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Since 2020, the COVID-19 has spread globally at an extremely rapid rate. The epidemic,
vaccination, and quarantine policies have profoundly changed economic development and
human activities worldwide. As many countries start to resume economic activities aiming
at a “living with COVID” new normal, a short-term load forecasting technique incorporating
the epidemic’s effects is of great significance to both power system operation and a
smooth transition. In this context, this paper proposes a novel short-term load forecasting
method under COVID-19 based on graph representation learning with heterogeneous
features. Unlike existingmethods that fit power load data to time series, this study encodes
heterogeneous features relevant to electricity consumption and epidemic status into a load
graph so that not only the features at each time moment but also the inherent correlations
between the features can be exploited; Then, a residual graph convolutional network
(ResGCN) is constructed to fit the non-linear mappings from load graph to future loads.
Besides, a graph concatenation method for parallel training is introduced to improve the
learning efficiency. Using practical data in Houston, the annual, monthly, and daily effects of
the crisis on power load are analyzed, which uncovers the strong correlation between the
pandemic and the changes in regional electricity utilization. Moreover, the forecasting
performance of the load graph-based ResGCN is validated by comparing with other
representative methods. Its performance on MAPE and RMSE increased by 1.3264 and
15.03%, respectively. Codes related to all the simulations are available on https://github.
com/YoungY6/ResGCN-for-Short-term-power-load-forecasting-under-COVID-19.

Keywords: COVID-19, graph data modeling, graph representation learning, residual graph convolutional network,
short-term load forecasting

1 INTRODUCTION

1.1 Background
The construction and operation of the electric power industry are of great importance to society. On
the one hand, the power supply is indispensable to various industries. As reported by the Bureau of
Energy Statistics, China’s total electricity consumption reached 71,508.20 billion kWh in 2020,
increasing by 8.49% compared with 2019. The growth trend will continue with the development of
China’s economy. On the other hand, electricity utilization is emission-free, making replacing fossil
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energy sources with electric energy an essential means to achieve
the carbon neutrality pledge (Liu, 2015).

Short-term load forecasting for the future 24 h is one of the
most critical techniques to ensure system stability, reliability, and
economic efficiency. It affects power system operation in many
aspects, including generation dispatch, power flow optimization
(Chen et al.,; Meng et al., 2016), and energy bidding in the
electricity market. Significant variabilities and uncertainties
have been introduced by the diverse end-users and the ever-
increasing shares of renewables (Li and Lu, 2020). As a result,
accurate short-term load forecasting is a hard task in modern
power systems.

Unfortunately, the outbreak of COVID-19 since early 2020
has posed extraordinary challenges on short-term load
forecasting. As shown in Figure 1A, the virus has spread
globally and in Figures 1B,C the cumulative number of
confirmed diagnoses is increasing and in a rapid growth trend,

with over two billion cumulative confirmed cases until August 25,
2021. It has been reported by (Ruan et al., 2020; Ruan et al., 2021)
that the crisis has profoundly affected electricity unitization
attributed to changes in people’s living habits and industrial
production activities. Such effects vary spatially due to the
differences in infection speed, vaccination coverage, and
quarantine policies, resulting in additional variabilities and
uncertainties in electricity consumption as (Figure 2).

However, the infection has seen fast growth in the past
3 months. According to the World Health Organization
(WHO, 2020) and the most recent research (Huang et al.,
2020), the fight against COVID-19 is far from over, and its
effects will last. Instead of sticking to strict quarantine
policies or aiming at a sustained zero infection level, many
countries start to resume economic activities and incorporate
disease prevention and control into the day-to-day operation of
society. In this context, a short-term load forecasting technique

FIGURE 1 | COVID-19 situation worldwide and in China (updated August 25, 2021). (A) Distribution of confirmed cases of COVID-19; (B) Global cases of COVID-
19; (C) Daily new confirmed cases at home and abroad.
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incorporating the effects of COVID-19 is of great significance to
both power system operation and economic development,
facilitating a smooth transition to a “living with COVID”
new normal.

1.2 Literature Review
The effects of the pandemic on domestic and international
regional electricity consumption are highly uncertain, which
vary with infection speed and quarantine policies. Some
published reports have preliminarily drawn qualitative
conclusions: “electricity consumption decreases during the
pandemic, but the grid remains reliable” (Bui and Wolfers,
2020; Cicala, 2020). However, the epidemic’s effects are
multifaced and cannot be summarized simply by load

reduction (Agdas and Barooah, 2020; Werth et al., 2020).
Although (Ruan et al., 2020) has shown significant deviations
between the simulated forecasts and the actual loads if the crisis’
effects are omitted, explicitly describing the complex effects and
incorporating them into load forecasting are still open questions.

The existing short-term load forecasting can be classified into
traditional statistical methods and machine learning-based
forecasting algorithms. The traditional statistical methods are
simple and computationally efficient, such as multiple linear
regression algorithm (Amral et al., 2007), sliding average
forecasting algorithm (MAF), differential integrated autoregressive
integrated moving average model, (ARIMA) (Gupta and Kumar,
2020), and exponential smoothing (ES) (Rendon-Sanchez and De
Menezes, 2019). Although they have achieved desired performance
in simple tasks under normal and stable conditions, their robustness
declines dramatically when they are applied to power load
forecasting, which involves non-linear and highly uncertain
operation constraints (Kharin, 2013); By contrast, the machine
learning-based forecasting algorithms are tasked to learning the
non-linear mapping from exogenous information to the power load
using historical data. For example, (Li et al., 2020) uses a fuzzy
clustering approach to classify regional users and then builds
respective random forest-based forecasting models for each class;
Besides, (Li et al., 2021) and (Wang et al., 2020) make short-term
load forecasts for heating load and electrical load, respectively, based
on long short-term memory network (LSTM). However, the above
three methods adopt equal weights for all the input features, which
are correlated and exert different influences on power load. As a
result, the equal-weight treatment cannot enable the model to learn
efficiently. Therefore, (Zhu et al., 2021) introduces the attention
mechanism into the LSTM to enable deep learning of correlated
input features, which improves prediction accuracy. Although LSTM
outperforms other methods in mining the intrinsic information of

FIGURE 2 | Schematic diagram of the impact of COVID-19 pandemic on power grid load.

FIGURE 3 | Graph representation of power load and epidemic status.
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the time-series data, it cannot deal with multi-source information,
making it less preferable for power load forecasting. Current research
has shown that the fusion ofmultiple data can play an important role
in artificial intelligence networks, (Zhang et al., 2021) has proved that
with the coordinated control of electrolysis current, temperature, and
charging/discharging of BES for H2 production, the electrolysis
current fluctuation cost is largely reduced and the electrolysis
efficiency can be improved. Therefore, considering multiple
factors in load forecasting can improve accuracy.

As a graph representation learningmethod, graph convolution
network (GCN) can dig deeper into the intrinsic relationship of
heterogeneous data by defining Fourier transform and
convolution on the graph. As pioneering attempts, (Han et al.,
2021) has built a GCN to forecast nitride emissions from coal-
fired power plants, while (Wang and He, 2021) has built a graph
attention network (GAT) for fault location in distribution
networks. Their results demonstrate that GCN is a promising
tool with powerful learning ability and generalization capability.

1.3 Contributions
Based on the research gap in short-term load forecasting and the
recent progress in GCN, this paper encodes heterogeneous
features related to electricity consumption and status of
COVID-19 into a load graph and build a graph representation
learning model to fit the complex mapping between the present
load states and the load forecasts for the future.

The contributions in this study can be summarized as follows:

(1) Load graph encoding heterogeneous features. Each node in
the graph corresponds to one time moment, while the edge
weights are defined to represent temporal correlations
between the nodes. The node features are defined
with electricity consumption and epidemic status
information so that the heterogeneous features can be
fused in a graph.

(2) ResGCN with parallel training to learn graph representations
and to forecast future loads under COVID-19. By learning
residual from the input, ResGCN prevents over-smoothing
and fits the mapping from heterogeneous features to the

future loads. Besides, a graph concatenation is proposed for
parallel training so that the learning efficiency can be
improved significantly. Based on this method, precise
short-term power load forecasting under COVID-19 is
realized, laying the foundation for the stable operation of
the power system.

2 SHORT-TERM LOAD FORECASTING
BASED ON RESGCN WITH
HETEROGENEOUS FEATURES

2.1 Load Graph Encoding Heterogeneous
Features
2.1.1 Feature Selection to Describe Epidemic Status
TheCOVID-19 crisis has had a significant impact on people’s living
habits and industrial production activities and thus has led to
changes in electricity consumption. To incorporate such effects into
power load forecasting, it is important to identify the most
representative features to describe the epidemic development status.

Herein, the COVID-EMDA + dataset is adopted, denoted as S,
which has collected multi-source features from various sources in
the United States since the epidemic, including weather
temperature, human behavior, cell phone distribution, and so
on. These features describe human activities from different
aspects, while those showing similar extents of fluctuations as
the epidemic develops are assumed to be more representative.
Therefore, after data cleaning and normalization, the Pearson
correlation coefficients between all the features in the dataset are
computed. Then, the representativeness of each feature is assessed
by the absolute value of its correlation coefficients with the
others, as

hi,j �
∣∣∣∣∣ρ(Fi, Fj)∣∣∣∣∣, Fi, Fj ∈ S (1)

where Fi and Fj denote features i and j, respectively.
Finally, the features with higher values of h are selected as

inputs. In our implementation, the final selected futures are daily

FIGURE 4 | Framework of ResGCN for short-term load forecasting.
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confirmed cases, mobility in grocery and pharmacy, and the
counts of mobile devices locating at home. Apart from the
three features describing the epidemic status, the temperature
is also taken as input, which is acknowledged to exert significant
effects on electricity utilization.

2.1.2 Graph Representation of Electricity
Consumption and Epidemic Status
The historical load reflects people’s electricity consumption
habits which can occur similarly in the future so that it is an
informative reference in load forecasting. However, in the face
of COVID-19, load levels are associated not only with the
historical states but also with the epidemic status, as discussed
in the last section. The load profiles defined in Euclidean space
cannot describe the correlations between the features. By
contrast, graph data can be a promising alternative, which
is defined in non-Euclidean space consisting of nodes and
edges and can encode structural and correlation
information(Figure 2).

Thus, this paper proposes to encode the multi-source features
within time window Tk as a load graph, so that not only the
features are contained at each time moment, but also the inherent
correlations between the features can be considered. As shown in
Figure 3, the load graph is fully connected and undirected,
denoted as G(A,X), where A is the adjacent matrix while
X ∈ RN×d is node feature matrix. The features of nodes and
edges are defined as follows.

(1) Node feature encoding heterogeneous information.

Each node corresponds to a time moment within Tk while the
node feature vector encodes heterogeneous information essential
to load forecasting. The feature vector of node i, whose transpose
is the ith row of input feature matrix X ∈ RN×d, can be
formulated as

�Xi � [ �Pi, �Ci, �Mi, �Si, �Wi]T (2)

where �Pi � [Pi(t)], t ∈ [1, Tk], �Ci � [Ci(t)], t ∈ [1, Tk],
�Mi � [Mi(t)], t ∈ [1, Tk], �Si � [Si(t)], t ∈ [1, Tk], �Wi �
[Wi(t)], t ∈ [1, Tk] denote vectors of power load, daily
confirmed cases, mobility of grocery and pharmacy, and the
counts of stay-at-home mobile devices, and temperature,
respectively.

(2) Edge weight describing the temporal correlation.

The edge weights are defined to represent the temporal
correlations between the node, based on the assumption that
features of closer time moments exhibit more inherent
correlations. Herein, the Gaussian kernel function is selected
to define the edge weight due to its monotonicity and
localizability, as

ωi,j � e−
‖ti−tj‖2

2ξ (3)

where ti and tj denote time moments of nodes i and j, respectively.
ξ is the scale parameter, which is essential to generalization
performance. Finally, with training data in [0, TL] and sliding
size n, this paper collects a total of (TL − Tk)/n + 1 load graphs as
inputs into the ResGCN.

2.2 Load Forecasting Based on ResGCN
2.2.1 Problem Statement
Graph representation learning refers to the technique which
extracts desired high-dimension features of a graph so that the
representation can be easily used by downstream tasks (Xia et al.,
2021). In this paper, the short-term load forecasting problem can
be stated as: Given a set of load graphs {G1, G2, . . .GL}, L �
(TL − Tk)/n + 1 and the actual following 24-h load records as
labels {y1, y2, . . .yL}. Our goal is to learn a model that can make
24-h forecasts for unseen load graphs.

Although traditional convolutional neural networks
perform well in text processing and image recognition, they
can only process data in Euclidean space. To that end, there
has been an increasing interest in generalizing convolutions to

FIGURE 5 | Configuration of a ResGCN block.
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the graph domain (Jie and Gc, 2020). GCN is one of the most
popular methods, which learns node representations by
passing and aggregating messages between neighbor nodes
while preserving the topological structure. However, an
aggregation process with kth GCN layers makes use of
information of k-order neighbors. As a result, GCN can
over-smooth the representations when more GCN layers
are stack. Therefore, inspired by the residual modeling, this
paper designed a residual graph convolutional network
(ResGCN) (Li et al., 2018).

2.2.2 Framework of ResGCN
As shown in Figure 4, the proposed ResGCN comprises the
following components:

(1) Fully connected layer, which transforms the graph-structured
representations into a sequence V;

x(1)
i � W(0)x(0)

i + b(0) (4)

(2) Residual graph convolutional network (ResGCN) blocks,
each of which is tasked to learn an encoder
ε(A,X): ∈ RTk×Tk × RTk×F → RTk×F’

such that the output
Z � { �z1, �z2, . . . �zTk} is high-level node representations, where
F and F’ are the dimension of input features and the
dimension in the embedding space, respectively;

(3) LSTM layer, which extracts features from the input
sequence V;

(4) Pooling layer with attention, which compresses the outputs
by LSTM so that the redundant information can be removed.
The pooling operation can be expressed as

X � xave‖xmax (5)

xave � 1
N

∑N
i�1

xi (6)

Xmax � maX{X1, X2,/, XN} (7)

where || denotes the concatenation of vectors.
(5) Fully connected layers integrating element-wise activation

functions, which map the final graph representations to the
forecasts of future 24-h load, as

x(k)
i � W(k−1)(W(k−2)x(k−2)

i + b(k−2)) + b(k−1) (8)

2.2.3 Construction of one ResGCN Block
Without loss of generality, denote the input of one ResGCN block
as X ∈ RN×F while the output as Z ∈ RN×F’

. Instead of learning
the original mapping h: X ∈ RN×F → Z ∈ RN×F’

directly, the
stacked layers in one ResGCN block aim at learning the
residual mapping defined as f(X) � h(X) − X, which is easier
to optimize and can mitigate the over-smoothing. Therefore, the
original mapping is recast as f(X) + X.

As shown in Figure 5, the operation for f(X) + X is realized
by a shortcut connection which is simply an identity mapping.
The identity mapping ensures that the deeper model is at least

FIGURE 6 | Graph concatenation for parallel training.
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FIGURE 7 | Distribution of cumulative confirmed cases in the United States

TABLE 1 | Inputs and hyperparameters of compared algorithms.

Algorithms Inputs Hyperparameters

ARIMA Load 48 h before the forecast day Maxp: 5; Maxq: 5
MAF Load 48 h before the forecast day P: 2
SES Load 48 h before the forecast day Alpha: 0.6
RF Load 48 h before the forecast day;

Daily confirmed cases
Mobility in grocery and pharmacy
The counts of mobile devices locating at home
The temperature

Number of trees: 100;
Minimum sample number: 1
Maximum depth of tree: 9
Optimizer:Adam
LSTM layer unit: 50
Dense layer1 unit: 1,040
Dense layer2 unit: 520
Dense layer3 unit: 24
Epoch: 500
Batch size: 100

LSTM-DNN
ResGCN

As described in Section 2.1 As described in Section 2.2

FIGURE 8 | Forecasts by different methods. (A) Forecasts on all the testing data; (B) Forecasts on 2020.11.05.
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have the same performance as its shallower counterpart. Besides,
the residual mapping f(X) is fitted using one or two modified
GCN layers, whose general form can be expressed as

x(k)
i � c(x(k−1)

i , Γ
j∈N(i)ϕ(k)(x(k−1)

i , x(k−1)
j ,ωi,j)) (9)

wherex(k)
i is the feature vector of node i in embedding space at the kth

layer; N(i) denotes the neighbors of node i. ϕ is a non-linear
differentiable function, e.g., multi-layer perceptron (MLP), which
updates representation of node i based on node features and edge
weightsωi,jwhile Γ which aggregates representations of the neighbors,

TABLE 2 | Performance metrics of different methods.

ARIMA MAF ES RF LSTM-DNN ResGCN

MAPE/% 14.3367 15.1350 14.8626 10.5937 8.3187 6.9923
RMSE/MW 1,772.93 1,898.86 1,860.48 1,416.99 1,141.81 970.05

FIGURE 9 |Comparison of annual total electricity consumption andmaximum load with and without COVID-19. (A) Annual total electricity consumption; (B) Annual
maximum load.

FIGURE 10 | Comparison of monthly total electricity consumption and monthly total electricity consumption with and without COVID-19. (A) Daily total electricity
consumption; (B) Monthly total electricity consumption.
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which is order invariant such as summation, maximization, and
concatenation; c is a non-linear activation function.

Herein, this paper make modifications of the traditional GCN
to mapping the residual, as

x(k)
i � ReLU(( ∑

j∈N(i)∪​ {i}
(1 − αl) · 1������

deg(i)√ ·
������
deg(j)√ · ωi,j

x(k−1)
j + αl · ωi,j · x(0)

i )((1 − βl)In + βlΘ)) (10)

where Θ is the learnable weight matrix while deg(i) denotes the
degree of the ith node; αℓ and βℓ are decay parameters of the
residual and weight matrix, respectively while In is the identity
matrix.

2.2.4 Construction of one ResGCN Block
The proposed ResGCN based short-term load forecasting is a
regression problem so that the loss function is defined by mean
square error. Besides, the L2 regularization is adopted to prevent
the model from overfitting and to enhance the generalization
ability, as

Loss � 1
T
∑T
t�1

(yt − ŷt)2 + λ

2
·∑

i

ω2
i (11)

where yt is training data while ŷt is the output of ResGCN; λ is
weight decay in case that the penalty term is too large, ωi is the
parameter weight of the net.

With the loss function, ResGCN is trained by Adam, wherein
the data are split into small batches that are used to calculate the
loss function and update the coefficients. Besides, the
EarlyStopping mechanism (Prechelt, 2012) is introduced to
halt the training when the loss function stops to decrease for
several iterations.

2.2.5 Parallel Training
The load graphs in one batch cannot simply be fed into the model
simultaneously, which is not computationally efficient. Therefore,
this paper proposes a graph concatenation method for parallel
training. Specifically, the adjacency matrix A and feature matrix X
of multiple independent load graphs are concatenated
respectively by diagonal, yielding a giant graph with sparse
and large adjacency matrix and feature matrix containing the
information of all the subgraphs, as depicted in Figure 6. Thanks
to the weight sharing mechanism, the training of feeding the giant
graph into ResGCN is the equivalent to training the multiple
subgraphs separately, whereas the computation time can be saved
significantly.

3 CASE STUDIES

3.1 Implementation and Benchmark
Codes related to all the simulations are available on https://
github.com/YoungY6/ResGCN-for-Short-term-power-load-
forecasting-under-COVID-19 for the sake of repeatability.

The COVID-EMDA + dataset (Ruan et al., 2020) is adopted
to validate the proposed method, which is developed by the
group in Tsinghua university led by Prof. Haiwang Zhong, the
primary supervisor of this study, in collaboration with other
two famous groups in Texas A&M University and
Massachusetts Institute of Technology, respectively. It
integrates historical load information from major
United States power markets such as CAISO, MISO, ISO-
NE, and NYISO and other exogenous information such as
epidemic status and population flows, which has won wide
recognition and been published in Joule. The dataset integrates
historical load information from major United States power
markets such as CAISO, MISO, ISO-NE, and NYISO and other

FIGURE 11 | Comparison of daily and monthly maximum load with and without COVID-19. (A) Daily maximum load; (B) Monthly maximum load Monthly.
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exogenous information such as epidemic status and
population flows.

The distribution of confirmed COVID-19 cases in the
United States until January 02, 2021, is shown in Figure 7.
It can be observed that, as the most populous city in Texas,
Houston has as many as 48,225 confirmed cases, ranking in
the second place in the United States Besides, its GDP
exceeded $512 billion prior to the outbreak of the
pandemic, which was more than those of 37 states in the
United States and accounted for 27.8% of that of Texas.
Moreover, as the fourth largest city, it has annual
electricity consumption of nearly 1.08 billion kWh in 2019.
Therefore, the data of ERCOT-Houston from January 23,
2020, to November 23, 2020, were selected from COVID-
EMDA + for training and testing since Houston is
representative in terms of epidemic development, economic
status, and electricity consumption load.

The data is divided into training set, validation set, and test
set in the ratio of 8:1:1. The proposed method is compared
with the other five classical algorithms, including traditional
temporal prediction algorithms, namely ARIMA, MAF, ES,

FIGURE 12 |COVID-19 Status and people’ response in Houston. (A) Daily increase numbers of confirmed cases and deaths; (B) Infection rate and fatality rate; (C)
Changes of working location; (D) Mobility in public places.

TABLE 3 | Forecasting performance of ResGCN with naive load graph.

Before COVID-19
(Year 201)

After the outbreak of COVID-19
(Year 2020)

MAPE/% 6.0021 7.5174
RMSE/MW 1,023.51 1,079.84

TABLE 4 | Forecasting performance of ResGCN with load graph encoding
heterogeneous features.

Before COVID-19
(Year 2019)

After the outbreak of COVID-19
(Year 2020)

MAPE/% — 6.9923
RMSE/MW — 970.05
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machine learning-based method, i.e., Random forests (RF),
and long short-term memory deep neural networks (LSTM-
DNN). The inputs and hyperparameters of the algorithms are
shown in Table 1. Besides, two metrics are selected to assess
their performance, namely mean absolute percentage error
(MAPE) and root mean square error (RMSE), which are
calculated as

MAPE � 100%
n

∑n
i�1

∣∣∣∣∣∣∣∣yi − ŷi

yi

∣∣∣∣∣∣∣∣ (12)

RMSE �
����
1
n
∑n
i�1

√ (yi − ŷi)2 (13)

where ŷi and yi are testing data and forecasts by the algorithms,
respectively, while n is the total number of time moments in the
data set.

3.2 Validation of ResGCN for Short-Term
Load Forecasting
The results on all the test data are shown in Figure 8A while
on 1 day are depicted in Figure 8B, which demonstrates that
the prediction results of the proposed method are closer to the
actual value compared with other algorithms. Besides, it can
be observed from Table 2 that the performance of ARIMA,
MAF, ES, and RF is not satisfactory for both MAPE and
RMSE. Although LSTM-DNN outperforms the above four
methods, its performance is still worse than those of the
proposed method, with increases of MAPE and RMSE by
1.3264 and 15.03%, respectively. This justifies the superiority
of the proposed method over other algorithms in short-term
load forecasting.

3.3 Validation of Changes in Electricity
Consumption Under COVID-19
To validate our argument that the epidemic largely affects electricity
utilization, the differences in power load in 2020 with andwithout the
pandemic are compared. To that end, using historical data during
2017–2019, the load forecasts in 2020 by the well-acknowledged
linear regression are assumed as a benchmark for the electricity
utilization without the crisis.

Firstly, the differences in annual total electricity consumption
and maximum load are analyzed, as shown in Figures 9A, B,
respectively. According to the linear regression-based method,
the total electricity consumption in 2020 should reach 110.142
million kWh. However, it was only 107.757 million kWh in
reality, with a decrease by 2.3851 million kWh. By contrast, the
actual maximum load was higher than the forecasts by 1,284 kW.
The results by the linear regression are reasonable in the sense
that Houston is still in a stage of high growth based on the trend
of its load in the previous 2 years. However, there was a significant
drop in electricity consumption and maximum load, which was
clearly an anomaly likely caused by the changes in industrial
production and economic activities under the epidemic.

Secondly, the differences in daily and monthly total electricity
consumption and maximum load are also compared, as shown in
Figures 10A, B and Figures 11A, B, respectively. It can be seen
that the forecasts by linear regression remain bigger than the
actual values fromMarch to October. Turning to the status of the
epidemic and people’s responses represented, this paper analyze
the data of COVID-19 cases, infection rate and fatality rate,
changes of working location as well as mobility in public places,
which are depicted in Figures 12A-D respectively. It can be
observed that there are similar trends involved in epidemic
development and load changes: On March 13, 2020, then-

FIGURE 13 | Short-term load forecasts with and without considering effects of COVID-19 (2020.10.23-2020.10.26).
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President Trump declared a state of emergency in the United States,
after which the ratio of the working-from-home population increased
while the electricity consumption immediately drops; Besides, the
number of confirmed cases started to increase in late March, resulting
in lessmobility in public places while the load level also kept at a lower
level. Thus, it is safe to draw the conclusion that electricity
consumption is strongly connected with COVID-19 cases and the
level of social activities.

3.4 Validation of Load Graph-Based
ResGCN in Short-Term Load Forecasting
Under COVID-19
With the correlation between COVID-19 and electricity
consumption changes in mind, it is apparent that the effects of
the pandemic shall be incorporated into short-term load forecasting.
To evaluate the proposed load graph encoding heterogeneous
features, this paper compared the method to another graph that
only encodes load and temperature information, termed naive load
graph in the following. Then, the forecasting performance of
ResGCN with the two kinds of graphs are analyzed in the
scenarios with and without COVID-19.

It can be seen from Table 3 that the ResGCN with naïve load
graph achieves a desired performance in load forecasting in the
scenario of the Year 2019, with MAPE as small as 6.0021%.
However, the performance declines after the outbreak of the
pandemic, with an increase in MAPE by around 1.5%. By
contrast, using load graph encoding heterogeneous features, the
forecast performance of ResGCN is much more robust, as shown in
Table 4. The superiority of the proposed method is further validated
by Figure 13, where the forecasts with consideration of COVID-19
are far closer to the actual data. This again justifies that incorporating
the epidemic’s effects can improve the accuracy of short-term load
forecasting, which is of significant value for a newnormal featured by
living with COVID-19.

4 CONCLUSION AND PROSPECTS

4.1 Conclusion
The fight against COVID-19 is far from over, while many countries
start to resume economic development aiming at a “living with
COVID” new normal. In this context, this paper proposes a novel
short-term load forecasting method under COVID-19 based on
graph representation learning with heterogeneous features. Unlike
existing methods that fit power load data to time series, this study
encodes heterogeneous features relevant to electricity consumption
and epidemic status into a load graph, so that not only the features
are contained at each time moment, but also the inherent
correlations between the features can be exploited; Then, a
residual graph convolutional network (ResGCN) is constructed
to fit the non-linear mapping between load graph to future loads.
Besides, a graph concatenation method for parallel training is
proposed to improve the learning efficiency.

The following points can be concluded from the case study
using practical data in Houston:

(1) There are strong correlations between the evolution of
COVID-19 and changes in electricity utilization.

(2) The proposed load graph is capable of exploiting
heterogeneous features, while the accuracy of load
forecasting can be improved significantly by considering
the effects of the pandemic.

(3) The ResGCN outperforms existing short-term load
forecasting methods in accuracy, with a decrease of RMSE
by 15.03% compared with LSTM-DNN.

4.2 Prospects
In the present forecasting methodology with load graph, features
like vaccination rates have not been considered. As the epidemic
develops and vaccination becomes more widespread, these
characteristics will become a non-negligible part of the
epidemic’s impact on the load. Therefore, it remains for us to
refine the load graph as the situation evolves. In addition, the
selected features encoding in the load graph only reflect partial
impacts of the epidemic, while further research is still needed to
grasp their relationships fully.

It is worth noting that the idea of representing load as a graph and
using ResGCN to do the forecasting can be applied not only to the
regional load forecasting under major social and health events such
as epidemics but also to the forecasting tasks that also require the
integration of heterogeneous information, e.g., renewable energy
output forecasting, which will be the direction of our future research.

As for the impacts of the epidemic on load, as the paper
concluded in the case study, they are complex and need to be
studied with respect to local policies. The discussions in this paper
are focused on Houston only. In fact, the responses of the
government and the attitude of people to the epidemic vary
significantly from country to country, so that the situation in a
larger area shall be investigated in the future.
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