) has been
randomly sampled and plotted in Figure 3. It is obvious that
the two energy distributions are right-skewed and are non-
Gaussian distributed.

Meanwhile, the histograms of the input predictor features are
also illustrated in Figure 4 as follows. From Figure 4, almost all
predictors follow a Gaussian-type of distribution and are
symmetric in their empirical PDFs. The only exception is
SAPTS which is left-skewed which indicate it may follow a
non-Gaussian distribution. A log-transformation will be
applied to further transform the distribution into a Gaussian
shape distribution.

Predictive Modeling of Energy Cost
After data-preprocessing, the predictive modeling of energy
consumption using DBN is provided in this section. The two
hyper-parameters, the number of RBMs and the number of
neurons within each RBM, directly impact the predicting
performance of the energy prediction model. Hence, it is
essential to tune the hyper-parameters to ensure the optimal
setting of the DBN algorithm.
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In this research, a cross-validation based tuning process is
implemented. As illustrated in Figure 5, we performed a series of
experiments testing the average RMSE of various hidden layers as
well as various hidden neurons in each hidden layer using an
incremental manner. The dataset for such experiment are
randomly sampled from the original dataset which contains a
whole month hourly energy consumption records. It is obvious
that the optimal number of RMBs within the DBN is 2 and the
optimal number of hidden neurons in each RMB is 15.

Using the constructed optimal DBN algorithm, we performed
training and testing experiments on two seasons: summer and
winter. In each experiment, a whole month dataset has been used
as the training dataset and the following weekly data has been

used as the validation dataset. The prediction performance has
been illustrated in Figure 7 respectively. The prediction results of
the testing dataset contain the actual energy consumption (blue)
and the predicted energy consumption (red) of the two seasons.
In summer, the RMSE is 5.51, and theMAPE is 11.77%. In winter,
the RMSE is 5.25 and the MAPE is 10.81%. The prediction
performance of the trained DBNs as well as the benchmarking
machine learning algorithms on the testing dataset is presented in
Table 2 and Figure 6 respectively.

In this section, the optimization of controllable features
namely the supply air temperature set point (SAT) and the
supply air static pressure set point (SATPS) in the temporal
domain has been optimized by using the constructed DBN

FIGURE 3 | Histogram of energy consumption in summer and winter.

FIGURE 4 | Histogram of predictor variables.
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prediction models. The goal of the optimization is to reduce the
energy consumption while maintaining the indoor quality. The
formulation is expressed in eq. 3 and the constrains for all
predictor features are listed to ensure the indoor air quality.
The firefly algorithm (FA) has been implemented in this section
to reduce the energy consumption and the optimization
experiments is illustrated in Figure 7 as follows.

As illustrated in Figure 7, the fitness value of the FA algorithm
has been plotted along with the iteration of the experiments. For
the summer predictionmodel, the fitness value converges to near-
zero zone after 20 epochs indicating the optimal solution has been
numerically approached. For the winter prediction model, the
fitness value converges to near-zero region after 30 epochs as it
achieved its optimal solution. As it takes more epochs to approach

the optimal solution, it indicates more complexity in the winter
prediction model due to the challenges within the dataset
provided.

Hence, using the feature settings computed by the FA algorithm,
the two optimized feature outcomes are selected as new inputs in the
pre-trained energy prediction models as discussed in Section
“Predictive modeling of energy cost”. The simulation results are
presented in Figure 8 that contains the actual energy consumption
(blue), predicted energy consumption (red), and optimized energy
consumption (purple) computed from the simulation outcome. For
the summer season, the simulation results indicate the optimized
energy consumption is 17% less than the predicted energy utility. For
the winter season, the optimized energy is 14% less than the
predicted energy utility.

FIGURE 5 | Hyper-parameter tuning process.

TABLE 2 | Prediction performance of all algorithms tested.

Algorithm MAPE (Summer) R (%)MSE (Summer) MAPE (Winter) R (%)MSE (Winter)

SVR 13.37 6.02 14.42 6.92
NN 12.44 5.76 12.23 6.35
ELM 12.63 5.87 11.17 5.94
DBN 11.77 5.51 10.81 5.25

Optimization of controllable features.

FIGURE 6 | Prediction performance of the testing dataset in Summer and Winter.
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Based on the simulation results, we have achieved an
optimized energy utility in our testing dataset. Considering the
local electricity price, and total area within our underlying
building, we have achieved a cost saving of 12.90 RMB/m2 for
our case study building in summer and 11.18 RMB/m2 in winter
from an economic perspective. If we incorporate this into the
estimation of the total energy cost of the whole building, it would
approximately achieve 16.6% of reduction in the total cost
considering the savings in both winter and summer.
Therefore, it achieved the standard Green Building concept
and can be utilized as a sample for other local commercial
buildings for larger scale energy saving projects.

CONCLUSION

The best performing neural network structure has been selected via
cross-validation and gird-based search. In addition, an energy
optimization problem has been formulated by incorporating the
predictive neural network model and HVAC operational
constraints. The formulated optimization problem has been
successfully solved by the firefly algorithm. The optimal setting of

the two controllable features including the supply air temperature set
point and the supply air static pressure set point in the temporal
domain has been computed. Computational results demonstrated
that it can achieve the reduction of total energy cost by a significant
portion. (Wang et al., 2016).

DATA AVAILABILITY STATEMENT

The original contributions presented in the study are included in
the article/Supplementary Material, further inquiries can be
directed to the corresponding author.

AUTHOR CONTRIBUTIONS

YL conceptualized the study, contributed to the study
methodology, and wrote the original draft. YL contributed to
the study methodology, data curation and investigation. CC
contributed to data analysis and investigation. LZ contributed
to investigation and writing-original draft. All authors have read
and agreed to the published version of the manuscript.

FIGURE 7 | Optimization experiment of firefly algorithm.

FIGURE 8 | Simulated energy consumption using the optimized controllable feature setting.
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GLOSSARY

ETotal Total energy consumption

EAHU Energy utility from the AHU

EVAV Energy utility from the VAV

xSAT Supply air temperature set point

xSATPS Supply air duct static pressure

xLoad System load

xSAH Supply air humidity

xBP Barometric pressure

xOAT Outside air temperature.

vi Number of neurons in the visible layer

hi Number of Boolean neurons within the hidden layer

wj,I Weight matrix between the visible layer and hidden layer

ai Weight vector connecting the ith hidden node and the input nodes

bi Threshold of the ith hidden node

sig() Logistic sigmoid function

a Bias vector of the visible layer

b Bias vector of the hidden layer

xj Input parameters

oj Output values

fL() Non-linear function representing the ELM algorithm

βi Weight vector connecting the ith hidden node and the output nodes

tj Actual output value

ϵi Random value uniformly distributed between [-0.5, 0.5]

s Step-factor between [0, 1]

ŷi Predicted value

yi Actual value

N Total number of predicted values in the testing dataset
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