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The environmental conditions affect the external insulation performance of power
equipment. In order to study the physical characteristics of air discharge, the
microscopic process of electron–molecule collision in the air based on the Boltzmann
equation has been studied in this paper. The influence of humidity on the air gap insulation
performance was also analyzed. The calculation results show that with the temperature
300 K and the pressure 1.0 atm, the electron energy distribution function and electron
transport parameters varied with the air relative humidity. As the air relative humidity is
increased by each 30%, the average electron energy decreases by about 0.2 eV, the
reduced electron mobility decreases by about 0.25 × 1023 [1/(V·m·s)], the reduced electron
diffusion coefficient decreases by about 0.2 × 1024 [1/(m s)], and the effective ionization
coefficient decreases by about 4 × 10−24 m2. As the air relative humidity increases from 0%
to 60%, the critical breakdown electric field increases by 1.22 kV/cm.

Keywords: humidity, electronic energy distribution function, Boltzmann equation, critical breakdown field strength,
electron transport parameters

1 INTRODUCTION

In order to transmit a large-capacity power supply by long transmission distance, a UHV power grid
has been constructed and developed rapidly in China (Zhao et al., 2015; Xun et al., 2020a; Xun et al.,
2021a). For high voltage level and large span of UHV transmission line, it inevitably leads to power
loss, and noise pollution and equipment corrosion (Zhenya, 2005a; Zhenya, 2005b; Muniappan,
2021). The terrain conditions, altitude, and meteorological conditions along UHV transmission lines
are complex and changeable, which may affect the external insulation characteristics (Xun et al.,
2017; Xun et al., 2020b; Weichen et al., 2021). The characteristics of air discharge can be significantly
affected by air humidity (Wenliang et al., 2007; Yang et al., 2021a; Yang et al., 2021b), which has
become one of the focuses in the field of power system external insulation.

At present, most researches are committed to the development process of air discharge (Prasad
and Craggs, 1960; Abdel-Salam, 1985; Xun et al., 2021b; Xun and Pongsathorn, 2021). Bian
Xingming and other scholars (Xingming et al., 2010) studied the physical characteristics of
negative DC corona in a rod-plate electrode. They applied the charge simulation method and
surface photoelectron calculation method to achieve the inception voltage of negative DC corona,
and to study the influence of humidity. Cai Xinjing and other scholars (Xinjing et al., 2015) used fluid
model to simulate the propagation process of bi-directional streamer in air gaps with different water
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vapor. It was concluded that humidity had little effect on the
propagation characteristics of a streamer under the same
background electric field, but the influence of air humidity on
the inception characteristics of a streamer was not studied. To
design the structure of EHV transmission lines in high altitude
areas, Liu Youwei and other scholars (Liu et al., 1990) analyzed
the characteristics of corona around the conductor with different
humidity in detail. Their experimental results showed that
humidity had a significant impact on the corona inception
electrical field of the conductor. Li Kelin (Kelin, 2019) built
the corresponding discharge chamber to simulate different
climate conditions. The change of negative DC corona
discharge mode under different humidity conditions was
analyzed in detail, and the influence mechanism was analyzed
combined with the simulation results. Yuke, (2017) used the self-
designed experimental platform that can adjust humidity to study
the influence of different air humidity on corona discharge with
the internal electrode of converter valve as an example. The above
studies were mostly focused on the influence of humidity on
corona inception electric field and corona discharge process, and
rarely considered the influence of humidity on electron transport
parameters. The electron transport parameters are not only the
basis for the plasma hydrodynamics model of air discharge but
also can reflect the insulation performance of air gaps (Wen et al.,
2016; Roostaee et al., 2017; Xinyu et al., 2018; Xun and
Raksincharoensak, 2021; Yuanchao et al., 2021). The external
insulation of power equipment exposed to air will be affected by
air humidity. The variation of air humidity will affect the
electronic transport parameters during air discharge that lead
to different insulation performance of air gaps and may threaten
the operation characteristics of external insulation of power
equipment.

In this paper, the motion collision processes between electrons
and molecules in air under different humidity are simulated in
detail. The Boltzmann two approximationmethod is used to solve
the electron transport parameters of air. The air electron
transport parameters under different reduced electric fields are
calculated and analyzed. The calculation results are compared
with the results of Morrow (Morrow and Lowke, 1997) and
Nikonov (Nikonov et al., 2001) to verify the model
reasonability in this paper. The effect of humidity on electron
energy distribution function (EEDF), reduced electron mobility
(μ/N), reduced electron diffusion coefficient (D/N), and critical
breakdown electric field are simulated and analyzed.

2 CALCULATION METHOD OF ELECTRON
TRANSPORT PARAMETERS

2.1 Binomial Approximation Expansion
Electron energy distribution function is calculated by Boltzmann
binomial approximation. The electron collision process plays a
major role during the air discharge. In the numerical simulation
of fluid dynamics of gas discharge, the accuracy of electron
collision section data is the key to accurately solve the
transport parameters using Boltzmann equation. In order to
simplify the calculation, only four types of collision sections

are considered in this paper, including elasticity, ionization,
adhesion, and excitation (Su et al., 2019).

During air discharge, the electron distribution function can be
described by Boltzmann Eq. 1:

zf
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where f is the distribution function of electrons in the six-
dimensional phase space; e is the amount of electron charge; v
is an electron velocity vector; E is the field strength, V m−1; ∇ is a
velocity gradient operator; m is electronic quality; and C is a
collision term, which represents the variation rate of distribution
function.

Since it is very difficult to solve the Boltzmann equation
directly, the equation can be expanded into spherical
coordinates as Eq. 2.

zf

zt
+ v cos θ

zf

zz
− e

m
E(cos θ zf

zv
+ sin2 θ

v

zf

z cos θ
) � C[f] (2)

Based on the uniform spatial electric field, elastic collision
plays a major role when the electric field intensity is not high
(generally less than 1000Td). The binomial approximation
method can be used to reduce the complexity. Here, f is
expanded as Eq. 3.

f(v, t, z, cos θ) ≈ f0(v, t, z) + f1(v, t, z) cos θ (3)

where θ is the angle between the electron velocity vector and the
direction of the electric field, and f0 and f1 correspond to the
respective homogeneity and heterogeneity of the electron energy
distribution function, respectively.

Take Eq. 3 into Eq. 2, and the Legendre polynomial expansion
is performed. Then the following two equations are obtained by
integrating θ:
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Here,C0 is the variation of f0 caused by collision; σm and σk are the
total collision cross section and the collision cross section of
reaction k, where reaction k represents any collision reaction, m2.

According to the separation variable method, Eq. 4 can be
combined as Eq. 5:

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
z

zε
[ ε

3σm

zf0

zε
(E
N
)2

+ ε2(f 0 + kbT

e

zf0

zε
)] � S

f 1 � E

N

1
σm

zf0

zε
, σε � ∑ 2

m
M
σk, S � ∑

k�in
Ck − cλε

1
2f

(5)

In Eq. 5, N denotes the number density of neutral gas molecules,
m−3; T represents temperature, K; kb represents Boltzmann
constant; M represents particle mass; σε is the effective cross
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section of the total elastic collision; k � in represents all inelastic
collision reactions, S represents loss term for inelastic collisions.

The electron energy distribution function can be obtained by
solving f0 and f1, which provides the basis data for the subsequent
solution of various electron transport parameters.

2.2 Calculation of Electronic Collapse
Parameters
The electron energy distribution function in charged air is
determined by the Boltzmann equation. According to its
EEDF, the reduced ionization coefficient (α/N), reduced
attachment coefficient (η/N), and effective ionization
coefficient[(α-η)/N] in air can be calculated. The reduced
ionization coefficient and reduced attachment coefficient
(Morrow and Lowke, 1997) are obtained by Eq. 6.

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
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where, F0 represents the stable energy distribution function by
applying Boltzmann binomial approximation method to f; V
represents the electron drift velocity; Qi and εi represent the
effective cross section and critical energy of ionization reaction,
respectively; Qa and εa represent the effective cross section and
critical energy of the adhesion reaction, respectively; and ε is the
electron energy, J.

2.3 Applied Reactions and Cross-Sectional
Data
In order to simplify the calculation, air components are
considered as 80% nitrogen and 20% oxygen, and H2O is
considered to study the effect of humidity on air gap discharge
processes. The applied electron collision reactions are shown in
Table 1. Their cross-sectional data are from the LAXCAT
database. The parameters set in this paper are as follows:

standard atmospheric pressure, background temperature
300 K, and reduced electric field 50Td–300Td (1Td � 10−21 Vm2).

3 ANALYSIS OF ELECTRON TRANSPORT
PARAMETERS AND INSULATION
PERFORMANCE OF AIR

3.1 Verification of Simulation Model in
Dry Air
In this section, the dry air pressure is the standard atmospheric
pressure, the relative humidity is 0%, and the air temperature is
300 K. The collision reactions include reactions 1–43 in Table 1.

3.1.1 Electron Energy Distribution Function
Distribution
The calculated electron energy distribution is shown in Figure 1.
The number of low-energy electrons is much higher than that of

TABLE 1 | Applied electron collision reactions.

Number Specific reaction Reaction type

1 e + N2 � > e + N2 Elasticity
2–23 e + N2 � > e + N2 Excitation
24 e + N2 � > e + N + N Excitation
25 e + N2 � > e + e + N2 + Ionization
26–27 e + O2 � > O2- Attachment
28 e + O2 � > e + O2 Elasticity
29–42 e + O2 � > e + O2 Excitation
43 e + O2 � > e + e + O2 + Ionization
44 e + H2O � > H2 + O Attachment
45 e + H2O � > OH + H- Attachment
46 e + H2O � > e + H2O Elasticity
47–50 e + H2O � > e + H2O Excitation
51 e + H2O � > e + e + H2O+ Ionization

FIGURE 1 | Electron energy distribution function (EEDF) distribution of
dry air.

FIGURE 2 | The variation of ionization coefficient and attachment
coefficient with reduced electric field.
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high-energy electrons under the same electric field; the number of
low-energy electrons decreases with reduced electric field while
the number of high-energy electrons increases. When the electron
energy is 0–3 eV, the average electron energy decreases with the
reduced electric field; when the electron energy is greater than
3 eV, the average electron energy increases with the reduced
electric field. The increase of electric field increases the electrons
speed and their kinetic energy. Electrons are more likely to collide
and ionize with molecules in the air.

3.1.2 Electron Transport Parameters Calculation
The reduced ionization coefficient and reduced adhesion
coefficient calculated according to Eq. 6 are shown in
Figure 2. As shown in Figure 2, as the reduced electric field
exceeds 100 Td, the reduced ionization coefficient increases
exponentially with the reduced electric field, which has the
same tendency with results by Morrow and Nikonov. The
variation of ionization coefficient is mainly caused by the high
electric field. The high electric field can greatly increase the
number of high energy electrons in air that leads to the
increasing number of collision ionization between electrons
and molecules.

The reduced adhesion coefficient increases first and then
decreases with the reduced electric field. As the reduced
electric field is below 150 Td, the variation curve of
attachment coefficient with reduced electric field calculated is
between those obtained by Morrow and Nikonov. When the
reduced electric field is below 200 Td, the adhesion coefficient
increases with the reduced electric field. Hence, under the low
reduced electric field, the energy of electrons is low, and the
adhesion process is easy to occur. When the reduced electric field
exceeds 200 Td, the adhesion coefficient decreases with the
reduced electric field. The electrons are accelerated by
obtaining more energy at such high electric field that make
them difficult to be attached.

3.2 The Effect of Humidity on Electron
Transport Parameters and Insulation
Performance of Air
To study the effect of humidity on electron transport parameters
and insulation performance of air, the relative humidity in the air
is set as 0%, 30%, and 60%, respectively.

3.2.1 Effect of Humidity on Electron Transport
Parameters
The reduced electron mobility (μ/N) and reduced electron
diffusion coefficient (D/N) are important parameters during
air discharges, which can be obtained from the electron
energy distribution. Figure 3 shows the variation of the
approximate electron mobility and approximate electron
diffusion coefficient with the approximate electric field
under different relative humidity conditions calculated based
on Boltzmann’s equation.

As shown in Figure 3, μ/N decreases with the reduced electric
field, and the reduction rate is faster with lower electric field. The
increasing electric field can increase the kinetic energy of

electrons, which accelerates the irregular movement of
electrons and inhibits the directional migration of electrons.
Thus, the reduced electron mobility decreases. Under the same
reduced electric field, the reduced electron mobility decreases
with the air humidity. For every 30% increase in relative
humidity, the reduced electron mobility decreases by about
0.25 × 1023 [1/(V·m·s)] indicating that the presence of water
molecules hinders the electron mobility. The influence of
humidity on D/N is similar, the electron diffusion coefficient
increases with the reduced electric field. Under the same reduced
electric field, the reduced electron diffusion coefficient decreases
with the air relative humidity. For every 30% increase in air
humidity, the reduced electron diffusion coefficient decreases by
about 0.2 × 1024 [1/(m.s)] showing that water molecules can
weaken the diffusion of electrons.

3.2.2 Effect of Humidity on Effective Ionization
Coefficient and Insulation Performance of Air
In the Thomson discharge theory, the ionization coefficient or the
attachment coefficient is defined as the average number of
ionizations or attachments per unit length of electrons moving
along the electric field. It is used to characterize the collision
ionization and electron adsorption ability of particles and
electrons (Prasad, 1959; Chen, 2016). During air discharges,
the Thomson ionization coefficient is mainly affected by the
collision ionization between electrons and nitrogen molecules,
and oxygen molecules and water molecules. The Thomson
attachment coefficient is affected by the adhesion between
electrons and molecules. Since the adsorption coefficient of N2

approximately is equal to 0, the adsorption reaction here mainly
considers the adsorption of electrons and O2 molecules
(Xingliang et al., 2009; Xiaobo et al., 2010).

Considering the effect of water molecules, the calculation
of ionization coefficient and adhesion coefficient should
be modified accordingly. The reduced ionization coefficient
and adhesion coefficient in wet air can be calculated by
Eq. 7.

FIGURE 3 | The variation of electron transport parameters with reduced
field strength under different humidity.
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⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
α �HPw(0.001(EP)2

−0.06(E
P
)+1.0)+Pd(4.7786e−211P/E)

η �H
Pw

P
ηs +Pd(0.01298− 0.54×10−3(E

P
)+ 0.87×10−5(E

P
)2)
(7)

Here, H represents the relative humidity in the air. Pd is dry air
partial pressure, Pw is saturated vapor partial pressure, and unit is
Torr. ηs is the adhesion coefficient of water vapor, in m

2. When E/
p ≤ 37.6 V/(cm.Torr), ηs/p � 3.67 × 10−5 (E/P)2 + 0.026 (E/
P)−0.273. When E/p ≥ 37.6 V/(cm.Torr), ηs/p � −2.5 × 10−5 (E/P)
2–2.5 × 10−4 (E/P) + 0.23. E is the electric field intensity, and the
unit is V/cm.

According to the above formulas, the reduced ionization
coefficient and the reduced attachment coefficient are mainly
affected by the electric field, and the relative humidity has little
effect on them. The density of water molecules in the air increases
accordingly with the relative humidity. Collision ionization
between electrons and water molecules in the air increases
with humidity, resulting in an increasing reduced ionization
coefficient. However, for the low electric field and low electron
energy, the effect of humidity on ionization is not obvious. The
water molecules adsorb electrons to form negative ions, which
plays a leading role in the total collision process. The increase in
relative humidity increases the density of water molecules in the
air, and the adhesion will be more obvious. Therefore, the
adhesion coefficient increases with the humidity.

Due to the adsorption effect of air, the ionization coefficient
will be weakened in collision ionization process. The effective
ionization coefficient is applied for the difference between the
reduced ionization coefficient and the reduced attachment
coefficient. Figure 4 shows the effective ionization coefficient
variation under different air relative humidity conditions. The
effective ionization coefficient first decreases and then increases
with the reduced electric field. The effective ionization coefficient

decreases slightly with the relative humidity. Under the same
reduced electric field, the effective ionization coefficient decreases
about 4 × 10−24 m2 for each 30% increase of air relative humidity.

As shown in Table 2, the critical breakdown electric field
increases with the air relative humidity. This is caused by the
increasing electron attachment velocity and the decreasing
collision ionization velocity. More water molecules capturing
free electrons in the air become negative ions, inhibiting the
occurrence of collision ionization. Therefore, the increasing
relative humidity of the air will increase the critical breakdown
electric field and improve the air insulation performance.

4 CONCLUSION

According to the collision cross-section data of different electron
collision reactions, the reduced ionization coefficient, reduced
attachment coefficient, and effective ionization coefficient under
different humidity are studied with Boltzmann equation.
Conclusions are as follows:

1) The electron energy distribution is mainly affected by the
reduced electric field. With the increasing reduced electric
field, the proportion of low-energy electrons decreases, and
the proportion of high-energy electrons increases, while the
reduced ionization coefficient increases, and the reduced
adhesion coefficient increases first and then decreases.

2) When the reduced electric field remains unchanged, the
electron transport parameters are affected by the relative
humidity of the air. As the air relative humidity is
increased from 0% to 60%, the reduced electron mobility
decreases by about 0.5 × 1023 [1/(V·m·s)], the reduced electron
diffusion coefficient decreases by about 0.4 × 1024 [1/(m·s)],
and the effective ionization coefficient decreases by about 8 ×
10−24 m2.

3) With the increasing relative humidity, the number of low-energy
electrons increases and the number of high-energy electrons
decreases, resulting in the increasing critical breakdown electric
field of the air gap. The simulation results show that when the
temperature is 300 K, the pressure is 1.0 atm, the relative
humidity increases from 0% to 60%, and the critical
breakdown electric field increases by 4%.
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FIGURE 4 | Variation of effective ionization coefficient with reduced
electric field under different humidity.

TABLE 2 | Critical breakdown electric field under different humidity.

Relative humidity (%) Critical breakdown electric
field (V/cm)

0 29,889
30 30,375
60 31,104
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