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In this paper, the probabilistic model of the controllable distributed generation in active
distribution network is developed and applied to the daily stochastic optimal dispatch. The
probabilistic characteristics of photovoltaic power generation system with active control
capability are explored, and the relationship between the reference value of active power
and its cumulative distribution function and mean value is obtained. The active power
probability model of wind power generation system is improved according to the actual
wind speed power curve. By fully utilizing the inverter capacity and coordinating active
power, the reactive power of distributed generation is actively controlled under the
constraint of power factor. Then considering the chance constraints, a daily optimal
scheduling model for active distribution network with the goal of minimizing the operating
cost of distribution network is developed, and the constraints that can calculate the charge
and discharge times of the energy storage system are designed. The chance constrained
programming is solved by the heuristic method, and the deterministic optimization steps
are solved by the second-order cone programming method, respectively. The probabilistic
power flow method based on stochastic response surface method is utilized to test
chance constraints. Finally, the modified IEEE33 node distribution system example shows
that the obtainedmodels and algorithms are correct and canmeet the requirements of safe
and economic operation.

Keywords: active distribution network, day-ahead optimal dispatch, probability model, controllable distributed
generation, chance constraint

INTRODUCTION

Although the distribution network (DN) is the last part of the power system where the electricity is
delivered to the end users, it shoulders the whole task of the final consumption of electricity. The
construction and operation of DN directly affect the supply quality of all power users as well as the
efficiency of power grid. As an important part of renewable energy technology, DG plays an
important role in DN. The distributed generation (DG) is directly connected to DN, closing to the
load point. It can provide the voltage support and improve the controllability of DN, which creates a
large and adjustable space for optimization. Active distribution network (ADN) is the future form of
DN, which is a technical way to integrate DG and improve the intelligence of DN (Liu et al., 2021;
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Xiao et al., 2021). The ADN is not only a DNwith DG but also has
a number of controllable devices and a variety of control
strategies. DG will take an active part in network dispatching,
which will make DN have much controllability (Wang et al.,
2021). In many research about ADN, optimal scheduling is a core
technology to realize safe and economic operation of DN (Jin
et al., 2019).

The energy coupling of the energy storage system on different
time intervals along with the mixed integer control of various
devices make it relatively difficult for the conventional optimal
scheduling model to adapt to the ADN (Sun et al., 2021; Wu et al.,
2021). Considering all kinds of controllable devices (capacitors,
transformer tap, static reactive generator, DG, ESS, etc.), the
optimal power flow of ADN is a complex mixed integer
nonconvex linear programming problem (Jiang et al., 2018;
Huang et al., 2022)). Considering the randomness of power in
DG under the control strategy, the multi-time stochastic
optimization of ADN will be investigated, which could be an
effective method to solve the optimal scheduling problem
of ADN.

The power control strategies of DG connected inverter include
both active and reactive power controls. The DG should regulate
active power according to the frequency of power grid and
dispatching instructions, and support the grid voltage by
reactive power adjustment (Safa et al., 2018; Li et al., 2019). In
Zeb et al. (2018), the authors summarized the functions of the
advanced grid connected inverter, and analyzed the scheduling
ability and control capability of the inverter type DG. In Safa et al.
(2018), the multi-functional grid connected inverter was taken to
provide necessary reactive power support to DN by actual control
strategy and circuit topology. The intermittent and stochastic
nature of renewable power generation imposes the additional
restrictions on the scheduling and control strategies. In Li et al.
(2017), the self-adjusting forecasting approach for renewable
generations and energy loads was proposed.

Among the active power control of the DG, the most
commonly used method is maximum power point tracking
(MPPT), which is a method to track the maximum active
power point in real time. It is often assumed that all the DGs
are running in the MPPT state. Thus, the light and wind speed
follow some parameter probability density functions, and the
power probability model was obtained according to the power
calculation formula under theMPPT control strategy (Fares et al.,
2021; Yu et al., 2022). However, it is obviously impossible to
obtain a probabilistic model of DG with controllable variables in
this way. For reactive power, it will be impossible to compensate
reactive power flexibly when the fixed power factor strategy is
adopted, and it would increase the fluctuation of the system
because of the random fluctuation of the active power in DG.

Based on the above discussions, in order to make the DG
participate in the DN optimization actively, in this paper, an
active–reactive power decoupling control strategy for DG is
presented. Considering the characteristics of DG, a
controllable power probability model is proposed. In addition,
a day-ahead optimal dispatch of ADN with chance constraints is
also proposed. A heuristic method is utilized to solve the chance
constraint programming. The step of deterministic optimization

in the method adopts the optimal power flow technology based
on second-order cone programming.

The remainder of this paper is organized as follows. The
Probability model of controllable distributed generation section
discusses the power control strategies and probability models of
distributed solar and wind power generation. These models are
employed in theDay-ahead optimal dispatch of active distribution
networks with chance constraints section for day-ahead optimal
dispatch of ADN with chance constraints. The efficiency of the
proposed approach is illustrated on the modified IEEE 33-node
power distribution test system in the Numerical analysis section.
The concluding remarks are given in the Conclusion section.

PROBABILITYMODELOFCONTROLLABLE
DISTRIBUTED GENERATION

In this paper, The DG should have the controllable ability of
active power and reactive power. In the period of strong light or
too high wind speed, the active power of renewable energy can be
reduced properly, and the reactive power optimization can be
realized by adjusting reactive power actively, simultaneously.

In order to study the stochastic optimization of ADN, the DG
should be modeled first. The DG in this paper is modeled in the
form of PQ nodes, so the power probability model is needed.
According to the demand of active and reactive power
coordinated optimization in ADN, the appropriate control
strategy is discussed, and the simulation model is built and
tested. Then the probability model of controlled DG is
constructed by using the kernel density estimation method.
The photovoltaic (PV) system and wind power generation
system are considered in this paper.

Power control strategy and probability
model of photovoltaic system
In order to implement flexible power control, the control strategy
of DG is different from the ordinary ones (Li et al., 2020). The
DC–DC part control strategy of the PV system is as follows: set an
active power reference value first; the PV generation active power
is the same as the reference value when theMPPT power is higher
than the reference value, and the PV active power is the same as
the MPPT power when the MPPT power is lower than the
reference value. The inverter connected to the grid adopts
constant power control, which means that the reactive power
is equal to the reactive power reference value. Thus, the active
power reference value of the PV power control is determined by
the above strategy, and the reactive power reference value is
determined according to the result of optimal operation.
Therefore, when dispatching PV, it is necessary to determine
the active power reference value of the DC–DC link and the
reactive power reference value of the DC–AC link.

In order to analyze the probabilistic model of PV system, the
probability model of light intensity is discussed first. This paper
mainly discusses the problem of daily optimal dispatch of ADNs,
which is based on prediction of wind speed and illumination. Due
to the limited length, it is believed that the application of
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reasonable prediction method can be more accurate to get the
point forecast data in the many intervals of the day. Considering
the prediction error and volatility of renewable energy, the PV
power of a certain period of time is modeled as a random variable
that obeys the normal distribution (for the PV, the mean value is
the active predictive value and the standard deviation is 20% of
the predictive value) (Fares et al., 2021), that is,
~P
t,max
PV ∼ N[Pt,pre

PV , (0.2Pt,pre
PV )2]. The PV system simulation

system is set up on Simulink platform according to the power
control strategy mentioned above, and the power of PV is
generated randomly. The proposed control strategy can be
implemented as shown in Figure 1.

The procedure of the active power probability modeling is
given as follows:

(1) The PV sequence is generated according to the predicted
power probability model and normalized by the predicted
power mean Pt,pre

PV .
(2) In the interval of 0.7 pu–1.3 pu, active reference values Pt

PV,ref
are set at every 0.02 pu.

(3) The photovoltaic power sequence is input into the simulation
system to get the actual power Pi(i � 1, 2, ..., n) under the
reference value Pt

PV,ref .

(4) The probability density function of PV power ~P
t
PV under 31

reference values Pt
PV,ref are obtained by using kernel density

estimation

f̂ref(~Pt

PV) � 1
nh

∑n
i�1
K⎛⎝~P

t

PV − Pi

h
⎞⎠, (1)

where the subscript ref represents the reference value from 0.7 to
1.3 pu, h � 0.025 is the bandwidth, K is the kernel function, and
Gauss kernel function is adopted in this paper.

The cumulative distribution function (CDF) F(~Pt
PV) is

obtained by integrating the probability density function
f̂ref(~Pt

PV). The CDF 3D image of Pt
PV,ref -~P

t
PV and the mean

value E(~Pt
PV) of ~Pt

PV are shown in Figures 2 and 3, respectively.
It can be seen from Figures 2 and 3 that the CDF and the

mean are basically the same as the original normal
distribution when Pt

PV,ref is set as 1.3 pu. When Pt
PV,ref is

0.7 pu, the active power fluctuation is reduced, and the
average active power is reduced to about 0.7 pu at this
time. If the allowable discard rate of PV power is set up to
30%, the reference value Pt

PV,ref is

0.7Pt,pre
PV ≤Pt

PV,ref ≤ 1.3P
t,pre
PV , (2)

If the interpolation is performed on the 3D graph, the CDF
F(~Pt

PV) of any reference value Pt
PV,ref within the adjustable range

can be obtained. It can be considered that F(~Pt
PV) can be

determined merely by function ~F taking Pt
PV,ref as parameter.

The function relationship between E(~Pt
PV) and Pt

PV,ref is obtained
by quadratic regression, which is expressed by

⎧⎨⎩ F(~Pt

PV) � ~F(~Pt

PV, P
t
PV,ref)

E(~Pt

PV) � a1(Pt
PV,ref)2 + a2P

t
PV,ref + a3

, (3)

where a1, a2, a3 are set as −0.86, 2.21, −0.44, respectively.
Based on the above discussion, Eq. 3 represented by the unit

value can be applied to any PV system with different capacities
at any time. Due to the power decoupling control, the reactive
power of PV can achieve its reference value at the same time.
According to the connection requirements of DG (Bai et al.,
2018), the power of PV needs to meet a certain power factor,
where the constraints are formulated as follows

Qt
PV � Qt

PV,ref , (4)

FIGURE 1 | Simulation results based on maximum power point tracking
(MPPT) control strategy and the proposed control strategy.

FIGURE 2 | The CDF 3D image of Pt
PV,ref -~P

t
PV.

FIGURE 3 | The relation between reference value and mean value of
controllable photovoltaic (PV) system.
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−Pt
PV,ref tanφ≤Qt

PV,ref ≤P
t
PV,ref tanφ, (5)

where Qt
PV,ref is the reference value of the reactive power, φ is the

power factor angle of distributed that required for grid
connecting.

According to the power decoupling control (Zeb et al., 2018),
the PV reactive power can be controlled by reference value
independently in this paper. Thus, the reactive power
satisfies Eq. 4.

The control of ~P
t
PV and Qt

PV is achieved by adjusting reference
values Pt

PV,ref and Qt
PV,ref , as shown in Eq. 3 and Eq. 4.

Considering ~P
t
PV as a random variable, the capacity constraint

of the inverter is expressed as

[A × E(~Pt

PV)]2 + (Qt
PV,ref)2 ≤ S2max, (6)

where A is a compensation factor greater than 1, which can avoid
the power over the capacity limitation of inverter. Smax is the
maximum capacity of the inverter.

In this paper, we set A � 1.4. The reason is as follows: if the
~P
t
PV obeys the normal distribution, there is only a 2.28%

probability to exceed the limitation.

Power control strategy and probability
model of wind power generation system
In this paper, the wind speed modeling with random factors is
similar to that of the illumination intensity. It is considered that
point prediction of wind speed in the future intervals is completed
by prediction algorithm with certain accuracy, and if the random
error in a period is considered as normal distribution, then the
wind speed obeys the normal distribution of the mean value as the
predicted value, which is expressed as

~V
t

speed ∼ N[Vt,pre
speed, (0.2Vt,pre

speed)2]. (7)

The probabilistic modeling of wind power generation system
power will be studied. Many distributed wind power generation

systems adopt direct drive wind turbines connected by inverter.
The active power of wind power generation system is not
controlled due to its complexity, and the reactive power
reference value of the inverter connected to a grid is
controlled solely. The active power tracking MPPT varies in
real time according to wind speed. In the case of guaranteed
active transmission, reactive power can be adjusted to within the
permissible range of the inverter. Therefore, the fluctuation of
wind speed will affect the active power of wind power generation
system.

Typical wind speed power curve of wind power generation
system is shown in Figure 4. The power curve of the wind power
generation system is normalized, and the cut in wind speed is set
as 5 m/s, and the cutting speed is 15 m/s. Through the MATLAB
numerical calculation, the CDF 3D image of Vt,pre

speed-~P
t
WT and the

mean value E(~Pt
WT) of ~P

t
WT are shown in Figures 5 and 6,

respectively.
FWT(~Pt

WT) corresponding to wind speed Vt,pre
speed at different

periods can be obtained by two-dimensional interpolation of
Figure 4. It can be considered that FWT(~Pt

WT) is determined by
function ~FWT, and Vt,pre

speed is a parameter of ~FWT. The relationship
between E(~Pt

WT) and the predicted wind speed Vt,pre
speed can be

obtained by cubic function regression

FIGURE 4 | Typical power curve of the wind power generation.

FIGURE 5 | The CDF 3D image of Vt,pre
speed − ~P

t
WT .

FIGURE 6 | Relation between reference value and mean value of
controllable PV system.
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⎧⎨⎩ FWT(~Pt

WT) � ~FWT(~Pt

WT, V
t,pre
speed)

E(~Pt

WT) � b1(Vt,pre
speed)3 + b2(Vt,pre

speed)2 − b3V
t,pre
speed + b4,

(8)

where b1, b2, b3, b4 are set as −0.0014, 0.035, −0.16, 0.17,
respectively.

The modeling of reactive power Qt
WT and its reference value

Qt
WT,ref of the wind power generation system are similar to that of

the PV system. The reactive power control of the direct drive
wind turbine can be realized by the capacity of the inverter. For
convenience, the same correction coefficientA is selected, and the
constraints are given as follows

−E(~Pt

WT) tanφ≤Qt
WT,ref ≤E(~Pt

WT) tanφ, (9)

Qt
WT � Qt

WT,ref , (10)

[A × E(~Pt

WT)]2 + (Qt
WT,ref)2 ≤ S2max. (11)

DAY-AHEAD OPTIMAL DISPATCH OF
ACTIVE DISTRIBUTION NETWORKS WITH
CHANCE CONSTRAINTS
Based on the probabilistic model of the controllable DG, a day-
ahead optimal dispatch model of ADNs with chance constraints
is developed and solved. For convenience, the superscript of
random variable is marked as “∼”.

Modeling
The owner of ADN is the main body of interest. It is assumed that
the dump energy of the storage system is the same every day. The
profit of the owner in a dispatching cycle is detracting the
purchase cost from the superior grid and the reward for
owner of the DG equipment from the payment of the
consumer. The flexible load is not considered in this paper.
The objective function of operation cost of the DN enterprise
is presented as

min∑T
t�1
kt1E(~Pt

01)Δt + k2∑T
t�1

∑
i∈SPV

E(~Pt

PV,i)Δt + k3∑T
t�1

∑
i∈SWT

E(~Pt

WT,i)Δt
+ k4∑T

t�1
∑
i∈SPV

ΔPt
PV,iΔt.

(12)

The objective function does not contain system loss, such
as net loss and charge and discharge loss of energy storage
system. The reason is that network loss is already included in
the sum of the cost of electricity purchased. Therefore, there
is no need to add network loss items into the objective
function.

The constraints are given as follows:

(1) The power flow constraint of branch

For the node j, the equation is given as

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
∑

i∈a(j)
[~Pt

ij − Rij
~l
t

ij] � ∑
k∈b(j)

~P
t

jk + ~P
t

j

∑
i∈a(j)

[ ~Qt

ij −Xij
~l
t

ij] � ∑
k∈b(j)

~Q
t

jk + ~Q
t

j

, (13)

where ~P
t
j and ~Q

t
j are the active power and reactive power of node

j, respectively, which are expressed by

⎧⎨⎩ ~P
t

j � ~P
t

PV,j + ~P
t

WT,j + Pt
charge,j + Pt

discharge,j − ~P
t

L,j

~Q
t

j � Qt
PV,j + Qt

WT,j + Qt
CP,j + Qt

SVG,j − ~Q
t

L,j

(14)

The power flow equation of branch, taking node i as the head
and node j as the tail, is expressed by

~vtj � ~vti − 2(Rij
~P
t

ij +Xij
~Q
t

ij) + (R2
ij +X2

ij)~ltij, (15)

~l
t

ij �
(~Pt

ij)2 + ( ~Qt

ij)2
~vti

. (16)

(2) Chance constraints of state variables

Considering the probability of state variables exceeding the
boundary, the chance constraints are formulated as

⎧⎨⎩ Pr{(Vi,min)2 ≤ ~vti ≤ (Vi,max)2}≥pV

Pr{(Iij,min)2 ≤~ltij ≤ (Iij,max)2}≥pI
, (17)

where Pr{·} is the probability of satisfying the inequality. Vi,min

and Vi,max are the lower bounds and upper bounds of node
voltage, respectively. pV and pI are the confidence level of chance
constraints.

(3) Operational constraints of energy storage system considering
daily charge and discharge times

It is assumed that the residual energy Et
i of this dispatch cycle

is the same as the initial energy of next dispatch cycle. Then the
residual energy model of the energy storage system, accessing into
node i, is expressed as follows

⎧⎪⎪⎨⎪⎪⎩
Et+1
i � Et

i − (ηchargePt
charge,i + Pt

discharge,i/ηdischarge)Δt t � 1, ..., T − 1

E1
i � ET

i − (ηchargePT
charge,i + PT

discharge,i/ηdischarge)Δt
Ei,max × C1%≤Et

i ≤Ei,max × C2% t � 1, ..., T − 1

, (18)

where Ei,max is the maximum storage capacity of the energy
storage system. C1% and C2% are the actual use range of the
energy storage system. ηcharge and ηdischarge are the efficiencies of
charging and discharging.

The power model of the energy storage system is given by

⎧⎪⎪⎨⎪⎪⎩
−Dt

charge,iP
max
charge,i ≤P

t
charge,i ≤ 0

0≤Pt
discharge,i ≤D

t
discharge,iP

max
discharge,i

Dt
charge,i +Dt

discharge,i � 1
, (19)

where Dt
charge,i and Dt

discharge,i are the defined 0-1 variable. The
definition makes the energy storage system in a state of charge or
discharge, and the third state does not exist.
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In this paper, a constraint that can limit the times of state
changes (in charge or discharge) in a dispatch cycle for energy
storage system is proposed. Thus, the storage life of the energy
storage system cannot be shortened due to frequent charging and
discharging. There are three possible values for
Dt−1

charge,i +Dt
discharge,i − 1. If it is equal to 1, it shows that it is

converted from charge to discharge. If it is equal to 0, it shows that
the state of charge and discharge is not changed. If it is equal to
−1, it shows that it is converted from discharge to charge.

Therefore, the constraint of charge and discharge change times
in the energy storage system can be formulated as∣∣∣∣∣D0

charge,i +D1
discharge,i − 1

∣∣∣∣∣ + ∣∣∣∣∣D1
charge,i +D2

discharge,i − 1
∣∣∣∣∣ + ...

+
∣∣∣∣∣DT−1

charge,i +DT
discharge,i − 1

∣∣∣∣∣≤Nlimit, (20)

whereD0
charge,i is the charging state at the end of the previous day,

and Nlimit is the maximum sum times of charge and discharge
states allowed to change.

It is to be noted that it is difficult to consider the change times
of charging and discharging occurring between two dispatch
cycles. Thus, the logic of introducing D0

charge,i is, if D0
charge,i +

D1
discharge,i − 1 is equal to 1 or −1, that means the status between

two dispatch cycles change, and take this time into the later cycle.

(4) Constraint of reactive power compensation equipment

In this paper, capacitor banks and static var generator (SVG)
are used as compensation devices. The capacitance can adjust the
reactive power by integer switching, and SVG can continuously
adjust the output of reactive power. The constraints of tunable
capacitors and SVG for node are expressed as

Qt
CP,i � QCP,BN

t
CP,i, (21)

0≤Nt
CP,i ≤NCP,max Nt

CP,i ∈ Z, (22)

∑T
t�1

∣∣∣∣Nt+1
CP,i −Nt

CP,i

∣∣∣∣≤NCP,limit (23)

Qmin
SVG,i ≤Q

t
SVG,i ≤Q

max
SVG,i, (24)

where QCP,B represents the reactive power of each shunt
compensated capacitor. Nt

CP,i is the number of shunt
compensator capacitors. NCP,max is the maximum number of
inputs of shunt compensator capacitors. NCP,limit is the limited
switching times in a dispatch cycle in order to extend the life span
of the compensation capacitor. Qmin

SVG,i and Qmax
SVG,i are the lower

and upper limits of reactive power for SVG, respectively.

Solution method
A heuristic method is utilized to solve the chance constrained
programming for stochastic optimal power flow (Mühlpfordt
et al., 2020; Fares et al., 2021; Xu et al., 2021). The solving
process of heuristic method is divided into three steps:
optimization calculation, the judging of probability
exceeding the limit, and adjusting the optimization model.
1) The load power and PV output are substituted by the mean
value to obtain the deterministic optimization model and
complete the solution. 2) According to the optimization

scheme, combined with the probability model of load
demand and PV output, the CDF of voltage is calculated by
probabilistic power flow (PPF) to judge whether it meets the
chance constraints. 3) Based on those judgment results, the
deterministic optimization model is adjusted by the heuristic
method, and the above steps are, hence, repeated until the
solution of the model is finally converged in order to obtain a
group of optimization schemes that meet the chance
constraints. The detailed description is omitted here.

Through Eq. 3, the reference value of the active power of the
DG can be uniquely determined by its active power mean.
Therefore, the mean value of the active power can be used
directly as the optimization variable. The objective function is a
linear function. Except for Eq. 16, all the other constraints are
convex constraints. In this paper, the MISOCP method is
adopted (Yang et al., 2020; Kayack and Kocuk, 2021;
Zografou-Barredo et al., 2021). It follows from Bose et al.
(2015) that the non-convex constraint shown in Eq. 16 is
relaxed as

ltij ≥
(Pt

ij)2 + (Qt
ij)2

vti
. (25)

Then, Eq. 25 can be equivalent to the second-order cone form������������
2Pt

ij

2Qt
ij

ltij − vti

������������
2

≤ ltij + vti (26)

It is worth noting that the objective function of this paper is
composed of network loss and PV reduction. The network loss is
an increasing function, which has been proven to be accurately
solved. When the power of PV system is too large, the right term
of Eq. 25 is often smaller than the left term. However, the
equivalent constraint effect of Eq. 16 cannot be realized. By
using the method (Abdelouadoud et al., 2015; Wang et al., 2021),
the optimization solution can be developed as an iteration process
by adding a cut set to each iteration

∑
i∈S

∑
j∈b(i)

Rijl
t
ij,iter+1 ≤ ∑

i∈S
∑
j∈b(i)

Rij

(Pt
ij,iter)2 + (Qt

ij,iter)2
vti,iter

, (27)

where iter is the time of optimal replication. The right side of Eq.
27 is the optimal value obtained last iteration (the value already
determined), and the left side of Eq. 27 is the variable of this
iteration. This formula is a linear constraint added to each
optimization process, which can be solved easily. This
constraint Eq. 27 can be used to ensure that the left side is
equal to the right side in the relaxed second-order cone constraint
Eq. 26.

NUMERICAL ANALYSIS

Configuration of test system
In order to verify the feasibility of DG probabilistic model, the
optimal power flow model of ADN, and the random
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optimization method of ADN proposed in this paper, the
modified IEEE33 node power distribution system is utilized
to illustrate and verify the optimization model, and the model is
shown in Figure 7.

The power reference value is 10 MVA, the voltage reference
value is 12.66 kV, and the voltage of node 0 is 1.05 pu. By
dividing the day-ahead optimization into 24 periods, every
period is 1 h. Nodes 10 and 17 are installed 2 PV systems
(PV1, PV2) with a maximum inverter capacity Smax of
500 kVA. Nodes 24 and 32 have two installed wind power
generation systems (WT1, WT2) with a maximum inverter
capacity Smax of 500 kVA. The cut in wind speed was set to
5 m/s and the cut out wind speed to 15 m/s. The power factor of
DG is set to −0.95∼0.95 according to the specification. The PV
system power prediction curve and load mean curve presented
in Figure 8 are taken from the data on August 7, 2001, Homer
software.

The prediction curve of wind power generation system is
shown in Figure 9, which is based on the wind speed data of a
certain place in China on April 14, 2009.

Consider the random factors in the system as follows: The
inverter capacity is taken as the reference value, the power of
DG is treated as the per-unit value. For PV systems, E(~Pt

PV) is
selected as an optimal control variable, and the probability
model can be obtained after optimizing. ~P

t
WT is determined

by the predicted wind speed. According to the probability
model in the Probability model of controllable distributed
generation section, the load is normalized by the maximum
load of 1.5 pu in the original distribution system, assuming
the load obeys normal distribution, and the 10% load is
standard deviation.

The price of power purchase adopts a peak valley price: 00:00
to 07:00 is 0.49 yuan/kWh, 07:00 to 17:00 and 22:00 to 24:00 is
0.74 yuan/kWh, 17:00 to 22:00 is 0.98 yuan/kWh, where yuan is
the unit of CNY. The electricity price of PV and wind power are 1
and 0.8 yuan/kWh. PV power curtailment compensation
electricity price is set to 2 yuan/kWh.

The parameters of other adjustable devices in the system are
shown in Table 1. The maximum capacity of the energy storage
system (ESS) equipped in node 2 is 5 MWh, and between 20% and
90%, and the charging and discharging efficiency is 98%. The
number of charging and discharging cycles in a day is limited
tofour times, and the number of capacitor adjustable groups is
two. The last time state of the last day is set to discharge
D0

charge,i � 0.
The upper and lower bounds of the chance constraint of the

voltage amplitude for each node in each period are set to 1.05 and
0.95, respectively, and the confidence level is taken as 95%.

Based on the MATLAB + yalmip platform, the SOCP solver of
MOSEK is used to solve the deterministic optimization. The
stochastic response surface method is used to solve the
probabilistic power flow (Ren et al., 2016; Gallego et al., 2021),
which will be used in the solving process. The constrained
boundaries of the state variable are gradually adjusted
according to the heuristic steps. Finally, the stochastic optimal
dispatch for ADN is obtained.

Test results
The proposed algorithm iterates five times and the objective
function of the first iteration is 53,910 yuan, the cost of the
last iteration is 53,920 yuan. The first iteration and the fifth
iteration’s cost of PV power curtailment compensation are the
same (70 yuan), which means no need to curtail PV power.
During the 12:00–13:00 period, Pt

PV,ref corresponds to E(~Pt
PV) �

0.954 pu.
The optimal dispatch of all adjustable equipment is shown

in Supplementary Table SA1 (Supplementary Material). In
the iterative process, nodes that do not meet the chance
constraints are mainly concentrated near the nodes where
wind power is connected. These nodes are 24, 29, 30, 31,
and 32. The average voltage amplitude and
[F−1(5%), F−1(95%)] probability intervals of the first
iteration and the fifth iteration all day of nodes 24 and 32
(wind power injection nodes) are shown in Figure 10. The

FIGURE 7 | A 33-bus radial active distributed network.

FIGURE 8 | PV prediction power curve and load curve.

FIGURE 9 | Wind speed prediction curve.
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probability interval described here is the 90% probability
interval of state variables. F−1 is the inverse function of the
CDF of the node voltage. When the interval exceeds the upper
and lower bounds of the voltage chance constraints, it means
that the probability of voltage that exceeds the bounds is
greater than 5%.

As the wind speed prediction curve shows, the wind speed
in the 2:00–4:00 period is high, and the active power of the
wind power generation system is higher than normal, which
leads to the high voltage of the nodes connected to wind
power generation systems. For the first iteration, the
deterministic power flow shows that the maximum
voltage of node 32 is 1.050 (3:00), which satisfies the
upper bound of the deterministic voltage constraints.

However, the 90% probability interval of these periods is
over 1.05, which means that the chance constraints is not
satisfied.

In the first iteration, the periods do not satisfy the chance
constraints of 32 nodes; the deterministic voltage constraint, the
voltage from deterministic power flow, and 90% probability
interval are shown in Table 2.

In order to reduce the probability risk, the ADN system has
to mobilize the adjustable equipment in the whole system,
which increases network loss to achieve the effect of reducing
voltage. At the fifth iteration, the algorithm ends. The
information of the periods shown in Table 2 has been
changed into Table 3.

Large-Capacity Distributed Generation test
results
The Smax of PV system is adjusted to three times the original
value, that is, 1.5 MVA. The predicted value of PV power
increases with the same proportion, while others remain
unchanged. The first iteration cost is 56,720 yuan. The
iteration ends five times, and the total cost is
58,670 yuan. The compensation cost first time iteration is
280 yuan, fifth iteration, 2,130 yuan. The optimal dispatch is
shown in Supplementary Table SA2 (Supplementary
Material); the unit is the same as that shown in
Supplementary Table SA1.

The power and energy of the energy storage system in each
period are shown in Figure 11. From 11:00 to 14:00, the energy
storage system will charge at the limit of power to reduce the
voltage and minimize the curtailment of PV power. At the end
of the last day, the state of the energy storage system is
discharged; the charging, discharging, charging and
discharging are shown. It should be remembered that the
charging and discharging should each be done two times. It
means the constraints that charge and discharge changing not
more than four times has been satisfied, which verifies the
rationality of the constraint set.

TABLE 1 | Parameters of adjustable device.

Device Location Minimum Maximum Power per unit

Capacitor CP 5 0 900 kvar 300 kvar
SVG 17, 23, 31 −200 kvar 600 kvar Continuous
ESS1 2 −400 kW(Charge) 400 kW (discharge) Continuous

Note. SVG, static var generator; ESS, energy storage system.

FIGURE 10 | Probability intervals of the first iteration and the fifth iteration
all day of nodes 24 and 32.

TABLE 2 | Variables that do not satisfy the chance constraint of 32-node in first iteration.

Period Voltage constraints of
deterministic optimization

Voltage of deterministic
optimal dispatch

Probability intervals of
voltage

2:00–3:00 [0.95, 1.05] 1.047 [1.036, 1.055]
3:00–4:00 [0.95, 1.05] 1.050 [1.046, 1.055]
4:00–5:00 [0.95, 1.05] 1.045 [1.034, 1.053]
5:00–6:00 [0.95, 1.05] 1.041 [1.030, 1.051]
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The average voltage amplitude and [F−1(5%), F−1(95%)]
probability intervals of the first iteration and the fifth iteration
all day of nodes 10 and 17 are shown in Figure 12. The large
capacity of PV system leads to more randomness and wider

probability range, which leads to the upper bound of the interval
exceeding voltage constraints.

In order to adjust the voltage, the method of PV power
curtailment and adjusting other controllable devices is
adopted. The voltage and probability interval of voltage are
reduced. The upper bound of the probability interval is less
than 1.05, which means less randomness and ensures safe
operation. The cost is increasing operating cost of 1,950 yuan,
while increasing the compensation fee of PV power curtailment
for 1,850 yuan.

The above examples illustrate that controlling adjustable
devices is enough when the access capacity of the DG is
small, and the active power adjustment of PV system is close
to zero; the stochastic optimization can be realized at a small
cost. In these circumstances, stochastic optimization is similar
to deterministic optimization. When the access capacity of PV
system is large, it is necessary to avoid the risk of probability
limit by PV power curtailment, which would substantially
increase operating costs by the compensation fee of PV
power curtailment.

CONCLUSION

In this paper, the probability models of controllable DG were
proposed, and a day-ahead coordinated dispatch optimization
model of ADN with chance constraints has been modeled. A
heuristic method and the MISOCP method were used to solve
stochastic optimization. The simulation results showed that the
proposed method has the ability to optimize the operation and
solve the potential risk of the ADN at the same time.
Considering influence of randomness on ADN and PV power
curtailment phenomenon, the following conclusions could be
obtained:

(1) The large capacity of DG leads to the increase in the voltage
amplitude and expands the probability interval of voltage
fluctuation.

(2) When regulating voltage methods and capacity are sufficient,
the system can be optimized without DG power curtailment,
and there is no risk of crossing the limits.

(3) When regulating voltage methods and capacity are not
sufficient, it is necessary to reduce the voltage level and
intervals of voltage fluctuation, by discarding DG power,
so as to ensure the safe and reliable operation of ADN.

TABLE 3 | The same variables of 32-node in fifth iteration.

Period Voltage constraints of
deterministic optimization

Voltage of deterministic
optimal dispatch

Probability intervals of
voltage

2:00–3:00 [0.95, 1.038] 1.038 [1.026, 1.046]
3:00–4:00 [0.95, 1.041] 1.041 [1.036, 1.045]
4:00–5:00 [0.95, 1.041] 1.041 [1.030, 1.049]
5:00–6:00 [0.95, 1.033] 1.033 [1.022, 1.043]

FIGURE 11 | Residual energy and power of the energy storage system.

FIGURE 12 | Probability intervals of the first iteration and the fifth iteration
all day of nodes 10 and 17.
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