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Global climate problems caused by the overuse of fossil energy need to be settled urgently.
To solve global warming threatening human life and production, environmental control
policies have been proposed as the mainstream ways to push renewable energy
development worldwide, such as carbon tax, carbon trading, emissions trading, and
fiscal subsidies. This study examines how carbon tax and carbon emission trading policies
could be coupled with subsidy policies to better promote renewable energy development.
The data come from seven carbon emission trading pilots from 2013 to 2017 in China.
Based on the evolutionary game, the research simulates the onshore wind power
investment to deeply explore the spontaneous evolution process. Considering carbon
tax and carbon emission trading policies, the two evolutionary game models are
constructed under the context of fiscal subsidy policy, respectively. The results show
that, under the scenario of carbon trading and subsidy policy coordination, investors will
vote for wind farms and under the scenario of the carbon tax and subsidies coordination,
investors will pay the funds in coal-fired power generation. Besides, this is worth noting that
excessive carbon tax may give rise to the shrinking of the power industry. Accordingly, it is
suggested that the government should continue to implement the carbon emission trading
policy andmaintain the free quota below 80% and the carbon emission trading price above
120.02 yuan/ton.
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INTRODUCTION

Excessive use of fossil fuel emissions has begotten a series of climate problems seriously affecting
human normal production and life, such as the greenhouse effect, global warming of 2°C, and rising
sea levels. Therefore, carbon emission reduction has been a consensus all over the world in
formulating environmental policies. As the world’s largest carbon emitter, China accounted for
29.38% of global carbon emissions in 2019 (International Energy Agency, 2021). China’s efforts to
reduce emissions are pivotal to the world. President of the People’s Republic of China Xi Jinping
delivered an important speech at the general debate of the 75th UNGeneral Assembly that China will
achieve carbon neutrality by 2060.

The power sector is the largest source of carbon emissions in China, accounting for about half of
China’s total carbon emissions. Coal-fired power generation in China accounted for more than 69%
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of total carbon emissions in 2019 (Wang P. et al., 2021).
Implementing a carbon tax or carbon emission trading policy
is beneficial to curbing coal-fired power generation, encouraging
renewable energy generation, and reducing carbon emissions.
China promotes the development of renewable energy using
financial subsidies. As of June 2021, the central government
has allocated more than 600 billion yuan in subsidies, leading
to a large shortfall in renewable energy subsidies (Ministry of
Finance of the People’s Republic of China, 2021). Obviously, only
relying on financial subsidies policy is not sustainable. Renewable
energy development requires more carbon reduction policies to
achieve carbon neutrality in 2030 and 2060.

China has made attempts on the path of carbon emissions
trading; a nationwide carbon emission trading market in China
was not operational before mid-2021, with only seven carbon
trading pilots in place before then. The first pilot was built in
2013, Shenzhen. Currently, only 2,871 renewable energy power
projects are qualified for carbon trading (China National
Development and Reform Commission, 2021). However, with
the launch of a nationwide carbon emission trading market, high-
energy-consuming industries would enter the carbon emission
trading market and increase the demand for carbon allowances,
and the quota supply of renewable energy power generation
enterprises should increase, leading the renewable energy
power generators to achieve more carbon reduction benefits.
The carbon emission trading policy still has a long way to go.
Besides, the other effective emission policy, carbon tax, has not
been implemented in China. Hence, when subsidies are gradually
withdrawn, the comparative effects of carbon tax and carbon
emission reduction policies are worth exploring.

From a theoretical point of view, under the conditions of a
competitive market with completely symmetrical information,
the policy effects of the carbon tax and carbon emission trading
are the same, and both can achieve Pareto optimality (Wu et al.,
2014). However, because the government and investors often do
not have access to complete information, designing the best
carbon tax level or the best tax exemption limit to meet the
total emission standard becomes a problem. Therefore, this study
explores how the carbon tax and carbon emission trading can
promote the development of onshore wind power in China’s
power industry to achieve emission reduction targets as soon as
possible.

This study adopts the trading data from all the carbon
emission trading pilots in China, including Beijing, Shanghai,
Tianjin, Chongqing, Guangdong, Shenzhen, and Hubei
provinces. It focuses on free quotas at different levels and
provides a basis for evaluating reasonable carbon prices.
Moreover, the input-output information in the evolutionary
model allows us to consider the repeated investment of
investors, which is in line with the actual situation.
Furthermore, this research explores the impact of different
subsidies, carbon tax rates, and free allowances for carbon
emission trading on wind power investment and provides the
policy basis for the continued growth of wind power investment
after the decline of subsidies. The rest of the article is as follows:
Literature Review reviews previous studies; Model establishes the
evolutionary game model of the investment willingness in coal-

fired power plants or wind farms in China, which is motivated by
the carbon tax or carbon emission trading policy; Investment
Simulations presents the numerical analysis under subsidy,
carbon tax, and carbon emission trading based on the data
from seven carbon emission trading pilots; and Conclusion
section concludes the study.

LITERATURE REVIEW

Carbon taxes and carbon emission right trading are often used to
promote the development of renewable energy. The general
equilibrium model and econometric model are commonly
used to compare the emission reduction effects of these two
policies (Robinson, 2010; Aflaki and Netessine, 2017; Poelhekke,
2019; Kök et al., 2020; Chen et al., 2021). These studies analyzed
the relationship between the economic, energy, and
environmental sectors under the overall macroeconomic
framework and analyzed energy consumption and
environmental changes under subsidy, carbon tax, and
emission trading policies. As summarized in Table 1, most
studies analyzed the sector from a macro or meso perspective,
but a few analyzed it from a micro perspective of enterprises
selection (Li et al., 2021). Enterprises are the executors of the
policy. The enterprise’s perspective could reflect the effects of
policy implementation in a bottom-up manner, making the
policy effect more relevant to reality.

From the perspective of enterprises, optimization and game
theory methods are usually used to study renewable energy
investment under the carbon tax and carbon emission trading
policies (Liu and Zhao., 2015; Bai and Xu, 2016; Chen et al., 2021).
Bai and Xu (2016) studied the optimal production and emission
reduction investment strategies for manufacturers under the limit
of carbon emissions and carbon transactions. In addition to
manufacturing, the power industry also vigorously promotes
carbon emission reduction. Liu and Zhao (2015) analyzed the
production decision-making problems of power companies
under different energy consumptions affected by the renewable
energy tariff subsidy policy, the technology research and
development (R&D) investment subsidy policy, and the
carbon emission price policy. Further research was based on
carbon emissions trading, carbon tax, and subsidy to study the
production decision of power enterprises. Zhang et al. (2017)
demonstrated that carbon emission trading could help reduce
subsidies. They used stochastic processes to describe electricity
market prices, CO2 prices, and investment costs to establish a real
options model of optimal subsidies for renewable energy power
generation projects. Goulder et al. (2022) analyzed the power
generation and emissions of thermal power in a carbon trading
pilot by matching analytically and numerically solved models,
concluding that carbon trading gave positive incentives to power
plants with lower emissions to expand their output. Although the
previous studies discussed the decision-making behaviors of
power companies under the low-carbon policy, these decisions
often concentrated on the production decision-making and R&D
decisions of enterprises. This study focuses on the investment
decision-making problem of investing in new units.
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Low-carbon policies would promote renewable energy
generation in the power industry, ultimately reducing carbon
emissions. According to the statistics of the International Energy
Agency (2021), The sum of carbon dioxide emissions in China’s
electricity and heat sectors account for 9.58% of total carbon dioxide
emissions of all sectors. Reducing emissions in the power industry by
encouraging renewable energy generation can help achieve China’s
carbon neutrality.

Game theory is a relatively suitable method in power investment
decision-making (Lu et al., 2014). The Cournot competition model,
the Bertrand competition model, the SFE model, and the
evolutionary game model are common ways to simulate the
investment decision in the power industry (Gao and Sheng, 2003;
Shafie-Khah, 2013; Lu et al., 2014; Liu et al., 2015;Wang et al., 2021a;
Wang et al., 2021b). Among the four, the evolutionary game model
does not require participants to be completely rational and
emphasize a dynamic equilibrium. In the real game between the
investors, information is generally incomplete and imperfect, and
participants are not completely rational, so they need to achieve
equilibrium through the continuous game, trial, error, and learning.
Thesemodels considered the choice of investors when implementing
policies but ignored the repeated trial and error game process
between investors and the imitating attempts between

participants. The evolutionary game theory considers bounded
rationality, learning mechanism, and decision-making process,
which is more in line with reality (Vincent and Newsom-Davis,
1985). This article uses the evolutionary game theory to build a
model to analyze the impact of the carbon tax and carbon emission
trading policies on wind power and thermal power investment.

However, there are further improvements in the above studies. 1)
Most research studied the power sector from a macro or meso
perspective (Barragán-Beaud et al., 2018; Hu et al., 2020; Fu et al.,
2021), but few studies analyzed it from a micro perspective of
enterprises selection. With the establishment of China’s carbon
emission trading market, more enterprises will be included in the
market access scope in the future. At that time, as the beneficiaries
(investment in renewable energy power) and purchasers (investment
in coal-fired power), the correct investment decisions towards
enterprise will increase its right in the carbon market. 2) However,
most existing studies use static analysis (Taghizadeh-Hesary et al.,
2021; Fu et al., 2021). Such analysis is difficult to describe the
repeatability and dynamics of enterprise investment and hard to
reflect changes in firms’ investment behavior over time. This leads
to inaccurate long-term forecasts, allowing policy effects to deviate
from the original design. 3) Besides, in terms of exploring enterprises’
investment decisions, the decisionmodel and assumptions needmore

TABLE 1 | Recent studies on carbon tax and carbon emission trading policies.

Authors Publication Scope Method Research
perspective

Carbon reduction
policy

Barragán-Beaud et al.
(2018)

Energy Policy Mexico Balmorel-MX model The power sector Carbon tax and
carbon emission
trading

Hu et al. (2020) Journal of Cleaner
Production

China Game theory-Cournot model Remanufacturing
industry

Carbon tax and
carbon emission
trading

Jia and Lin (2020) Technological Forecasting
and Social Change

China The CEEEA (China Environmental-
Energy-Economy Analysis) model

National Carbon tax and
carbon emission
trading

Zhao et al. (2019) Renewable Energy China Mathematical modeling National Carbon tax and
carbon emission
trading

Fu et al. (2021) Science of the Total
Environment

China FCGE model National Carbon tax

Zhang et al. (2020) Journal of Environmental
Management

China CGE model National Carbon tax

Li et al. (2021) Journal of Cleaner
Production

Low-carbon community Game theory-Nash bargaining P2P Carbon tax

Domon et al. (2022) Regional Science and
Urban Economics

Urban Mathematical modeling Residents Carbon tax

Taghizadeh-Hesary
et al. (2021)

Journal of Economic Policy
Reform

Japan ARDL model Household Carbon tax

Gugler et al. (2021) Journal of Environmental
Economics and
Management

Germany and Britain Mathematical modeling National Carbon tax

Zhang et al. (2022) Resources, Conservation
and Recycling

China Robust optimization-based
dynamic generation expansion
planning model

Power system Carbon tax

Cao et al. (2019) Energy Economics China Dynamic CGE model National Carbon emissions
trading

Luo et al. (2022) Journal of Cleaner
Production

Guangdong-Hong Kong-
Macao Greater Bay Area in
China

The AIM/Enduse model Power system Carbon emissions
trading
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discussion. Few studies analyzed the effects of the carbon tax and
carbon emission trading under the same model, and the conclusions
between different studies could not be compared. TheCGEmodel and
its extension rely heavily on hypothetical parameters when simulating
the effect of carbon tax or carbon emission trading policy, while the
values of parametersmay still be different when different articles study
the same country and the same department (Cao et al., 2019; Zhang
et al., 2020). Therefore, the conclusions drawn using CGE are not
suitable for direct comparison.

The marginal contribution of this study to the current
literature could be summarized as follows: 1) the impact of
carbon emission reduction policies on investment in renewable
energy generation is analyzed under the carbon tax and carbon
trading policies from the perspective of enterprises investment,
respectively, which enriches the study of enterprise perspective; 2)
the dynamic model of the evolutionary game theory was used in
this research to reflect the evolution of enterprises investment;
and 3) analyzing carbon tax and carbon trading policies under the
unified method makes the results more comparable.

MODEL

Carbon taxes and carbon emission right trading are often used to
promote the development of renewable energy. The government
needs to consider the appropriate policies and their combination
to promote investment in renewable energy. China’s carbon
emission trading pilot has been successfully operated for many
years, and China has a complete tax system. Thus, this article only
studies the carbon tax policy and carbon emission trading policy.
Under the exogenous low-carbon policy, we considered the price
of carbon emission trading to be relatively stable in a certain
period because the impact of carbon emissions from new units is
also small on the entire electricity market and the balance of the
existing carbon emission trading market. Besides, given that the
proportion of new power generation to total power generation is
very low, in 2019 and 2020, the ratio is 2.04% and 2.56%,
respectively (China National Energy Administration, 2020;
China National Energy Administration, 2021), it is assumed
that the power generation of new power plants will not affect

FIGURE 1 | The framework of evolutionary game theory for an investment decision.
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the overall on-grid price; that is, the on-grid price P will not be
affected by the amount of power generation Q.

The conceptual framework of the research is shown in Figure 1.
The evolutionary game is employed to investigate the investment of
wind power under carbon tax or carbon emissions trading. Under
different low-carbon policies, thermal and wind units possess
different costs and benefits. When the profit of thermal turbines
is greater than that of wind turbines, more investors will invest in
thermal turbines, and when the profit of thermal turbines is less
than that of wind turbines, more entrepreneurs will inaugurate in
wind turbines until the game results in an evolutionary stable
equilibrium or a partial equilibrium. The government implements
a policy of corporate investment in wind power according to the
results of the corporate game to promote corporate investment in
wind power and achieve China’s carbon peaking and carbon
neutrality goals.

Evolutionary Game Matrix for Investors
The basic idea of the evolutionary game is that participants have
different strategic choices, in which they choose their strategy while
obeying a certain probability distribution. According to the income
of the previous game, the participants will reduce the probability of
selecting a low-yield strategy and increase the probability of selecting
a high-yield strategy in the next game. The evolutionary game
assumes that the game object is randomly selected from a large
population, and the extracted samples are played according to the
established rules. The results will be fed back to the large population,
and the distribution of the random extraction will be changed. The
above process will be repeated until the evolution is stable.

Following Stanford Encyclopedia of Philosophy (2021), consider
a 2 × 2 bimatrix game, the two pure strategies of investors in
population A (investor A) are investing in wind power units (A1)
and investing in thermal power units (A2), and two pure strategies of
investors in population B (investor B) are investing in wind power
units (B1) and investing in thermal power units (B2). Let aij denote
the payoff to investor A using strategy Ai when it meets investor B
using strategy Bj, and denote the payoff to investor B in this
interaction by bij so that we have the payoff matrix:

Inverster B
B1(wind)B2(thermal)

Inverster A
A1(wind)

A1(thermal) ( a11, b11 a12, b12
a21, b21 a22, b22

), (1)

Investor Strategy Choice for Investing in
Thermal Power and Wind Power
Profit Function for Investing in Thermal Power
Following Yao (2015), the payoff function of thermal power
investors is given by Eq. 2. The function contains the revenue
of electricity sales, the cost of coal, and carbon dioxide emission
cost:

πthermal � PQthermal − Cthermal − CCO2, (2)
whereP represents the power price, Qthermal represents the power
generation of the thermal units, Cthermal represents the cost of

thermal power generation, andCCO2 represents the carbon dioxide
emission cost which differs in government policies. When the low-
carbon policy is a carbon emission trading policy, the cost of the
carbon dioxide emission equals PCO2(1 − β)eQthermal. While the
policy is carbon tax policy, the cost of the carbon dioxide emission
equals tQthermal, where PCO2 represents the carbon emission
trading price, β represents the free emission allowances for
thermal power units, e represents the carbon emission factor,
and t represents the value of the carbon tax.

Profit Function for Investing in the Wind Power
Following Yao (2015), Gartman et al. (2016a), and Gartman et al.
(2016b), the payoff function of wind power investors is given by
Eq. 3. The function contains the revenue in the electricity sale, the
subsidies given by the government, the cost of building the wind
power unit, and the revenue πwind in carbon dioxide emission
trading:

πwind � (P + S)Qwind − Cwind + RCO2 (3)
S represents subsidies, Qwind represents the power generation of
the wind power units, Cwind represents wind power units’
generation cost, RCO2 represents the carbon revenue of wind
power units. When the low-carbon policy is a carbon emission
trading policy, the revenue equals PCO2QCO2, and while the policy
is a carbon tax, it equals 0, whereQCO2 represents the reduction of
CO2 approved by the government.

Replicator Dynamics for Investors
If the probability of investor A investing in the wind power units
is x, then the probability of investor A investing in the thermal
power units is 1-x. If y is the probability of investor B investing in
the wind power units, 1-y is the probability of investor B investing
in the thermal power units. Following Friedman (1991) and
Stanford Encyclopedia of Philosophy (2021), the replicator
dynamics for the bimatrix game 1) is given as follows:

dx

dt
� x(E(A1) − Ε(A))

� x(1 − x)((a12 − a22)(1 − y) + (a11 − a21)y)dy
dt

� y(E(B1) − Ε(B))
� y(1 − y)((b21 − b22)(1 − x) + (b11 − b12)x) (4)

where E(A1) and E(B1) are the profits of strategies A1 and B1,
respectively, and E(A) and E(B) are the average profits of
investors A and B, respectively.

Let f(x) � (b21 − b22)(1 − x) + (b11 − b12)x. There are three
kinds of cases.

If f(x) = 0, then ypϵ[0, 1]. In other words, when
x � b22−b21

b11+b22−b21−b12, the strategy of investor A will not change,

where y* means the probability of the situation, in which
investor B builds wind power units after a rescaling of time. If
f(x) < 0, then y* = 0, which means investor B will eventually invest
in the thermal power unit. If f(x) > 0, then y* = 1, which means
investor B will eventually invest in the wind power unit.

Let f(y) � (a12 − a22)(1 − y) + (a11 − a21)y, there also are
three kinds of cases:
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If f(x) = 0, then xpϵ[0, 1]. In other words, when
y � a22−a12

a11+a22−a21−a12, the strategy of investor B will not change,

where x* means the probability of the situation, in which
investor A builds wind power units after a rescaling of time. If
f(y) < 0, then x* = 0, whichmeans investor A will eventually invest
in the thermal power unit. If f(y) > 0, then x* = 1, which means
investor A will eventually invest in the wind power unit.

Following Li et al. (2015), the evolutionary game has four
boundary equilibria [(0, 0), (1, 0), (0, 1), (1, 1)] and one interior
equilibrium ( b22−b21

b11+b22−b21−b12,
a22−a12

a11+a22−a21−a12). Two states, (0, 0) and (1,
1), are locally asymptotically stable. They correspond to the two strict
Nash equilibria (A2, B2) and (A1, B1). The final result is determined
by the revenue of the wind power units and the thermal power units.
The mixed equilibrium ( b22−b21

b11+b22−b21−b12,
a22−a12

a11+a22−a21−a12) is a saddle

point. The evolution game phase diagram is shown in Figure 2.
In Figure 2, the evolution process and the steady population state

are affected by the initial state of the system and the relative position of
the saddle point D. When the initial state falls in the OD region
(i.e., the yellow region), the evolutionary game system converges to O
(0,0). At this time, investors all decide to build thermal power units.
When the initial state falls in the BD region (i.e., the green region), the
evolutionary game system converges to B (1,1). At this time, investors
all decide to build wind power units. However, investors will not reach
equilibrium in other regions. If SBD > SOD (i.e., the green area is larger
than the yellowone), the systemwill evolve along the green pathwith a
higher probability of building wind power units. If SBD < SOD, the
system will evolve along the yellow path with greater probability of
building thermal power units. If SBD � SOD, the probability of
building wind power units is equal to building thermal power
units, and the evolutionary direction of the system is not clear.

INVESTMENT SIMULATIONS

Parameter Initialization Settings
This study counts all the approved wind farm projects from 2013 to
2017 in China Certified Emission Reduction Exchange Info-Platform
(China National Development and Reform Commission, 2021) and
selects the average value of the on-grid energy and the carbon dioxide

emission reduction from 393 wind farm projects with an installed
capacity of 49.5MW. The 49.5MW wind farm was chosen because
most of the newly built wind farms in China have an installed capacity
of it as wind farms whose installed capacity above 50MW requires
approval of the National Energy Administration. Meanwhile, other
wind farms only require local government’ approval. In the numerical
example, the CO2 emission of the wind turbine is QCO2, which is
90,157.91 tons. We set the installed wind power unit’s capacity Rwind

as 49.5MWand the installed thermal power unit’s capacityRthermal is
49.5MW too. According to the IEA data, the carbon dioxide emission
of the standard coal is 2.46 kg CO2/kg, and the consumption of
standard coal is 309 g per kilowatt-hour power generation. Then, we
calculated the carbon dioxide emission factor e as 760.14 g CO2/KWh.
The coal price is taken from the average price of the
January–December 2017 coal price index issued by the National
Development and Reform Commission Price Testing Center. For
the subsidy for wind power, the calculation principle is the on-grid
price of wind power minus the on-grid price of coal-fired power
generation. The current on-grid price of onshore wind power is
calculated according to the four types of resource zones in China,
and the on-grid price of coal-fired power generation is calculated by
province. The above calculation results show that, by December 2017,
the maximum subsidy in China is 0.233 yuan/kWh in Qinghai
province, and the minimum subsidy is 0.0586 yuan/kWh in Hebei
South Network, thus obtaining the subsidy range, that is,
0.0586–0.233 yuan/kWh.

The other parameters in our simulation are shown in Table 2.

The Result of Simulation
Baseline Scenario
Basically, China only implements the fiscal subsidy policy for
wind power units, such as the carbon revenue of wind power units
RCO2 � 0 and the cost of carbon dioxide emission CCO2 � 0. The
cost of thermal power generation Cthermal contains the variable
cost CV

thermal and the fixed cost CF
thermal. The variable cost of

power generation per MV capacity unit of a thermal power plant
comprises the coal cost and other costs from labor, maintenances,
management, and taxes. According to Yao (2015), the fuel cost of
thermal power generation accounts for about 70% of the variable

FIGURE 2 | Phase diagram of investors evolution game.

Frontiers in Energy Research | www.frontiersin.org March 2022 | Volume 9 | Article 8112346

Sun et al. Carbon Tax Versus Emissions Trading

https://www.frontiersin.org/journals/energy-research
www.frontiersin.org
https://www.frontiersin.org/journals/energy-research#articles


cost. Therefore, the power generation cost per MV coal-fired
power unit can be described as follows:

CV
thermal � Ccoal/0.7 � Pcoal(hthermale700/05500)/0.7, (5)

where CV
thermal is the thermal power variable cost of generating

1 MW energy, Ccoal is the cost of coal during the power
generation, Pcoal is the coal price. Fixed cost CF

thermal is the
cost of annualized construction units, the thermal power unit
running time is usually 30 years, and the wind power unit can
normally run for 25 years. Now, the cost of thermal power
generation is about 0.24 yuan/kWh, and wind power
generation is about 0.44 yuan/kWh.

When the financial subsidy is less than 0.047 yuan/kWh,
investors will choose to invest in the thermal power units.
When the subsidy is more than 0.047 yuan/kWh, investors will
choose to invest in the wind power units, as shown in Figure 3.
In Figure 3, point D (x*, y*) coincides with point O (0, 0). No
matter where the initial situation is, all evolutionary directions
eventually point to point B (1, 1), and the evolution result is

(1,1), which means investors A and B all choose wind power
generation. It is suited for the actual situation and proves that
our model is reasonable. At the end of 2017, China’s renewable
energy subsidy gap has reached 100 billion yuan, unsustainable
for the wind power industry (Polaris solar photovoltaic
network, 2018). Therefore, it is necessary to reduce subsidies
and promote renewable energy development through a policy
combination.

The Carbon Emissions Trading and Subsidy Scenario
In China’s carbon emission trading pilot areas, the average
carbon emission trading price during 2017 was 27.85 yuan/ton
in Shenzhen, 50.48 yuan/ton in Beijing, 23.35 yuan/ton in
Shanghai, 14.28 yuan/ton in Guangdong, 13.70 yuan/ton in
Tianjin, 18.52 yuan/ton in Hubei, and 4.01 yuan/ton in
Chongqing. Therefore, this section discusses the impact of free
quotas on the game when the carbon trading prices are 5, 10, 15,
20, 30, and 50 yuan/ton. The different carbon emission trading
prices and financial subsidies are brought into the evolutionary

TABLE 2 | Parameter and the value in our model.

Symbol Meaning Value Data source

P On-grid price 0.3894 yuan/
kWh

Notice of the National Development and Reform Commission on Reducing the On-Grid Electricity
Price of Coal-Fired Power Generation and the Price of General Industrial and Commercial Electricity
(2015)

CF
thermal Fixed thermal power engineering unit

cost
4105.5 yuan/kW China Power Industry Annual Development Report (2018)

CF
wind Fixed wind power engineering unit

cost
7,719 yuan/kW China Power Industry Annual Development Report (2018)

CV
wind Variable wind power engineering unit

cost
5,400 yuan/kW Yao (2015)

hthemal Thermal power utilization hours 4209 h National Electric Power Industry Statistics Express (2017)
hwind Wind power utilization hours 1948 h National Electric Power Industry Statistics Express (2017)
Pcoal Coal price 515.99 yuan/ton National Development and Reform Commission Price Monitoring Center (2017)

FIGURE 3 | Simulation results in the basic scenario.
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game matrix, and the results under different conditions are
obtained in Table 3. In the results, (0,0) represents the
evolutionary game reaching the evolutionary stability
equilibrium (ESS), where all investors invest in the thermal
power units. (1,1) represents the evolutionary game reaching
the evolutionary stability equilibrium (ESS), where all investors
invest in the wind power units. (0,1) and (1,0) represent the
evolutionary game reaching partial equilibrium, in which investor
A invests in thermal power units and investor B invests in wind
power units, and investor A invests in wind power units and
investor B invests in thermal power units, respectively. Figure 4
shows some typical simulation results of different carbon trading
prices under different subsidies in the carbon emission trading
policy. Figure 4A implies that investors arrive at the evolutionary
stability equilibrium for wind power. Figure 4B means the
evolutionary game of investors reaches partial equilibrium, and
the investment evolution direction of investors in green and
yellow regions is random. Investors in these two regions may
eventually invest along the red region or the blue region. Both red
area and blue area mean that the investment is in an evolutionary
unstable equilibrium state, with both investors investing in wind
power and thermal power. At this point, investors are likely to
invest in both wind power and thermal power. In Figure 4C, all
investors prefer thermal power to reach evolutionary stability
equilibrium.

Table 3 shows that when the current financial subsidies are
implemented, some investors invest in thermal power units, and
others invest in wind turbines, which is the same as the real world.
This finding is consistent with Luo et al. (2022), stating that the
carbon trading policy does not play a role in carbon emission
reduction under a 95% free quota. Besides, for comprehensive
consideration, this study also analyzes more possible scenarios
compared to the previous studies, the free quota at 80% and
60%. Under these two kinds of quotas, the lowest carbon
emission trading price corresponding to enterprises’
investment in wind power is different, and enterprises can
optimize their investment decisions according to our
guidance price. The results of both papers conclude that the
carbon trading mechanism can play a better role when the
carbon trading price reaches 120 yuan/ton.

Additionally, we can reduce government financial pressure by
increasing the price of carbon emission trading and reducing the
free emission allowances of thermal power units. According to
our simulation, if the free emission allowance of thermal power
units is cut from 95% to 60% and the carbon trading price is
greater than 120.02 yuan/ton, then the government can save at
least 4020 million yuan per year (China National Energy Bureau
2017). The government could adapt to local conditions and
change the access conditions in different regions, indirectly
guiding the carbon emission trading price and changing the

TABLE 3 | Simulation results in the carbon emission trading policy.

Subsidy (yuan/kWh)

Carbon trading price (yuan/ton) 0 0.047 0.056 0.1372

β � 95%

5 (0,0) (0,0) (0,0) (0,1), (1,0)
10 (0,0) (0,0) (0,0) (0,1), (1,0)
15 (0,0) (0,0) (0,0) (0,1), (1,0)
20 (0,0) (0,0) (0,0) (0,1), (1,0)
30 (0,0) (0,0) (0,0) (0,1), (1,0)
50 (0,0) (0,0) (0,0) (0,1), (1,0)

If the investor invests in wind power units when the subsidy is canceled, the carbon trading price needs to be greater than 187.85 yuan/ton

β � 80%

5 (0,0) (0,0) (0,0) (0,1), (1,0)
10 (0,0) (0,0) (0,0) (0,1), (1,0)
15 (0,0) (0,0) (0,0) (0,1), (1,0)
20 (0,0) (0,0) (0,0) (0,1), (1,0)
30 (0,0) (0,0) (0,0) (0,1), (1,0)
50 (0,0) (0,0) (0,0) (1,1)

If the investor invests in wind power units when the subsidy is canceled, the carbon trading price needs to be greater than 151.22 yuan/ton

β � 60%

5 (0,0) (0,0) (0,0) (0,1), (1,0)
10 (0,0) (0,0) (0,0) (0,1), (1,0)
15 (0,0) (0,0) (0,0) (0,1), (1,0)
20 (0,0) (0,0) (0,0) (0,1), (1,0)
30 (0,0) (0,0) (0,0) (0,1), (1,0)
50 (0,0) (0,0) (0,0) (1,1)

If the investor invests in wind power units when the subsidy is canceled, the carbon trading price needs to be greater than 120.02 yuan/ton
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free emission quotas of thermal power units. By the above
methods, the government can choose not to subsidize wind
power units to alleviate the fiscal pressure.

The Carbon Tax and Subsidy Scenario
Studies on China’s optimal carbon tax never implemented in
China are extremely different. This section separately solves the
evolutionary game under different carbon tax levels. In China, the
study shows the carbon tax should include 17.18, 36.49, 40, 81.08,
and 132 yuan/ton (Yao and Liu 2010; Zhang 2011; Wang et al.,
2012). China Carbon Forum (CCF) and ICF International
Consulting Co., Ltd. jointly released the “China Carbon Price
Survey” in August 2015. The result shows that the expected
carbon tax in 2020 is 40 yuan/ton. According to the Carbon
Pricing Watch 2017 report released by the World Bank, Mexico,
Poland, and Ukraine have a carbon tax of less than 1 $/ton. The
carbon tax is 84 $/ton in Switzerland, 52 $/ton in Norway, 33
$/ton in France, 25 $/ton in Denmark, and 126 $/ton in Sweden.
In summary, we set the carbon tax in this section as 20, 40, 80, and
130 yuan/ton. The carbon emission cost of coal-fired units is

determined by the carbon tax, and the tax rate of the carbon tax is
set by the Chinese government.

Table 4 shows the results of the carbon tax policy; that is, when
the subsidy is 0.1372 yuan/kWh, enterprises with carbon prices
higher than 40 yuan/ton will invest in wind power. Otherwise,
they would invest in thermal power is in accordance with recent
studies Zhao et al. (2019) and Gugler et al. (2021). Based on the
previous study, the study also analyzed the situation of the
investment without subsidy to imitate the investment behavior
of enterprises after subsidy declining. The future of China’s
carbon reduction policy will be subsidy-free. The study could

FIGURE 4 | Typical simulation results in the scenario (A) evolutionary to (1, 1) whichmeans investor invest in wind power. (B) evolutionary to (0,1) (1,0) whichmeans
investor invest in wind power and thermal power. (C) evolutionary to (0,0) which means investor invest in thermal power.

TABLE 4 | Simulation results in the carbon tax policy.

Subsidy (yuan/kWh)

Carbon tax (yuan/ton) 0 0.047 0.056 0.1372
20 (0,0) (0,0) (0,0) (0,1), (1,0)
40 (0,0) (0,0) (0,0) (1,1)
80 (0,0) (0,1), (1,0) (0,1), (1,0) (1,1)
130 No investment (1,1) (1,1) (1,1)
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provide the basis for the government to predict the behavior of
enterprises and promote the policy formulation to encourage
enterprises to invest in wind power, so as to ensure the
achievement of China’s double carbon target. We can see from
the table that carbon taxes can replace subsidies, but there is a
possibility to lead to a power industry shrinking when subsidies
are too low or carbon taxes are too high.

DISCUSSION

In this article, the evolutionary game is employed to study the
investment of wind power under subsidy, carbon tax, and carbon
emissions trading. By simulation analysis of the evolutionary game
process, the impacts of free allowances, subsidy, the price of carbon
emissions trading, and carbon tax are discussed. Then, under the
two low-carbon policies, we conduct an in-depth scenario analysis
to investigate the influences of those variables on the strategic
evolution of participants. The results can be summarized as follows:

(1) The evolutionary game of investors has five partial equilibrium
points, representing the following five cases: a) all investors invest
in wind power units; b) investor A invests in wind power units
and investor B invests in thermal power units; c) investor A
invests in the thermal power unit and investor B invests in wind
power units; d) all investors invest in thermal power units; and e)
investors invest in thermal power units and wind turbines in a
certain proportion. a and c are evolutionarily stable strategies.

(2) In the carbon emission trading policy, the government can
change the price of carbon trading and the free emission
quota of thermal power units and effectively reduce subsidies
by means of multiple measures. In contrast, the government
will turn to nothing but tax reduction to reduce subsidies on
the carbon tax policy.

(3) In the two policies of the carbon tax and carbon emissions
trading, the stability of the evolutionary game is more
sensitive to the carbon tax policy, which means that the
government’s choice of carbon tax policy is more conducive
to guiding investors’ investment behavior, while carbon tax
policies could lead to policy failures, so carbon emission
trading policy is more suitable for China.

(4) There are some other partial equilibrium points in carbon
emissions trading, in which investors will invest in wind
power units and thermal power units. This will make the
process of energy transition more gradual in China.

CONCLUSION

This research analyzes the impact of subsidies, carbon tax policies, and
carbon emission trading policies on the investment in wind power
units and thermal power units to promote carbon emission reduction.
Based on a simulation of the model with the carbon emission trading
in Beijing, Shanghai, Tianjin, Chongqing, Guangdong, Shenzhen, and
Hubei provinces, the result shows that when the free quota is below
80%, free quotas can make up for the negative impact of reduced
subsidies on wind power investment. Moreover, by simulating the

impact of investment under a carbon tax, this article finds it is difficult
to determine a reasonable carbon price, and fluctuations in carbon
prices are likely to cause investment to switch from wind power to
thermal power. Excessive carbon prices will even reduce investment in
the power industry and gradually shrink.

Based on the above research results, to promote the
development of wind power, this study proposes the following
policy recommendations. 1) From the perspective of promoting
renewable energy development, carbon emission trading is more
effective than carbon tax policy in China. This study suggests that
the government implements the carbon emission trading policy
cause without the subsidy, and investors would prefer to invest in
wind power under the carbon emission policy rather than carbon
tax policy. In the absence of subsidies, only the implementation of
carbon emission trading policy could increase the proportion of
investment in wind power and achieve China’s double carbon
target. 2) The reduction in wind power investment caused by the
reduction of subsidies should be offset by the free allowance for
carbon emission reduction trading. By this means, the wind
power development plan could be reached without increasing
the government subsidy gap. After the calculation, the
government could reduce the total subsidy about 4020 million
yuan per year by reducing the free quote from 95% to 60%. The
establishment of appropriate quotas and trading prices of carbon
emission rights could maintain the enterprises to continue to
invest in wind power during the non-subsidy transition period
and prevent the wind power investment from cooling down. 3)
The future carbon emission trading market should be designed
according to the price and free quota proposed in this research.
The scenario analysis in the research is detailed and
comprehensive, and the resulting free allowance and carbon
trading prices are credible and could provide anchor prices for
future carbon trading. The free allowances’ proportion in the
carbon emission trading policy should not be higher than 80%.
Once the subsidies are canceled, the carbon emission trading
price should be 151.22 yuan/ton. When the free quota is 60%, the
removal of subsidies will lower the carbon emissions trading price
to 120.02 yuan/ton. Only by establishing a carbon emission
trading market with such free quotas and carbon prices range,
could enterprises be encouraged to invest in wind power and
realize the wind power development plan of China’s “Economic
and Social Development during the 14th Five-Year Plan Period".

Nevertheless, this article still has some limitations which can be
addressed in future research. Above all, the uncertainty faced by
wind power, for instance, the change in the cost of power
generation of coal-fired units caused by changes in coal-fired
power prices and changes in the price of a carbon-emission
trading investment, can be discussed in future research. Next,
this article only analyzes the two scenarios of carbon tax, subsidy
and carbon emissions trading, which can partially describe the
situation that may occur in reality, but there are far more scenarios
in reality. The impact of low-carbon policies such as green power
certificates on wind power could be simulated. Ultimately, this
article does not consider the preferences of different types of
investors. Therefore, the environmental preferences of investors
should be investigated in the future to refine the impact of low-
carbon policies on investment in wind power.
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