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With the increasing penetration of distributed renewable generations (DRGs), microgrids
will play an important role in the future power system. This paper studies the coordinated
scheduling strategy of networked microgrids with private data exchange limitations and
local management independence. Based on an adaptive robust optimization method, a
coordinated scheduling model of networked systems considering the uncertainty of
renewable generations is established. Then distributed algorithms are developed to
meet the needs of data privacy protection of individual microgrids. The Augmented
Lagrangian (AL) decomposition method decomposes the model into several sub-
problems, and an alternate optimization method is developed to speed up the
solution. Case studies demonstrate the effectiveness of the proposed model and the
solution methods.
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INTRODUCTION

To peruse carbo neutrality, various distributed renewable generations (DRGs) are rapidly increasing,
and accordingly, microgrids are gaining in importance in countries and regions where the power
supply is gradually reducing dependence on traditional energy sources like coal-fired units (Lee et al.,
2015; Li X et al., 2016). Microgrids can combine various renewable sources and optimize their use to
meet local loads i.e., important buildings and households, etc (Tushar et al., 2014; Martin-Martínez
et al., 2016; Zhang and Baillieul, 2016). Moreover, networked microgrids can serve as collaborative
distributed systems for enhancing the power system resilience against increasing extreme events (Li
et al., 2017; Wang et al., 2016b).

Networked microgrids usually consist of several individuals that correspond to different
owners (Gao et al., 2018). Therefore, their operation management systems are independent and
only have limited coordination with others. This situation needs to be changed: with the
increasing distributed renewable generation integration, it is necessary to develop coordinated
dispatching strategy for interconnected microgrids to obtain higher economic and reliable
performance (Wang et al., 2016b). Also, the high integration of DRG highlights the importance
of coordinating networked microgrids. In order to deal with the DRG uncertainty, each
microgrid has to reserve enough spinning reserve capacity (Li et al., 2021). Yet, effective
coordination between interconnected microgrids will greatly reduce the reserve capacity level
of individual microgrids, since they can share spinning reserves against DRG uncertainty (Chen
et al., 2021).
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Coordinated dispatching strategy plays a significant role in
managing collaborative networked microgrids (Che et al., 2015;
Julia and Oliver, 2016; Yuan and Hesamzadeh, 2017). Although
traditional centralized dispatching methods for power systems
can deal with similar problems, they can hardly address some
information issues of individual microgrids (Li et al., 2022a; Li
et al., 2022b). Thus, various decomposition techniques have been
proposed to solve the coordinated dispatching (Zheng et al.,
2013). For example, Lagrangian relaxation (LR) is introduced
by adding additional dummy buses (Saber and
Venayagamoorthy, 2010; Ghazal et al., 2016), and it
decomposes the coordinated dispatching strategy into sever-al
sub-problems. Furthermore, the Augmented Lagrangian (AL)
decomposition method improves the convergence of the
standard LR by introducing a strong convex quadratic penalty
(Hu et al., 2016). Also, distributed optimization technologies,
such as alternating direction multiplier (ADMM), are used to
solve coordinated dispatching in various distributed ways (Lu
et al., 2012; Li et al., 2022).

Another noteworthy issue is that how to consider the
uncertainty of DRGs. Stochastic optimization (SO) and robust
optimization (RO) are typical tools for addressing dispatching
problems considering uncertainty of intermittent power (Wang
et al., 2014; Zheng et al., 2015; Ban et al., 2021; Mansour-Saatloo
et al., 2020). For instance, an SO model is introduced to provide a
probability guarantee for the solution in (Li S et al., 2016; Liu et al.,
2016). However, these models rely on the accuracy of random
scenes and their probability of realization. Instead of using random
scenes, RO model uses uncertainty sets to capture randomness
(Janak et al., 2007; Siddiqui et al., 2015). Then, solving the RO
problem is to find an optimal scheme that is not affected by any
disturbance within the uncertainty set (Lin et al., 2004; Parisio et al.,
2012; Yuan et al., 2016). Due to its advantages, RO has been
employed in optimal scheduling to handle the uncertainty.
However, there are few reports on employing RO in
decentralized scheduling that considers decision independence
and information privacy to handle the uncertainty in net-
worked microgrids (Mármol et al., 2012; Yang et al., 2019).

This work focuses on the impact of DRG uncertainty on
coordinated dispatching strategy for interconnected microgrids
with high penetration distributed renewable generations. It
formulates the problem in a distributed way and the proposed
framework can preserve information privacy and management
independence of individual microgrids. A two-stage robust
optimization scheme establishes a decentralized coordinated
scheduling model with uncertain DRGs, and the AL method is
employed to decompose the scheduling model into several easy-
solving sub-problems, which will speed up the solution of the
problem in a decentralized way.

PROBLEM FORMULATION

This section presents the framework of networked microgrids,
and then it raises the formulation of the proposed optimization
model by introducing the coordinated dispatching strategy
preserving decision independence and information privacy.

Framework of Networked Microgrids
Due to the large-scale integration of intermittent DRGs, future
power systems will be very different from traditional ones. For
example, networked microgrids will play an increasing important
role in future energy supply to hedge against the uncertainties of
DRGs. As shown in Figure 1, each microgrid has its own
decisions and objectives. And accordingly, each microgrid is
equipped with a local manager (LM) that provides control and
monitoring of local DRGs, distributed generations (DGs) and
loads. Besides, each LM is also responsible for determining power
exchanges with the others, on/off states of DGs, and charging/
discharging states of energy storage systems.

In energy management, individual microgrids intend to
independently obtain a robust strategy to avoid the risk from
uncertainties of renewables and loads while keeping their data
private. In this setting, this paper studies a model that considers
two stages, i.e., the first one considers the joint scheduling of on/
off states of generation units and tie-line power, and the second
one considers the dispatch with uncertain DRG power.
Accordingly, the decision variables mainly include the DRG
power, storage charge/discharge power, and exchange power,
etc. The exchange power represents the coordination among
individual microgrids, which is decided in a decentralized way
to preserve the decision independence and information privacy.

Objective
The objective, see Eq. 1, is to minimize the total cost of the
optimal scheduling. The cost includes 1) the de-cision-making
cost of traditional generation units in stage I and 2) the dispatch
cost considering the worst-case of DRGs in stage II.

min
χIm∈ΩI

m

∑
m∈NM

{fI
m(χIm,PR*

m ) + max
PR
m∈UR

m

[ min
χIIm∈ΩII

m

fII
m(χIIm,PR

m)]} (1)

where f Im (*) and f IIm (*) are total on/off cost function and total
economic dispatch cost function of microgrid m, χI m and χII m
represent decision variable vector of stages I and II, PR*m and PRm
represent vector of forecasted and available DRG power, ΩI m
andΩIIm are feasible sets of decision variables of microgrid m in
stages I and II, R

m is uncertainty set of available DRG power of
microgrid m, and NM is the set of microgrids.

Objective in Stage I
The decision variables in stage I involves the scheduling of
generator units and connection lines in individual microgrids.

χIm � {IDGg,t , XDG
g,t , Y

DG
g,t , αm,i,t ∀g ∈ NGm, i ∈ NBm ∪ NB**

m, t ∈ NT}
(2)

where IG g,t is binary variable that is equal to 1 if generation unit g
is on at period t and 0 otherwise, XG g,t is binary variable that is
equal to 1 if generation unit g is started up at period t and 0
otherwise, YG g,t is binary variable that is equal to 1 if generation
unit g is started down at period t and 0 otherwise, αm,i,t is phase
angle variable of boundary bus i at period t perceived by
microgrid m, g and NGm are indices and set of generation
units in microgrid m, NBm and NB**m are the set of indices
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of connection buses in microgrid m and the set of indices of
others connection buses connected to microgrid m, t and NT are
indices and set of periods, respectively.

The costs associated with the first stage which includes startup
costs, shutdown costs, and no-load costs of traditional units,
which are as

fI
m(χIm,PR*

m ) � ∑
t∈NT

∑
g∈NGa

(cONg XDG
g,t + cOFFg YDG

g,t + cNDg IDGg,t ) (3)

where cONg , cOFFg and cNDg are startup and shutdown cost, and non-
load cost of generation unit g, respectively.

Objective in Stage II
The decision variables in stage II include the generation
scheduling of conventional units and renewables, and the
phase angles of the internal buses in microgrid m.

χsm � {PG
g,t, P

UP
g,t , P

DOWN
g,t , PR

r,t, θi,t ∀t ∈ NT, g ∈ NGm, r ∈ NRm, i ∈ NGI
m }

where PG g,t is generation output of conventional generation unit
g at period t, PUPg,t /P

DOWN
g,t is upward/downward reserve capacity of

generation unit g at period t, PR r,t is generation output of
renewable unit r at period t, and θi,t is the phase angle of internal
bus i at period t.

The dispatch cost associated with stage II is as

fII
m(χIIm,PR

m) � ∑
t∈NT

⎡⎢⎢⎣ ∑
g∈NGm

fG
g (PG

g,t) + ∑
∀r∈NRm

cr(PR
r,t − PR*

r,t)⎤⎥⎥⎦ (4)

where fGg is piecewise linear cost of generation unit g, cr is penalty
price of renewable generation curtailment r.

This paper describes the randomness of DRGs with an
uncertainty set, which is compiled using a typical uncertainty
budget set (Bertsimas and Sim, 2004). The uncertainty set is
defined using a typical uncertainty budget set, and it benefits
flexible adjusting the conservativeness of the robust solution with
different level of uncertainty set ΩR m, which is defined as

~P
R

r,t � PR*
r,t + (~PR

r,t − PR*
r,t)zR+r,t − (PR*

r,t − PR
r,t)zR−r,t ∀t ∈ NT, r ∈ NRm

(5)

where the auxiliary variables are defined as

⎧⎨⎩zR+r,t , z
R−
r,t

∣∣∣∣∣∣∣∣∣ ∑t∈NT

(zR+r,t + zR−r,t )≤ Γr, 0≤ zR+r,t , z
R−
r,t ≤ 1 ∀t ∈ NT, r ∈ NRm

⎫⎬⎭
(6)

Constraints
Constraints for Stage I
The variable set χI is in the feasible region of stage I, hereafter refer
as ΩI, and its constraints are defined as

{ χip,i,t � χjp,i,t ∀(i, j) ∈ εtie, i> j, t ∈ NT

χip,j,t � χjp,j,t ∀(i, j) ∈ εtie, i> j, t ∈ NT
(7)

χmp,ref ,t � 0 ∀mp ∈ Φ(ref ), t ∈ NT (8)

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

∣∣∣∣∣χip,i,t − χip,j,t
∣∣∣∣∣

Zi,j
≤ �Pi,j ∀(i, j) ∈ εtie , i> j, t ∈ NT

∣∣∣∣∣χjp,i,t − χjp,j,t
∣∣∣∣∣

Zi,j
≤ �Pi,j ∀(i, j) ∈ εtie , i> j, t ∈ NT

(9)

IDGg,t − IDGg,t−1 � XDG
g,t − YDG

g,t ∀g ∈ NGm, t ∈ NT (10)

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

∑t
τ�max{1,t−TON

g +1}X
DG
g,τ ≤ I

DG
g,τ ∀g ∈ NGm, t ∈ NT

∑t
τ�max{1,t−TOFF

g +1}Y
G
g,T ≤ 1 − IDGg,τ ∀g ∈ NGm, t ∈ NT

(11)

IDGg,t , X
DG
g,t , Y

DG
g,t ∈ {0, 1} ∀g ∈ NGm, t ∈ NT (12)

where (7) is the phase angle coupling constraint of the tie line
amongst microgrids, (8) sets the phase angle of the reference bus
as 0, (9) limits the tie-line capacity, (10) is the logical constraints
on the status of the units, (11) is the minimum up/down time
limits of the generator set, and (12) defines the feasible sets of the
first stage variables.

Constraints for Stage II
The feasible set ΩII

m of decision-making in the second stage of
microgrid m is as

FIGURE 1 | Framework of networked microgrids with the individually local managers.
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∑
j∈ΘI

a(i)

θi,t − θj,t
Zi,j

+ ∑
j∈ΘB

m(i)

θi,t − αm,j,t

Zi,j

� ∑
g∈ΘG∪R∪D

m (i)
(PG

gI
G
g,t + PG

g,t + PR
r,t − PD

d,t)∀t, i ∈ NIm (13)

∑
j∈ΘI

a(i)

αm,i,t − θj,t
Zi,j

+ ∑
j∈ΘB

m(i)

αm,i,t − αm,j,t

Zi,j

� ∑
g∈ΘG ∪ R ∪ D

m (i)
(PG

gI
G
g,t + PG

g,t + PR
r,t − PD

d,t) ∀t, i ∈ NIm (14)

∣∣∣∣∣∣∣∣θi,t − θj,t
Zi,j

∣∣∣∣∣∣∣∣≤ �Pi,t ∀i ∈ NBm, j ∈ ΘI
m(i), j> i (15)

∣∣∣∣∣∣∣∣θi,t − αm,j,t

Zi,j

∣∣∣∣∣∣∣∣≤ �Pi,t ∀i ∈ NBm, j ∈ ΘI
m(i) (16)

0≤PR
r,t ≤ �P

R
r,t ∀t, r ∈ NRm,m ∈ NM (17)

where (13) and (14) are the DC power flow constraints of buses, (15)
and (16) are the internal transmission line capacity constraints, (17)
represents the power generation capacity ofDRGs. Note that the other
typical constraints including ramping up/down limits, generation
limits, system spinning/operation reserve requirements, regulation
up/down requirements, regulation down requirement are not listed
in this paper, and interested readers are referred to (Ban et al., 2017)
and (Wang et al., 2008) for more details.

SOLUTION METHOD

`This section introduces the solution method for the formulated
problem. Firstly, the AL decomposition method de-composes the
model into several simple problems for individual microgrids,
and the standard ADMM algorithm is used to solve it. Secondly,
the independent sub-problems are solved by the column
constraint generation (C&CG) method. Thirdly, a heuristic
method is developed to alleviate the solution complexity by
obtaining a suboptimal solution in limited iterations.

Augmented Lagrangian Decomposition
Method and Alternating Direction Multiplier
Algorithm
The AL relaxation of microgrid m is formulated by relaxing the
coupled constraints (6) and (7), and it gets

Lm(χIm, λm, �α) � cIm(χIm,PN*
m ) + max

~P
N
m∈ΩN

m

min
χIIm∈ΩII

m

cIIm(χIIm, ~PN

m)
+ ∑

i∈NB
m∪N′Bm,t∈NT

[λm,i,j(αm,i,t − �αi,t) + ρ

2
(αm,i,t − �αi,t)2]

� cI*m(χIm, λm, �α) + max
~P
N
m∈UR

m

[ min
χIIm∈ΩII

m

cIIm(χIIm, ~PN

m)]
(18)

where λm,i,t is the dual variable corresponding to the
difference between phase angle of boundary bus i perceived
by microgrid m (i.e., αm,i,t) and the average phase angle of

boundary bus i perceived by its connecting microgrids
(i.e., ‾α,i,t). λm,i,t reflects the shadow prices of boundary-
bus angles between different microgrids. ‾α,i,t is the
average angle perceptual value of all lines connected to
boundary bus i, and it is expressed as

�αi,t � ∑
m∈Ξi

αm,i,t

|Ξi| ∀t, i ∈ NIm (19)

where Ξi is the set of the microgrids connected to the bus, and
|Ξi| indicates the total number of microgrids connected to
bus i.

The sub-problem of microgrid m (i.e., SPm) can be solved
using its augmented Lagrangian relaxation.

SPm min{Lm(χIm, λm, �α)∣∣∣∣ χIm ∈ ΩI
m, constraints (9)

− (13),∀g ∈ NGm, t ∈ NT} (20)

The ADMM algorithm solves the sub-problem. In the
solution framework, each microgrid only exchanges the phase
angles of boundary buses with its neighbors in a decentralized
way. Accordingly, the privacy of individuals can be fully
preserved. Detailed solution method is given in Figure 2, and
it mainly includes 6 steps, namely initialization, exchanging
information, updating perception, subproblem computation,
checking convergence, and updating dual variables.
Individuals only exchanges boundary information (i.e., the
phase angles of the boundary buses) with the others, and
accordingly, this distributed algorithm protects information
privacy when individuals managing their own decisions, also
it contributes to promoting the development of underlying
electricity market.

Solving Sub-problems
The C&CG algorithm solves the sub-problems (Zeng and Zhao,
2013). Similar to other decomposition methods, the C&CG
method separates the original problem to a master one,
i.e., MPm, and several sub-problems, i.e., BSPm. And the
master problem and sub-problems are defined as

MPm min
χIm,Ξ

II(t)
m ,ς

{cI*m(ξfa , λ(m)
a , �α(m)) + ς|Φ}

Φ �
⎧⎪⎪⎨⎪⎪⎩

χIm ∈ ΩI
m,ΞII(t)

m � [χII(1)m , χII(2)m ,/, ξII(L)m ], ς≥ cIIm(χII(l)m , ~P
Rp(l)
m ),

χII(l)m ∈ ΩII
m(χIIm, ~PRp(l)

m ), ∀l � 1, 2, . . . , L

⎫⎪⎪⎬⎪⎪⎭
BSPm Qa(χI*m) � max

~P
R
m∈ΩR

m

[ min
χIIm∈ΩII

m

cIIm(χIIm, ~PR

m)]
The employed C&CG solution process is shown in Figure 3,

which mainly includes 5 steps, namely initialization, solve the
master problem MPm, solving the subproblem BSPm, checking
convergence, generating constraints and columns.

Heuristic Solution Method
Since the standard ADMM can hardly guarantee the solution
convergence of the proposed problem, a heuristic method is
employed to improve the solution performance. The details
are given as follows.
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Firstly, set the variables IG g,t as continuous variables
ranging from 0 to 1 and relax the corresponding integrality
constraints. Accordingly, a relaxed version of the model is

obtained. The relaxed one is equivalent to a linear
programming with multiple scenarios, and then it can be
solved by the ADMM, which ensures the convergence for

FIGURE 2 | Flowchart of the employed ADMM.

FIGURE 3 | Flowchart of the subproblems.
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linear programs. The continuous relaxation is solved to
provide initial values of boundary-bus phase angles α0m*,i,t

for the iteration loop with iteration time index ι � 0.
Secondly, it optimizes the unit commitment problemwhen the

phase angles of the boundary buses are fixed, namely

αm,i,t � αι
i,t � ∑

m∈Θi

αι
mp,i,t

|Θi| ∀t ∈ NT,m ∈ NGm, i ∈ NB
m ∪ NB*

m (21)

where α(ι)m*,i,t represents the last solution. Under fixed conditions,
the original problem is decomposed into the following regional
sub-problems

BSP*
m min cIm(χIm,PR*

m ) + max
~P
R
m∈UR

m

[ min
χIIm∈ΩII

m

cIIm(χIIm, ~PR

m)]χIm ∈ ΩI
m (22)

The above problem is an adaptive robust problem with a given
tie-line power flow. In the case of similar structures, the C&CG
algorithm is used to solve finite convergence. The optimal
solutions IGg,t, X

G
g,t and YG

g,t are denoted by IGg,t, X
G(ι)
g,t and YG(ι)

g,t

respectively.
Thirdly, if the binary variable set has not changed in iteration ι,

namely

IG(ι)g,t � IG(ι−1)g,t , XG(ι)
g,t � XG(ι−1)

g,t , YG(ι)
g,t � YG(ι−1)

g,t ∀t ∈ NT, g ∈ NGm

(23)

then binary variables IGg,t, X
G
g,t, and YG

g,t, are taken as the final
solution, otherwise, set ι � ι+1 and go to the next iteration.

Lastly, it optimizes the phases angles of the boundary buses
when the obtained binary states of generation units, i.e., IGg,t, X

G
g,t,

YG
g,t, are fixed. Note that the original problem becomes a linear

one, which can be easily solved using the standard ADMM
algorithm. In this way, the original problem is largely
simplified while ensuring the solution accuracy.

CASE STUDY AND DISCUSSION

All simulations are run on a PC with implemented with
MATLAB R2014a at Intel Core i7-4600U 2.10 GHz with 8 GB
memory. The related MILP and mixed integer quadratic
programming (MIQP) problems are solved by Gurobi 9.0.A.

Parameters
Case studies were carried out on the system consisting of two
microgrids. As shown in Figure 4, the system involves two
microgrids, connected by a tie-line. The studied DRG is
integrated into microgrid II.

The hourly forecast value and forecast interval of renewable
generation are shown in Figure 5. The upper and lower limits
represent the uncertain set. It is assumed that the system operating
reserve, spinning reserve and regulation are 10, 5 and 2% of the
system load, respectively. And the parameters are set as follows.
The uncertainty budget, i.e., Γ, is 12. The penalty factor of the
ADMM is 0.5. The penalty factor of the ADMM program is the
convergence tolerance of the original residue and the dual residue
of the ADMMprogram. Themaximumnumber of the iterations of

is set as 200. The relative convergence tolerance of the C&CG
program is 0.05%. The subproblems were solved with the MIP and
MIQP solvers, and the relative gap tolerances are set to 0.1%. And
the other key parameters of units, transmission lines, and hourly
load are listed in Tables 1, 2, 3, respectively.

Solution Process
The solution method in Section 3 was used to solve the problem.
Figures 6, 7 illustrate the solution process. Figure 6 shows the
maximum solution gap as a function of the iterations. The
maximum gap is decreased to the defined tolerance in 60 iterations.
Meanwhile, Figure 7 shows the maximum tie-line power gap
converging to a coincided value indicating that the solution succeeds.

In the solution process, the continuous relaxation is solved by
the ADMM. The process continues till the primal and dual
residues at each ADMM iteration converges to predefined
values. Then in the iteration loop of the heuristic solution
method, see Section 3.3, the boundary phase angles were fixed
to solve the other part of the problem by the C&CG procedure,
see Section 3.2, to obtain on/off states of DGs. Accordingly, the
binary variables were fixed. Again, the binary-fixed problem was
solved by the ADMM, and another heuristic solution method was
started. If the binary solutions of the problem were the same as
their previous values, then the solution terminates; otherwise, the
solution process will continue.

To further verify the effectiveness of the proposed solution
methods, the problem was re-solved in a centralized way with
identical parameters, and the results were compared. It shows
that the results of the employed approaches are very close to
those of the centralized method. For example, the commitment

FIGURE 4 | The studied system consisting of two interconnected
microgrids.
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states of the former one are identical to the solutions of the latter one,
except that the smallest generation unit G II-2 is additionally
committed by the proposed method at hours 4 and 5 h and
the tie-line flow of them show some differences. Although
these differences indicate the suboptimality of the proposed
methods, the optimal quality of the employed solution is
highly satisfactory. For instance, the objective value,
i.e., the total cost, of the latter one is $ 47,050, which is
slightly lower than that of the employed ones ($ 47,120)
by 0.12%.

The computation time is 76 s of paralleled CPU time, which
is the sum of computation time of regional subproblems in
each iteration. It also shows that in cases with small budgets,

FIGURE 5 | The forecast value and interval of renewable generation.

TABLE 1 | Parameters of generation units.

机组编号 Fuel cost function Generation Limits Ramp

ai (t/MW2h) bi (t/MWh) ci (t/h) γi ($/t) pi,max (MW) pi,min (MW) rui (MW/h) rdi (MW/h)

G I-1 0.0289 0.12643 5.2 70.71 36 8 12 12
G I-2 0.0289 0.12643 5 68.53 38 10 12.5 12.5
G I-3 0.0263 0.15318 4 67.43 29 7.5 8 8
G I-4 0.0289 0.15785 4.7 70.16 28 11 8 8
G II-1 0.0232 0.16715 3.9 69.47 18 5 7.5 7.5
G II-2 0.0382 0.17166 3.2 72.52 12 2.5 6 6

TABLE 2 | Parameters of transmission lines.

Line No From Bus To Bus X (p.u.) Flow Limit (MW)

1 I-5 I-2 0.170 25.0
2 I-5 I-1 0.258 18.0
3 I-2 I-3 0.150 17.5
4 I-2 I-4 0.197 18.5
5 I-2 I-1 0.140 22.5
6 I-3 I-4 0.018 32.0
7 I-4 I-1 0.037 17.5
8 I-4 I-6 0.037 19.5
9 II-1 II-4 0.197 25.0
10 II-1 II-5 0.197 15.0
11 II-1 II-6 0.150 18.0
12 I-6 I-7 0.140 28.0
13 II-2 II-3 0.039 17.5
14 II-2 II-7 0.037 17.8
15 II-3 II-4 0.152 25.0
16 II-5 II-6 0.183 15.0
17 II-6 II-7 0.192 26.0
Tie-line I-1 II-1 0.187 42.5

TABLE 3 | Parameters of hourly load.

Hours Bus No

I-4 I-1 I-6 II-2 II-3 II-4 II-5 II-6

1 19 11.3 8.40 9.80 9.40 17.7 10.7 5.5
2 20.4 12.1 9 10.6 10.1 19 11.5 5.9
3 20.4 12.1 9 10.5 10 19 11.5 5.9
4 20.5 12.2 9 10.6 10.1 19.1 11.6 5.9
5 20.7 12.3 9.1 10.7 10.2 19.3 11.7 6
6 21.2 12.6 9.3 11 10.5 19.7 11.9 6.1
7 23.7 14.1 10.4 12.3 11.7 22.1 13.4 6.9
8 25.2 15 11.1 13 12.4 21.6 14.2 7.3
9 23.6 14.6 10.8 12.7 12.1 22.5 13.9 7.1
10 23.4 13.5 10 11.7 11.1 22.8 13.7 7
11 26.8 14.5 12.2 13.4 13.7 22.1 15.6 7.4
12 25.5 14.9 12.5 13.7 14 24.7 16 6.9
13 26.3 14.8 12.5 12.6 14 23.6 15.4 7.3
14 26.1 13.7 12.4 13.5 13.9 23.4 15.8 7.5
15 26.4 12.9 12.5 13.7 14 23.6 15.4 6.6
16 25 11.8 11 12.9 12.3 22.3 14.1 7.2
17 22.6 11.4 9.9 11.7 11.1 22 12.7 6.5
18 21.4 12.7 9.4 11.1 10.6 19.9 12.1 6.2
19 24.6 13.6 10.8 12.7 12.1 22.9 16.6 8.5
20 20.6 12.2 9.1 10.7 10.2 19.2 11.6 6
21 21.1 12.6 9.3 10.9 10.4 19.7 11.9 6.1
22 24.6 14.6 10.8 12.7 12.1 22.9 13.8 7.1
23 19.7 11.7 8.7 10.2 9.7 18.4 11.1 5.7
24 19.2 11.4 8.4 9.9 9.5 17.8 10.8 5.5
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the solution methods typically take more computational time.
However, the computation burden is acceptable in practical
cases. The proposed method is developed to solve that preserve
decision independence and information privacy in a fully
decentralized manner, rather than competing with the
centralized method in computational efficiency. It is worthy

noted that the developed decentralized method, protecting
decision-making independence and information privacy,
deserve more research on its computational efficiency,
which will be a key part of our future work.

Moreover, a modified IEEE 118-bus system is used to analyze
the proposed solution approach. It involves 76 units, 186 branches,

FIGURE 6 | Evolution of the maximum solution gap.

FIGURE 7 | Evolution of the maximum tie-line flow gap.

FIGURE 8 | Hourly dispatch results of the generators.
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and 91 demands, please see the one-line diagram in Figure 9 in the
previous work (Wang et al., 2008). And the detailed data of the
118-bus system can be found at motor. ece.iit.edu/data/SCUC_118.
For simplicity, we also use the same three zones in Figure 9 (Wang
et al., 2008), and assume each zone has the same requirements of
decision-making independence and information privacy. The
other parameters are the same as those in the small-scale cases.
Then the computation time, in this case, is about 1957 s of
paralleled CPU time and the objective value has a 0.43% gap
with the centralized solution method. This further demonstrates
the effectiveness of the proposed method.

Dispatching Results
The hourly commitment and dispatch results are given in
Figure 8. And the tie-line flow schedules are given in

Figure 9, where a positive power refers to tie-line flow
withdrawing from microgrid I and injecting into microgrid II.

The scheduled tie-line flow profiles are similar to the system
load profiles. At off-peak hours (14–18 and 20–21) when load
demand in microgrid I is low, the power components of the
cheapest generator in microgrid I are exported to microgrid II,
resulting in negative tie-line flows. Otherwise, at on-peak hours,
the local DGs can hardly supply all the loads in microgrid II, it is
necessary to import energy from microgrid I to microgrid II, and
accordingly, the tie-line schedules are positive at these hours. The
results reveal that the coordinated tie-line flows adapt to the load
demand in individual microgrids for enhancing the overall
economic and steady performances. By comparison, if the two
microgrids have no power exchange, then the target value of the
robust scheduling is obviously 3.5% higher than that in the

FIGURE 9 | Profiles of the hourly tie-line power components.

TABLE 4 | Parameters of the introduced energy storage.

Item pch s,max/pdis s,max pch s,min/pdis s,min Es,0 ΔE s E s,min E s,max ηch s/ηdis s

(MW) (MW) (MWh) (MWh) (MWh) (MWh) (%)

Value 7.5 0.5 18.4 8.7 10 42 92.5

FIGURE 10 | Hourly dispatch results of the generators.
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networked cases. Essentially, the coordination encourages the
economic power flows from the microgrids with lower location
marginal price to the microgrids with higher location marginal
price. In addition, different microgrids can share their regulatory
capabilities to hedge against RDG uncertainty.

Furthermore, to consider future power system with large-scale
energy storage, e.g., pumped storage units and megawatt-class
batteries, a new scenario in which an energy storage (see Table 4)
is installed to bus II-5 is introduced. Figure 10 and Figure 11
show the dispatching results and the tie-line flow schedules with
the additional energy storage. They reveal the influence of energy
storage on the scheduling of the networked microgrids. In the
new scenario, the total cost is reduced to $ 46,405, about 98.5% of
the original one. It illustrates the effectiveness of energy storage in
accommodating the volatile DRGs. And it also shows the
proposed method can effectively coordinate the scheduling in
the new cases with more privacy information, e.g., the parameters
of the storage are only known by the microgrid II. However, it is
noteworthy that the system obtains an additional $ 715 by
introducing a 50 MWh energy storage. The income can hardly
cover the investment, especially if costly battery storage is
employed. This is an important issue but beyond the scope of
this paper.

CONCLUSION

This paper studies the joint scheduling strategy for
networked microgrids with high penetration distributed
renewable generations. It employs some decomposition

techniques like Augmented Lagrangian, ADMM and
CC&G to solve the proposed problem. The developed
method can find sub-optimal solutions in a decentralized
manner, protecting the decision independence and
information privacy of individual microgrids. Case studies
demonstrate that the proposed method achieves speed
convergence, and the joint scheduling brings obvious
economic benefits to the operation of networked
microgrids. Future work will consider more demand
responses in the dispatching issues of networked
microgrids, and more research can be done to improve
the computational efficiency of solution method.
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