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Wind farm-based frequency regulation of the power system has progressively attracted more
attention owing to its higher power generation capacity. Among which the step start-up and
adaptive inertial droop control of wind turbines with a maximum power point efficiently regulate
the system frequency via fully utilizing the rotational kinetic energy. Besides, the coefficients of
adaptive droop control and virtual inertial control will facilitate a significant influence on the
frequency support performance and operation status of wind turbines for the power grid. To
obtain optimal control parameters, a parameter optimization framework of a step start-up
adaptive inertial and droop controller combined with the CGO algorithm is proposed, whose
effectiveness is verified by a three-area four-terminal VSC-MT-HVDC-based WFs and AC
system in MATLAB/Simulink. As a result, a set of parameters with a satisfactory and
comprehensive dynamic control performance can be acquired by the proposed method
under both 200 MW and 300 WM load increases compared with the trial-and-error approach.

Keywords: wind farms, frequency regulation, droop control, virtual inertial control, chaos game optimization

1 INTRODUCTION

In recent years, for the purpose of reducing dependence on fossil fuels, the electric power structure
needs to shift more toward renewables to facilitate energy transformation (Zhang et al., 2015; Hou
et al,, 2017; Meng et al., 2021). Consequently, renewables (Chen et al., 2018; Li et al., 2020; Pabitra
and Abhik, 2020; Zhao et al., 2021a) (e.g., solar, wind, hydro energy, etc.) have been wildly developed
around the world, upon which the wind energy is increasingly emerging as one of the most mature,
promising, and representative renewables, thanks to its unique superior, i.e., clean, reproducible,
stable, well-stocked (Liu et al., 2021), and widespread (Diaz and Guedes Soares, 2020).

Yunnan, located in the southwest region of China, is equipped with abundant hydropower and wind
power resources. However, the high proportion of installed hydropower also poses new issues for the
Yunnan power grid. The water hammer effect (WHE) (Vereide et al., 2017; Al BkoorAlrawashdeh et al.,
2021) is a momentous characteristic of the hydraulic turbine governing system, which produces negative
damping to the system and thus brings about system oscillation. Furthermore, a typical WHE curve is
illustrated in Figure 1 when the degree of guide vane opening of large hydropower units is increased to
handle the augment in load demand in the Jin’angiao hydropower station of Yunnan. It can be

Abbreviations: AC alternating current; CGO chaos game optimization; DFIG-WT doubly fed induction generator-based wind
turbine; DC direct current; FFD first frequency drop; MPPT maximum power point tracking; MPP maximum power point; SFD
secondary frequency drop; TFD tertiary frequency drop; VSC-MT-HVDCs multi-terminal high voltage direct current system;
WHE water hammer effect; WFs wind farms; without FSC without WFs participating in frequency regulation.
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FIGURE 1 | Water hammer effect under large hydropower units removal in the Jin’angiao hydropower station of Yunnan.

transparently seen that WHE causes turbines to produce antithetical
performance relative to actual control from Figure 1. That is to say,
the output power of turbines will temporarily drop before increasing,
which gravely threatens the security and stability of power grid
operation, particularly when a large load disturbance occurs in a
power system with a high hydraulic turbine capacity. It is noted that
the participation of wind farms (WFs) in frequency regulation is an
alternative and effective solution to address this tricky obstacle and
achieve active power stabilization.

However, WFs are mostly distributed far from load centers
and need to utilize the voltage source converter-based multi-
terminal high voltage direct current system (VSC-MT-HVDCs)
to implement electricity transmission (Renedo et al., 2016; Gu
et al., 2021). On account of decoupled operation between rotor
speed and power system frequency, the doubly fed induction
generator-based wind turbine (DFIG-WT) does not directly
provide dynamic frequency support for the power grid similar
to the inertial response characteristic of synchronous generators
(Wang-Hansen et al.,, 2013; Xiong et al., 2021). Power system
inertia is decreased owing to the access of DFIG-WT with a high-
penetration level in the power grid, which also raises the
frequency regulation pressure (Wang et al., 2019). With a view
that the power system frequency fluctuation perhaps causes some
serious consequences (Wei Yao et al.,, 2015; Yang et al,, 2015;
Golpira et al,, 2016; Xiong et al,, 2020), e.g., affecting industrial
production, triggering relay protection equipment, and even
causing frequency collapse phenomena, it is enormously
imperative to energetically explore corresponding strategies to
realize frequency support from WFs for a secure and stable
operation of the alternating current (AC) system.

In the past few decades, multifarious frequency regulation
control strategies of the AC system through WFs combined with
VSC-MT-HVDCS have been developed (Huang et al., 2021; Zhou
et al., 2021), which can be divided into two major categories in
general, i.e., indirect and direct methods (MacDowell et al., 2015;
Liu et al., 2020; Zhao et al., 2021b). Specifically, indirect active

power control introduces large-capacity capacitors in the flexible
direct current (DC) transmission system to achieve frequency
regulation of the AC side by controlling the voltage of the DC
system to release capacitance energy (Zhu et al., 2013; Wen et al.,
2016; Gan et al., 2019; Jami et al., 2020; Kadri et al., 2020; Yang
et al., 2022). Nevertheless, lack of economy is a pivotal ingredient
impeding the widespread application of the indirect method.
Comparatively, another one is accomplished by deloading, the
discharging kinetic energy of the wind turbine rotor, adjusting
pitch angle, etc., (Navalkar et al., 2015; Fu et al., 2017; Boyle et al.,
2021; Xiong et al., 2021), whereas deloading operation strategy
reserves backup power (Yao et al,, 2019) but seriously remedies
the efficient engagement of wind resources. Besides, frequently
controlling the pitch angle can increase mechanical stress on the
wind turbine blades and subsequently endanger the safety of wind
turbines (Varzaneh et al., 2014). Accordingly, to implement
friendly grid-connected WFs with a fast response to system
frequency variation, it is a popular and promising approach to
adequately employ the rotational kinetic energy and backup
power of wind turbines to simulate the inertial response and
primary frequency regulation ability of synchronous turbines. A
fuzzy PID control based on maximum power point tracking
(MPPT) control is suggested in the literature (Varzaneh et al,
2014) in such a manner that the kinetic energy stored in the rotor
inertial is used to control the output power of wind turbines.
However, a fuzzy PID control requires real-time-modulating PID
parameters according to current system states, and thus, its
applicability encountering different scenarios needs to be
further validated. The literature reports (Surinkaew and
Ngamroo, 2014) considered the uncertainties of wind power
and load, which proposed a novel coordinated robust control
method for DFIGs and synchronous generators to stabilize
system oscillation and adopt an improved firefly algorithm to
optimize parameters of the controller. Moreover, a deloading
control strategy based on the available margin is developed in
reference (Vidyanandan and Senroy, 2013) to furnish primary
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frequency support for the power system. It is noted that the
transitory frequency support perhaps induces the secondary
frequency drop (SFD) phenomenon during the recovery
process of the wind turbine speed, which is probably worse
than the first frequency drop (FFD) if the active power is
seriously insufficient. As a consequence, reference (Xiong
et al, 2021) attempted to realize appropriate frequency
support and alleviate SFD via a two-level combined control
strategy of VSC-MT-HVDC-integrated offshore WFs.
Nevertheless, the trial and error method was adopted to
determine the corresponding parameters of this control
mechanism, which extremely imposed a burdensome mission
on power grid operators and did not guarantee the control
accuracy and stability. Whereupon, for tackling the
aforementioned shortcomings, a parameter design framework
of a step start-up adaptive inertial droop controller via chaos
game optimization (CGO) (Talatahari and Azizi, 2020) is
developed to automatically grope the satisfactory control
performance and then decidedly mitigate superfluous labor in
the new operating circumstances similar to the WHE
phenomenon of the Yunnan grid in this article.

Synoptically, this article incorporates five sections as follows.
First, Section 1 chiefly introduces the research background,
conducts a literature review, and indicates the intentions of
this work. Section 2 concisely describes the step start-up
adaptive inertial and droop control scheme. Then, the
parameter design framework proposed in this article is
exhibited in Section 3in detail. The verifications of the
presented method are executed in Section 4. Finally, Section 5
thoughtfully illustrates several conclusions and perspectives.

2 STEP START-UP ADAPTIVE INERTIAL
AND DROOP CONTROL SCHEME

The step start-up adaptive inertial and droop control scheme is
demonstrated in Figure 2 for a three-area four-terminal VSC-
MT-HVDC-based WFs and AC system (Vennelaganti and
Chaudhuri, 2018; Xiong et al., 2021). It is noted that the wind
turbines are categorized into two clusters according to their rotor
speeds to orderly launch after the frequency events (Xiong et al.,
2021). Besides, the rotor speed of each wind turbine in both WF 1
and WEF2 is determined as 0.90pu, 0.95pu, 0.85pu, 1.00pu, and
1.05pu in sequence, and the discrimination threshold of the two
clusters is settled as 0.9pu. Emphatically, the step start-up
adaptive inertial and droop control scheme is only applied in
WF 1, where all wind turbines operate in MPPT situations.
Therefore, the output power reference value Pg; of the ith
wind turbine in WF1 includes three items, ie., maximum
power point (MPP) P,,,; under the rotor speed w;, droop
control, and virtual inertial control, which can be calculated as
follows:

dfac

Pregi = Propp,i + Ka - (fAc - fref) + Kinji * ar (1)
2 2
kdr,i = kdr,i,O +Kar - %) )
Wiax ~ Win

Parameter Optimization for WF Controller

2 2

wi — wmin (3)
2 2

wmax = Whin

kini = Kinjo + Kin -

where kq.; and ki,; represent coefficients of adaptive droop
control and virtual inertial control, respectively; then, kg0
and ki, refer to the initial values of kq.; and ki, ;, separately;
kg and k;, denote the slopes of k4,; and k;,,;, respectively; besides,
f ac stands for the frequency of the AC system, which is measured
in VSC1 in this article; fref = 50HZ, Wpin = 0.70pu, and wpax =
1.20pu.

Additionally, more details about modeling parameters of the
whole system, logic of step start-up adaptive inertial and droop
control, and the control strategy of VSC stations can be acquired
from the literature (Xiong et al., 2021).

3 PARAMETER DESIGN OF THE STEP
START-UP ADAPTIVE INERTIAL AND
DROOP CONTROLLER VIA CGO

3.1 Fundamental Principle of CGO

Over the past few decades, omnifarious meta-heuristic algorithms
have been proposed, which are triumphantly applied in
mathematical and engineering fields thanks to their particular
preponderances, e.g., low dependence on models and gradient
information of practical problems. Inspired by the fractal
configuration and fractal self-similarity issues of the chaos
game theory, Talatahari et al. (Talatahari and Azizi, 2020)
developed the latest meta-algorithm, namely CGO, whose
primary mechanisms can be generalized as follows:

Seed] = X; + a;, - (/31.)1 - Xew — i 'XMG,i)» (4)
Seed? = Xgp + a3 - (/31,)2 Xi =i, XMG,i)» (5)
Seed; = Xy + i3 - (ﬁi‘3 X~ Y. 'XGB)> 6)

Seed? = X1 + Xrand * (Xus — X13), (7)

where Seed!, Seed?, Seed;, and Seed! denote four new
solutions for the ith individual X; in the current population;
Xp stands for the current global optimal solution, and X4 is
a random vector which is uniformly distributed in [0, 1]; Xmq,i
represents the mean solution of some random individuals in
the eligible population; furthermore, X;p and Xyp are the
lower and upper boundaries of problem space, respectively;
each of f and y is equal to 0 or 1, while @ means a stochastic
coefficient for imitating the movement constraints of the
solution.

Moreover, more information on CGO can be directly obtained
from the literature (Talatahari and Azizi, 2020), e.g., pseudo-
code, flowchart, corresponding parameter values, etc.

3.2 Parameter Optimization Framework of
the Step Start-Up Adaptive Inertial and
Droop Controller Based on CGO

In this section, a parameter optimization framework of the step
start-up adaptive inertial and droop controller combined with
the CGO algorithm is provided. This is based upon a suitable
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FIGURE 2 | Step start-up adaptive inertial and droop control scheme for a three-area four-terminal VSC-MT-HVDC-based WFs and AC system on the WF level.

TABLE 1 | The range of optimized parameters.
Parameters K},i.0 MW/Hz Kinio MW - s/Hz kar MW/Hz kin (MW s/Hz)
Upper bound -120 -135 -165 -155
Lower bound -20 -30 10 20
TABLE 2 | Control parameters acquired by various methods under a 200 MW load increase.
Control parameters Cluster 1 in WF 1 Cluster 2 in WF 1
kt11r,i,0 ki1n,i,0 k;r ki1n ktzlr,i,o ki2n,i,0 ktzlr kizn
Without FSC /7 7/ /7 7/ 7/ s / s
Trial-and-error (Xiong et al) (Xiong et al., 2021) -60.00 —-60.00 -100.00 -150.00 -100.00 —60.00 -100.00 -150.00
CGO -21.28 -134.83 -134.78 -58.85 -20.00 -118.63 -74.64 -47.18
TABLE 3 | FFD, SFD, and TFD obtained by various methods.
Frequency events Approaches Transient frequency characteristics
FFD (H2) SFD (H2) TFD (Hz)
A 200-MW load increase Without FSC 0.2086 7 7
Trial-and-error (Xiong et al) (Xiong et al., 2021) 0.1558 0.1364 0.1341
CGO 0.1592 0.1296 0.1217
A 300-MW load increase Without FSC 0.2982 s s
Trial-and-error (Xiong et al) (Xiong et al., 2021) 0.2236 0.1796 0.1774
CGO 0.2283 0.1715 0.1631
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FIGURE 3 | Parameter optimization framework for the step start-up adaptive inertial and droop controller based on CGO.

fitness function which is extremely crucial to obtain a set of
optimal control parameters and then efficaciously stabilize the
grid frequency under different operation conditions (e.g., load
decrease or increase). Hence, three indexes about grid
frequency fac, are considered to construct objective
function for the CGO algorithm in this article, i.e., integral
of frequency deviation and frequency variation rate (Aj,rp
and Ajorvr, respectively), and maximum frequency deviation
point fyrpp, which can be successively expressed as follows:

Agorp = Jll = fac|dt, (8)
d
Agorp = ” 'Z:C dt, ©))
i _ | min(fac), forload increase (10)
MEDP ™) max (fac), forload decrease’

And then, each indicator is allocated a weight factor
according to the relative importance and order of
magnitude. Finally, the objective function is demonstrated
in Eq. 11.

F obj (AIOFD: Aropvrs f MFDP) = min{ (IOAIOFD + 100 Aorvr

Additionally, parameters of the controller for different wind
turbines within the same cluster are identically designed for
reducing the dimensions of problem space and enhancing the
search efficiency of CGO. Therefore, unknown parameters can be
further refined as X = [k};q kiio0 Kip> K Kirior Kinior Koo
k2], in which the superscript 1 and 2 stand for cluster 1 and
cluster 2, respectively. Besides, the lower and upper limits of
optimized parameters are shown in Table 1. Ultimately, the
whole parameter optimization procedures of the step start-up
adaptive inertial and droop controller with CGO are explicitly
exhibited in Figure 3, where N and Iter denote the number of
population and maximum iteration, severally.

4 CASE STUDIES

In this section, two frequency events, ie., load increases 200 and
300 MW, are employed to evaluate the performance of the proposed
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FIGURE 4 | Frequency and transmitted active power of VSC1 under two
frequency events: (A) Frequency under a 200-MW load increase; (B) transmitted
active power under a 200-MW load increase; (C) Frequency under a 300-MW load
increase; (D) transmitted active power under a 300-MW load increase.

method in chapter 3 via a three-area four-terminal VSC-MT-
HVDC-based WFs and AC system shown in Figure 2. Besides,
all case studies are implemented by the MATLAB/Simulink 2019b
environment through a personal computer with Intel(R) Core(TM)

Parameter Optimization for WF Controller

i5 CPU at 2.9 GHz and 16 GB of RAM. DAESSC with variable step is
selected as the solver. Meanwhile, N and Iter are settled as 5 and 8,
respectively. In particular, all case studies are independently run
10 times to acquire a set of optimal parameters. Furthermore, wind
turbine cluster 1 immediately participated to regulate the system
frequency after the frequency event appeared (¢ = 5s) while wind
turbine cluster 2 was put into frequency regulation when rotor
speeds of wind turbines in cluster 1 start to recover (¢ = 10s),
ie, Atl = 0s and At2 = 5s.

As a result, optimal parameters obtained by three different
methods are tabulated in Table 2, ie., without WFs participating
in frequency regulation (without FSC), trial-and-error (Xiong et al.),
and the proposed method upon which the symbol “/” indicates no
value. Note that the symbol “/” is applicable for the rest tables of this
article.

Furthermore, the dynamic process of the measured frequency
and active power in VSC1 acquired by different strategies are
elaborately portrayed in Figure 4. One can demonstrably see that
the frequency fluctuation of CGO is smaller than that of trial-and-
error after the frequency event. Particularly, shown in Figures 4A,C,
the CGO-based parameter optimization strategy can efficiently
restrain the frequency drop (i.e, SFD and TFD) when the rotor
speeds of wind turbines in clusters 1 and 2 start to restore at 10 and
155, respectively. Meanwhile, compared with without the FSC
strategy, Figures 4B,D unquestionably indicate that more active
power generated by WFs with FSC is transmitted to the AC system
through VSC1 and thus to compensate the power shortage caused by
frequency events occurring at 5.

Besides, as illustrated in Table 3, three transient frequency
characteristics (Delkhosh and Seifi, 2021; Xiong et al, 2021)
(ie, FED, SFD, and tertiary frequency drop (TFD)) are used
here to further concretely quantify and compare the control
performance of three designed approaches. Among which the
optimal value is highlighted in bold. Both under the 200 and
300 MW load increases, it is pellucidly observed that although FFD
with CGO is more than that with trial-and-error, SFD and TFD
with CGO are superior to those with trial-and-error, respectively.
Specifically, TFDs with CGO only are 0.1217 and 0.1631 Hz while
TFDs with trial-and-error reach up to 0.1341 and 0.1774 Hz under
the 200 and 300 MW load increases, respectively.

5 CONCLUSION

In general, the several main conclusions can be described as follows:

e A parameter optimization framework of the step start-up
adaptive inertial and droop controller combined with the
CGO algorithm is developed to effectively accomplish
frequency support via wind farms for the power system;

e A reasonable objective function is carefully designed by
considering three essential factors of system frequency,
ie., integral of frequency deviation and frequency variation
rate, and maximum frequency deviation point;

e The optimal control parameter is obtained by a three-area four-
terminal VSC-MT-HVDC-based WFs and AC system under a
200 MW load increase, which is also applicable under a
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300 MW load increase. Particularly, TFD with CGO merely
equals to 0.1631 Hz while that of trial-and-error reaches up to
0.1774 Hz under a 300 MW load increase.

The proposed parameter optimization with CGO can
significantly alleviate frequency fluctuation and improve power
quality under designed frequency events in this article. Thus, it
may also be suitable for other frequency events, e.g, WHE, load
demand decrease, etc.
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NOMENCLATURE

Ajorp (Hzs) integral of frequency deviation

Ajorvr (Hz) integral of frequency variation rate

f Ac (Hz) frequency of AC system

f ref (Hz) reference value of system frequency

fMFDp (Hz) maximum frequency deviation point

Iter maximum iteration of CGO

kar; (MW/Hz), k;,,; (MW-s/Hz) coefficients of adaptive droop

control and virtual inertial control, respectively

kirio (MW/Hz), ki,;o (MW-s/Hz) initial values of kg; and ki,;,

respectively

Parameter Optimization for WF Controller

kisy (MW/Hz), k;, (MW-s/Hz) slopes of kg ; and k;,;, respectively
N number of population for CGO

p,. £,i output power reference value of the ith wind turbine in WF1
Pyypp,i maximum power point of the ith wind turbine under rotor speed w;

Aty, At; (s) time delay of cluster 1 and cluster 2 participating
frequency regulation, respectively

«& stochastic coefficient for imitating the movement constraints of solution
B, y random integer uniformly distributed in ()
w; (rad/s) rotor speed of ith wind turbine

Wmin> Wmax (rad/s) safety range of rotor speed, individually.
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