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Accurate short-term wind power forecasting (WPF) plays a crucial role in grid scheduling
and wind power accommodation. Numerical weather prediction (NWP) wind speed is the
fundamental data for short-term WPF. At present, reducing NWP wind speed forecast
errors contributes to improving the accuracy ofWPF from the perspective of data quality. In
this article, a variational mode decomposition combined with bidirectional gated recurrent
unit (VMD-BGRU) method for NWP wind speed correction and XGBoost forecasting
model are proposed. First, several NWP wind speed sub-series are divided by VMD to
obtain more abundant multidimensional timing features. BGRU is applied to establish the
potential relation between decomposed NWP wind speed sub-series and measured wind
speed and get the proposed wind speed correction model. Then, a more clear regression
forecasting model is trained based on XGBoost using historical measured wind speed and
power. The corrected NWP wind speed is used to forecast wind power by XGBoost.
Finally, the superiority of the proposedmethod is validated on a wind farm located in China.
The results show that the proposed correction model and forecasting model outperform
other compared models.

Keywords: short-termwind power forecasting, wind speed correction, bidirectional gated recurrent unit, variational
mode decomposition, ensemble learning

INTRODUCTION

Low-carbon economy is a worldwide problem of facilitating sustainable development (Li et al., 2021).
In the past, coal, oil, and natural gas were the main primary energy, resulting in the rapid rise of
carbon emissions, and global warming posed a threat to humans, directly or indirectly (Wang et al.,
2019). Electrical energy is a vital form of energy. Constructing a new power system with a high
penetration rate of new energy in the direction of low carbon is an effective way to reduce carbon
emissions. In recent years, new energy power generation based on wind and solar energy has
developed rapidly. According to the data released by Global Wind Report 2021, the global wind
power installed capacity has reached 743 GW in 2020, of which 93 GW is newly installed (Global
Wind Energy Council, 2021). It is widely recognized that wind power generation is one of the most
potential and environmental energy resources (Okumus and Dinler, 2016). However, large-scale
integration of wind power disrupts the balance of supply and demand in the power grid and brings
huge challenges to safe and economic operation of the power grid (Zhang et al., 2021). Therefore,
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accurate and reliable wind power forecasting (WPF) is an
important segment for improving energy efficiency and
ensuring safe operation of future power systems (Zhang et al.,
2020; Zheng et al., 2017).

There are many kinds of classification methods. According to
the timescales, very-short-term (Zhao et al., 2019), short-term
(Yang et al., 2019), medium, and long-term prediction (Liu and
Chen, 2019) are included. In general, there is no strict timescale.
Ultrashort-term (from minutes to hours) prediction is used to
balance load and control wind turbine in real-time; short-term
(from hours to days) forecasting is utilized to formulate power
generation plans and arrange reserve capacity; medium- and
long-term prediction (from weeks to years) is vital for
planning of windmills and site selection (Chen et al., 2017).
Four types of modeling theory are grouped: physical method,
traditional statistical method, artificial intelligence (AI) method,
and hybrid method. The physical method requires detailed wind
farm background data and numerical weather prediction (NWP),
which shows better performance in medium- and long-term
prediction with high-quality NWP (Hu et al., 2020). The
traditional statistical method is represented by autoregressive
integrated moving average (ARIMA) (Singh et al., 2021),
seasonal autoregressive integrated moving average (SARIMA)
(Liu et al., 2021), multilayer perceptron (MLP) (Deo et al., 2018;
Shen et al., 2021b), and extreme learning machine (ELM) (Li
et al., 2016), showing great accuracy in very-short-term
prediction. And, many clustering methods are used (Shen
et al., 2020). The AI method is popular for WPF under high-
dimensional and big data conditions. (Shen and
Raksincharoensak., 2021b). For example, an artificial neural
network (ANN) (Song et al., 2018) such as back propagation
neural network (BPNN), wavelet neural networkWNN, and deep
neural network (DNN) (Shen et al., 2021a), such as long short-
term memory (LSTM) (Liu et al., 2018), gated recurrent unit
(GRU) (Niu et al., 2020), and deep belief network (DBN) (Wang
et al., 2018). The hybrid method can integrate the advantages of
multiple methods, including a combination of the
hyperparameter optimization algorithm and forecasting
model (Khalid and Javaid, 2020; Zhu et al., 2020; Shen et al.,
2017; Shen and Raksincharoensak., 2021a), weighted
combination of prediction results of multiple models (Wu
and Xiao, 2019; Yang et al., 2018), and stacked combination
of multiple models (Liu et al., 2021, Yan et al., 2018). In recent
years, cutting-edge AI technologies represented by ensemble
methods have emerged, among which extreme gradient
boosting (XGBoost) (Chen and Guestrin, 2016; Yang et al.,
2021a) is the most typical. There are many applications in
forecasting. Zheng and Wu, (2019) use the XGBoost model
with weather similarity analysis and feature engineering to
predict wind power. Liao et al., 2019 use XGBoost to
evaluate similarity between the forecasting and historical days
for load forecasting. Choi and Hur, (2020) use random forest
(RF), XGBoost, and LightGBMs as ensemble models to forecast
photovoltaic power. Besides, the forecasting objective can be
grouped to wind turbine, single wind farm, and regional wind
farm. This article concentrates on the short-term WPF for a
single wind farm.

At present, lots of studies focus on optimization and
refinement of the prediction model. However, the
improvement of WPF accuracy depends more on data quality.
NWP data, measured wind data and power data, are used for
WPF. In general, measured data are more consistent with
physical phenomena than historical forecast data, and it is
important for very-short-term WPF to make full use of its
time-series autocorrelation. NWP is the indispensable data
source for short-term WPF since the time series recursion
method causes error accumulation based on measured data.
However, the resolution and accuracy of NWP are limited,
and technical breakthroughs cannot occur in the short term.
How to improve the power prediction accuracy under the current
NWP accuracy level is a problem that needs to be studied. NWP
wind speed correction is an effective way to improve the WPF
accuracy from the perspective of the data, not the prediction
model. Dong et al. (2013) use a linear correction model based on
wavelet transform to correct the low-frequency stationary
component of NWP wind speed, but it ignores the
information on other frequencies. Zhang et al. (2019) propose
a bias-correction method using an average, variance trend to
correct the simulated wind speed based on historical data. Hu
et al. (2021) propose a hybrid NWP wind speed correction model
based on principal component analysis and improved deep belief
network. Wang et al. (2019) propose a sequence transfer
correction algorithm to correct the NWP wind speed and to
obtain the correction results under different time steps, which is
suitable for very-short-term WPF. Zhao et al. (2017) divide wind
speed forecasting series into segments and combine the Cuckoo
search optimized fuzzy clustering and a priori algorithm to
correct weather research and forecasting (WRF) wind speed.
Yang et al. (2021b) propose an expanded sequence-to-
sequence (E-Seq2Seq)–based data-driven SCUC expert system
for dynamic multiple-sequence mapping samples, which can
accommodate the mapping samples of SCUC and consider the
various input factors that affect SCUC decision-making as the
first study about SCUC problems (Yang et al., 2021c; Yang et al.,
2019). It has strong generality, high solution accuracy, and
efficiency over traditional methods. Therefore, how to make
full use of the potential relationship between NWP wind speed
and historical measured wind speed and propose a method for
short-term forecasting of wind speed correction are still worth
studying.

This article proposes a variational mode decomposition and
bidirectional GRU (VMD-BGRU) correction strategy for NWP
wind speed and applies the optimized NWP wind speed to
forecast wind power using the ensemble learning method
XGBoost. First, in order to enrich the features of the input
data, the VMD algorithm is used to decompose the NWP
wind speed. The BGRU is used to correct the NWP wind
speed based on the potential correlation between the multiple
decomposed NWP wind speed sub-series and the measured wind
speed. Then, the XGBoost algorithm is utilized to build the
forecasting model according to the regression relationship
between the measured wind speed and power, and the
corrected NWP wind speed is input into the prediction model
to obtain the short-term prediction results of wind power. Finally,
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the evaluation metrics is used to assess the performance of NWP
wind speed correction and wind power forecasting.

The remainder of this article is organized as follows. In Section
2, the whole flowchart is simply generalized, and the basic theory
of VMD, BGRU, and XGBoost is explained. Case study and
discussion about the proposed method are shown in Case Study.
Conclusion concludes this article.

METHODS

The framework of the proposed NWP wind speed correction
strategy for short-term wind power forecasting is shown in
Figure 1. First, the original NWP wind speed series is
enriched by the VMD algorithm. The NWP wind speed is
corrected with the measured wind speed as the target by the
BGRU correction model. Then, the forecasting model based on
XGBoost is trained with measured wind speed and power. Finally,
improved forecasted wind power is obtained using corrected
NWP wind speed as input.

The NWP Wind Speed Correction Strategy
In the wind farm operation, the measured data mainly include
wind speed, wind direction, air pressure, humidity, and
temperature from the wind tower and the active output
power of the wind farm from the SCADA. NWP is a
method used to predict the state of atmospheric movement
and weather phenomena by solving the operating equations of
atmospheric movement by means of large computers under
given initial and boundary conditions of the atmosphere (Al-
Yahyai et al., 2011). However, the NWP applied to wind power
forecasting is provided by meteorological products purchased
by third-party forecasting platforms, which contain
meteorological information, such as wind speed and
direction, at different heights in a specific area
(Heppelmann et al., 2017; Shen et al., 2020). In this article,

only the measured wind speed at the hub and the NWP wind
speed at 70 m are considered.

As we all know, the atmosphere is full of chaos, and there is no
absolutely accurate forecast of wind speed. The difficulty of wind
power forecasting caused by the inaccuracy of wind speed forecast
is mainly reflected in the regression characteristics of wind speed
and power. Generally speaking, the power of wind turbines is
proportional to the third power of wind speed (Xu et al., 2021).
The power curve of the wind farm is slightly fuzzy compared with
that of the wind turbine, as shown in Figure 2. However, if the
measured wind speed is replaced by NWP wind speed, as shown
in Figure 3, the regression characteristics will be seriously lost.
Moreover, NWP wind speed is generally less than the measured
wind speed. For example, the range of NWP wind speed is
concentrated in 0–8 m/s, while the measured wind speed is
concentrated in 3–12 m/s. Obviously, the measured wind
speed cannot be predicted in advance, which will bring
difficulties to the WPF. Therefore, it is necessary to correct
NWP wind speed.

First, the VMD algorithm is used to enrich the original NWP
wind speed series by decomposing it to several sub-series. Then,
the correction model is established by BGRU based on
decomposed NWP wind speed and measured wind speed. The
VMD algorithm and BGRU are explained as 2.2.1 and 2.2.2,
respectively.

The VMD Algorithm
VMD is a new signal decomposition estimation method proposed
in 2014 (Konstantin and Dominique, 2014) which aims to
decompose the original complex signal into K sub-series with
different central frequencies. The VMD method uses non-
recursive and variational modal decomposition to process the
original signal, which has better robustness to the
measurement noise.

It is assumed that f is the original NWP wind speed series.
{uk(t)}, k � 1, 2, . . . , K is the decomposed intrinsic modal

FIGURE 1 | Frame of short-term wind power forecasting.
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function (IMF) with finite bandwidth. First, for each IMF, the
corresponding analytic signal is calculated by Hilbert
transformation, so its unilateral spectrum is shown in Eq. 1.
Then, the analytical signals of each IMF are mixed with the

estimated central frequency e−jωkt, and the spectrum of each
IMF is modulated to the corresponding baseband, as shown in
Eq. 2. Finally, the Gaussian smoothing method of
demodulated signals is used to estimate the bandwidth of

FIGURE 3 | Relation between NWP wind speed and wind power.

FIGURE 2 | Relation between measured wind speed and wind power.
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each IMF and solve the variational problem with constraints.
The optimization problem can be described preliminarily as
Eq. 3 shows. [δ(t) + j

πt
] p uk(t), (1)

[(δ(t) + j

πt
) p uk(t)]e−jωkt, (2)⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

min
{uk},{ωk}

⎧⎨⎩∑
k

∣∣∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣∣∣zt[(δ(t) + j

πt
) p uk(t)]e−jωkt

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣2⎫⎬⎭
s.t.∑

k

uk � f

(3)

where {uk} � {u1, u2, . . . , uK}; {ωk} � {ω1, ω2, . . . ,ωK}. In
order to solve this variational problem, there are two
steps. First, the constrained variational problem is
transformed into a non-constrained variational problem
by introducing the quadratic penalty factor α and the
Lagrange multiplication operator λ(t), in which the
quadratic penalty factor can guarantee the signal
reconstruction accuracy in the presence of Gaussian noise,
and the Lagrange operator keeps the constraint conditions
strict. Then, the alternating direction method of multipliers
is adopted to search the “saddle point” of the extended
Lagrange expression by alternately updating
un+1k ,ωn+1

k , and λn+1. The detailed derivation is available in

FIGURE 4 | Results of VMD.

FIGURE 5 | (A) Structure of the GRU cell. (B) Structure of GRU.
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the study by Konstantin and Dominique (2014). Finally, the
solution ûn+1k (ω), central frequency ωn+1

k , and λn+1 are written
as follows:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ûn+1
k (ω) �

f̂(ω) −∑
i≠k
ûi(ω) + λ̂(ω)

2
1 + 2α(ω − ωk)2

ωn+1
k �

∫ ∞

0
ω|ûk(ω)|2dω∫ ∞

0
|ûk(ω)|2dω

λ̂
n+1(ω) � λ̂

n(ω) + τ⎡⎣f̂(ω) −∑
k

ûn+1
k (ω)⎤⎦

(4)

In brief, the steps of the VMD algorithm are summarized as
follows.

Step 1: Initializing {û1k}, {ω1
k}, {λ1k}, and n and determining the

number of IMF K.
Step 2: Updating uk, ωk, and λ according to Eq. 4.
Step 3: Stopping the iteration if given error e> ∑

k
||ûn+1k −

ûn2k ||/ûnk||; otherwise, returning to step 2.

Take the NWP wind speed series at 2000 sampling points
for example. As Figure 4 shows, IMF 1 to IMF 9 are the
decomposed sub-series. There is no mode aliasing existed in all
the IMFs. Therefore, VMD shows perfect performance in
decomposing the non-stationary NWP wind speed signal.
The selection of parameters, such as K and α, is discussed
in the case study.

The BGRU Network
In this section, the correction model comprising BGRU is
proposed. The basic building block GRU cell and its working
scheme are presented at first. Then, BGRU is obtained by
connecting two unidirectional GRUs.

The structure of a GRU cell and unidirectional GRU’s
working scheme are shown in Figure 5. An update gate zt
and a reset gate rt contribute the basic function of the GRU
cell. They are computed as Eq. 5 shows. The GRU updates the
hidden state ht by calculating the hidden state ht−1 of the
previous moment and the external input xt of the current
moment as Eq. 6 shows. GRU has the ability of long-term
memory of useful information because of the flexible control
and coordination of these gates.

[ zt
rt
] � σ[Wz Uz

Wr Ur
][ xt

ht−1
] + [ bz

br
] , (5)

h̃ t � tanh(W ~ht
xt + U ~ht

(rt ⊙ ht−1) + b~ht
), (6)

ht � zt ⊙ h̃ t + (1 − zt) ⊙ ht−1, (7)

where Wz, Wr, W ~ht
, Uz, U r, and U ~ht

denote weight matrixes,
respectively, bz, br, b~ht

denote bias, respectively, ~ht is the
intermediate variable, σ denotes the activation function, and ⊙
denotes the Hadamard operation.

For the abovementioned GRU, variables are updated from
the past to the future, so there is monodirectional dependence
between the hidden states. Specifically, as shown in Figure 5, ht
is related to all inputs (xt−h+1, xt−h+2, . . . , xt), while the hidden
state at the last time ht−1 has nothing to do with xt. Therefore,
only the final hidden state can fully utilize all input
information, while the hidden state at other times does not
consider the subsequent inputs for monodirectional GRU. To
overcome this disadvantage, BGRU uses both forward and
reverse GRUs with chronological relationship to make full use
of all input information. Figure 6 shows the structure of
BGRU. The hidden state of BGRU ht,BGRU is calculated as
Eq. 8.

ht,BGRU � [ �ht ⊕ h
←
t] , (8)

where �ht and h
←
t represent the hidden state of forward and reverse

GRU, respectively, and ⊕ denotes the sum of the corresponding
elements.

The Ensemble Forecasting Method
The forecasting model is described in this section. XGBoost is
a boosting ensemble learning algorithm which iteratively
generates new trees by continuously fitting the residuals of
the previous tree and constructs the tree model into a classifier
with higher accuracy and stronger generalization ability
(Chen and Guestrin, 2016), which is widely used in lots of
Kaggle competitions and has achieved good results in recent
years. Compared with GBDT, the XGBoost has the following
advantages. The XGBoost algorithm uses Hessian matrix to
expand the loss function Taylor to the second order,
transforms the original optimization problem into convex
function to obtain the optimal solution, and solves the
distributed computing problem which is difficult to
implement in the GBDT algorithm. In addition to this,
XGBoost regularizes the complexity of the tree and reduces
the possibility of overfitting the model. Therefore, wind and

FIGURE 6 | Structure of BGRU.
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power data can be better fitted by the XGBoost algorithm, and
forecasting error is reduced, and higher prediction accuracy is
achieved.

For the dataset G � (xi, yi) with n samples and m features,
where |G| � n, xi ∈ Rm, andyi ∈ R, the predicted value of the
model is obtained from Eq. 9,

ŷi � ∅(xi) � ∑Z
z�1

fz(xi) , (9)

where fz(x) � wq(x), wq(x) is the score of x, ŷi is the sum of all
the scores. q is the structure of each tree, and Z is the number of
the trees. Each fz corresponds to an independent tree structure q
and leaf weight w; the newly generated tree fits the residual of the
last prediction. The iteration process is shown as follows.⎧⎪⎨⎪⎩ ŷ(0)

i � 0
ŷ(1)
i � f1(xi) � ŷ(0)

i + f1(xi)
ŷ(z)
i � ŷ(z−1)

i + fz(xi)
, (10)

where ŷ(z)
i is the forecasted value after z iterations of the ith

sample, and ŷ(0)
i is the initial value of the ith sample. The

objective function that needs to be minimized is shown as follows.

Lobj � ∑n
i�1
l(ŷi, yi) +∑Z

z�1
Ω(fz) , (11)

Ω(fz) � γT + 1
2
λ||w||2 , (12)

where l(ŷi, yi) is a differentiable convex loss function between the
prediction and target. Ω(fz) is a regularization term, representing the
complexity of the tree. The smaller the function value is, the stronger the
generalizationability of the tree is.T is thenumberofmiddlenodesof the
tree; w is leaf node fraction; γ is the penalty coefficient of the number of
leaf nodes; and λ is the penalty coefficient of the L2 regularization term,
which smoothen the learning weights of leaf nodes to avoid overfitting.

The iterative function based on additive training can be written
as Eq. 13. Then, the second-order Taylor approximation of the
original objective function is written as Eq. 14.

L(z)
obj � ∑n

i�1
l(ŷi, ŷ(z−1)

i + fz(xi)) + Ω(fz) , (13)

L(z)
obj ≈ ⎛⎝∑n

i�1
l(ŷi, ŷ(z−1)

i ) + gifz(xi) + 1
2
hif

2
z(xi)⎞⎠

+⎛⎝γT + λ

2
j � 1∑T

j�1
w2

j + C⎞⎠,

(14)

where gi � zl(yi, ŷ(z−1)
i )/zŷ(z−1)

i and hi � z2l(yi, ŷ(z−1)
i )/z

(ŷ(z−1)
i )2. After removing all the constant terms, the objective

function is rewritten as a function about the leaf node fraction as
follows.

L(z)
obj ≈ ∑T

j�1
⎡⎢⎢⎢⎣⎛⎝∑

i∈Ij

gi
⎞⎠wj + 1

2
⎛⎝∑

i∈Ij

hi + λ⎞⎠w2
j
⎤⎥⎥⎥⎦ + γT, (15)

where j is the traversal on the leaf node; wj is the score of the jth
leaf node; and Ij � {i|q(xi) � j} represents the samples on the jth

leaf node. Finally, the optimal solution of the objective function is
written as Eq. 16, where Gj � ∑i∈Ij gi and Hj � ∑i∈Ij hi. The
minimum of Eq. 15 is rewritten as Eq. 17.

wp
j � − Gj

Hj + λ , (16)

L(z)
obj optim � −1

2
∑T
j�1

G2
j

Hj + λ
+ γT . (17)

Here, L(z)obj optim represents the maximum gain loss when
selecting a tree structure. The smaller the value is, the better
the model is. During training, XGBoost greedily uses error
functions to continuously improve the current model.

CASE STUDY

In this section, the actual wind farm data are utilized to support
two experiments which are designed to verify the proposed NWP
wind speed correction strategy and wind power forecasting
method. The wind farm data include measured wind speed,
measured wind direction, output wind power, and NWP from
January to December 2019, which are sampled at a period of
15 min. However, only wind speed and power are used in this
study since the relation between wind speed and wind power is
mainly focused. This wind farm is located in eastern China,
whose installed capacity is 85 MW.

The following experiments are implemented on a Windows
10 PC with AMD Ryzen 5 3550H, 2.1 GHz CPU, 16 GB of RAM
and Python 3.8 with PyTorch 1.8.1.

The case study is divided into two parts, NWP wind speed
correction and power forecasting. First, the NWP wind speed is
corrected according to the measured wind speed by the VMD-
BGRU correction strategy, which is to validate the effectiveness of
the proposed wind speed correction strategy. And then, the
forecasting model is trained by measured wind speed and
wind power using the XGBoost algorithm since the measured
data have clearer mapping. Finally, the corrected NWP wind
speed is input to forecast wind power.

Performance Criterion
For the purpose of evaluating the correction and forecasting
performance of the proposed strategy, the root mean square
error (RMSE) and mean absolute error (MAE) are used as the
performance criterions. In addition, the evaluation metrics of
wind speed correction and WPF are a little bit different.
Obviously, the smaller the value, the better the
performance of the proposed model. These equations are
defined as follows:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

RMSEp �

"""""""""""""
1
N

∑N
i�1
(Pi − P̂i

C
)2

√√
× 100%

MAEp � 1
N

∑N
i�1

∣∣∣∣Pi − P̂i

∣∣∣∣ (18)
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FIGURE 7 | Results of NWP wind speed correction. (A) Result for the first week of March. (B) Result for the first week of June.

TABLE 1 | Evaluation results of corrected wind speed.

NWP BGRU corrected VMD-BGRU corrected

RMSEv (m/s) MAEv (m/s) RMSEv (m/s) MAEv (m/s) RMSEv (m/s) MAEv (m/s)

March Day 1 1.351 1.014 1.791 1.461 1.788 1.408
Day 2 1.851 1.547 1.265 0.956 1.193 0.944
Day 3 1.748 1.408 1.181 0.92 1.089 0.882
Day 4 1.415 1.186 1.308 1.128 1.16 0.964
Day 5 1.939 1.666 1.582 1.278 1.313 1.07
Day 6 1.37 1.153 1.021 0.828 0.912 0.743
Day 7 0.997 0.771 0.963 0.721 0.948 0.677

June Day 1 1.963 1.726 1.202 0.93 1.057 0.818
Day 2 2.129 1.872 1.528 1.307 0.799 0.674
Day 3 1.167 0.878 1.602 1.307 1.501 1.145
Day 4 1.522 1.277 1.087 0.857 1.063 0.887
Day 5 1.47 1.2 1.089 0.88 0.761 0.589
Day 6 1.85 1.583 0.939 0.752 0.604 0.504
Day 7 1.523 1.21 1.477 1.151 0.985 0.785
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
RMSEv �

"""""""""""""
1
N

∑N
i�1
(Vi − V̂i)2√√

MAEv � 1
N

∑N
i�1

∣∣∣∣Vi − V̂i

∣∣∣∣
, (19)

where Pi, P̂i are ith actual wind power and forecasting power, Vi,
V̂i are ith measured wind speed and corrected wind speed, C is the
installed capacity of the wind farm, RMSEv, MAEv, and RMSEp,
MAEp are the evaluation criterions of wind speed correction and
wind power forecasting, respectively, and N is the total number of
test samples.

Data Processing
For one thing, the wind farm data have some abnormal data
caused by wind curtailment, power cuts, failure of measuring
device, and so on, which should be deleted. For another,
normalization is required to eliminate the different data
ranges between wind speed and wind power to better meet
the requirement of model training, which is expressed as
follows:

xi′ � xi − xmin

xmax − xmin
, (20)

where xi′ is the ith normalized value, xi is the ith real value before
normalization, and xmax and xmin are the maximum and
minimum value in the dataset, respectively. The real value is
also obtained by Eq. 20 to calculate the evaluation metrics.

The Results of NWPWind Speed Correction
In this section, the accuracy of NWP wind speed is improved
through the VMD-BGRU correction strategy. To verify the
superiority of the proposed correction strategy, the original
NWP wind speed and corrected wind speed by BGRU is
compared with VMD-BGRU. The result of the first week (a
total of 672 sample points) in March and June is taken as a test
dataset. Accordingly, the training dataset is the previous
3 months (a total of 8640 sample points). Besides, RMSEv and
MAEv are used as evaluation metrics, whose units are m/s.

The number of IMF K is determined by observing central
frequency. If the IMFs with close center frequency appear, it is
considered to be over-decomposed. There are 8640 NWP wind
speed samples that need to be decomposed in the testing set. TheK
is chosen as 6 by the traversal method. α is the default value 2000. τ
is 1e-6 to ensure the fidelity of the actual signal decomposition. The

number of BGRU layers is set to 2. The sub-series decomposed
from NWP wind speed is fed into the BGRU network which
extracts complex relation between multi-frequency domain signal
and measured wind speed. Besides, a fully connected layer is used
to transform the flattened vector to one dimension. The learning
rate and epochs are set to 5e-3 and 300, respectively. Adam
optimizer and MSELoss are used for model training.

The discussion about the experiment is described below. Figure 7
shows the performance of the proposed correction strategy in the
first 7 days in March and June. Obviously, the measured wind speed
is higher thanNWPwind speedmost of the time. The average NWP
wind speed and measured wind speed were 5.271 and 6.532 m/s in
2019, respectively. In addition, the fluctuation of measured wind
speed is more severe than that of NWP wind speed. The 7 days’
evaluation result is summarized in Table 1. Here are some findings
summed from these statistical data.

(1) The proposed correction method performs better than NWP
wind speed forecasting. Take these data for example. In
March, the RMSEv and MAEv of VMD-BGRU corrected
wind speed are smaller than that of NWP wind speed in
test days except day 1. The NWPwind speed forecasting is not
always inaccurate, and the correction model tends to raise it.
Thus, a small amount of negative correction is inevitable, but it
is beneficial to improve the accuracy of the forecast wind speed
on the whole. The average RMSEv and MAEv of the VMD-
BGRU model are 1.200 and 0.955 m/s in March, respectively,
which reduced to 0.324 and 0.294 m/s compared with NWP
wind speed, respectively. Moreover, the average RMSEv and
MAEv of the proposed model are 0.967 and 0.780 m/s in June,
respectively, which reduced to 0.693 and 0.612 m/s compared
with NWP wind speed, respectively. Overall, the result
confirms the efficiency of the proposed strategy.

(2) The VMD-BGRU also show a little advantage than BGRU.
For instance, the average RMSEv and MAEv of the BGRU
correction model are 1.302 and 1.042 m/s, respectively, while
the average RMSEv and MAEv of the proposed model are
0.101 and 0.086 m/s less, respectively, inMarch. And, in June,
the average RMSEv andMAEv of the BGRU correction model
are 1.275 and 1.026 m/s, respectively, while the average
RMSEv and MAEv of the proposed model are 0.308 and
0.246 m/s less, respectively. The result indicates that VMD
can enrich the information of NWP wind speed signal by
decomposing it to several sub-series in different frequencies.
From this result, it is clear that the VMD-BGRU correction
strategy shows better performance than compared strategies.

However, some limitations are found in this case. First, NWP
wind speed is difficult to capture the abundant small-scale
fluctuation information of measured wind speed, which is widely
accepted. Even after the proposed wind speed correction, the
measured wind speed fluctuation information is still hard to be
described perfectly. In addition to this, the proposed wind speed
correction does not always correct NWP wind speed positively. The
complicated topography brings many uncertain factors to wind
speed prediction, but there are always a few periods of accurate
NWP forecasting. Inevitably, there will be negative corrections, for

TABLE 2 | Hyper-parameter selection of XGBoost.

Hyper-parameter Searching result Search
range and step

Number of estimators 15 {1,200,1}
Eta 0.35 {0.01,0.9,0.05}
Max depth 5 {1,10,1}
Min child weight 1 {1,10,1}
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example, NWP wind speed in day 3 of June and day 1 of March is
incorrected. Despite the very low probability of negative correction,
NWP wind speed can be effectively corrected most of the time.

The Results of WPF
In this section, the abovementioned NWP wind speed correction
strategy is applied to WPF to further validate its advantage. First

FIGURE 8 | Results of WPF. (A) Result for the first week of March. (B) Result for the first week of June. (C) Result for the first week of September. (D) Result for the
first week of December.
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of all, the power forecasting model is established according to the
measured wind speed and power. Then, the different forecasting
wind speed corrected by BGRU and VMD-BGU is utilized to
forecast power. Also, the original NWP wind speed is used as a
benchmark. Therefore, results are obtained to compare the
differences between these forecasting power and analyze the
reason. The design of the training set and testing set is the
same as The Results of NWP Wind Speed Correction. More
data are validated to enhance the wide availability in WPF. To
be specific, the first 7 days of September and December are added
for testing. Besides, RMSEp and MAEp are used as the evaluation
metrics. Additionally, the proposed XGBoost method is
compared with the traditional machine learning methods, such
as support vector regression (SVR) and MLP.

The hyper-parameter of XGBoost is important to the
performance of the forecasting model. Therefore, selecting the
appropriate hyper-parameters is the key to optimize the mode.
There are three types of hyper-parameters, including general
parameters, booster parameters, and task parameters. In this task,
some key hyper-parameters are tuned by grid searching, whose
detail is shown in Table 2.

The experiment is discussed below. There are four pictures in
different periods which are shown in Figure 8. For the sake of
description, prediction result under NWP wind speed, BGRU
corrected wind speed, and VMD-BGRU corrected wind speed are
renamed asMethod 1, Method 2, andMethod 3, respectively. The
daily forecast statistical results are shown inTable 3 and Table 4.
Here is the detailed discussion about these statistical data.

Method 3 outperforms well than other methods. For example, in
the first week of March, the average RMSEp and MAEp of Method 3
are 9.476% and 5.873MW, respectively, which reduced to 4.797% and
2.420MW than Method 1, respectively, and reduced to 2.217% and
1.138MW than Method 2, respectively. In the first week of June, the
average RMSEp and MAEp of Method 3 are 8.748% and 5.784MW,
respectively, which reduced to 6.899% and 3.712MW thanMethod 1,
respectively, and reduced to 3.880% and 2.150MW than Method 2,
respectively. Also, the similar result can be obtained from September
and December. It is worth noting that the forecasting performance is
less effective than Method 1 in day 3 of June and day 1 of March,
which corresponds to the negative wind speed correction. But, on the
whole, the experiment indicates that the proposed NWP wind speed
correction method is effective in improving the accuracy of WPF.

TABLE 3 | Evaluation results of the corrected wind speed in March and June.

Method 1 Method 2 Method 3

RMSEp (%) MAEp (MW) RMSEp (%) MAEp (MW) RMSEp (%) MAEp (MW)

March Day 1 11.164 5.543 14.586 8.673 10.685 6.669
Day 2 16.529 9.023 12.412 7.169 8.326 5.055
Day 3 16.392 8.455 10.882 6.023 8.723 5.134
Day 4 18.835 10.871 14.221 8.289 11.53 7.456
Day 5 22.791 15.86 15.714 10.841 13.585 9.357
Day 6 6.073 4.145 6.025 4.034 5.615 3.564
Day 7 8.126 4.157 8.013 4.049 7.87 3.878

June Day 1 14.486 8.533 9.391 6.346 6.68 4.458
Day 2 20.908 13.628 14.881 9.26 8.151 5.292
Day 3 10.572 5.728 13.734 8.522 9.233 5.874
Day 4 14.653 8.627 14.085 8.248 11.48 7.802
Day 5 18.385 11.797 12.278 8.293 9.542 6.999
Day 6 16.432 10.775 9.985 7.512 7.826 5.676
Day 7 14.089 7.425 14.045 7.359 8.322 4.39

TABLE 4 | Evaluation results of the corrected wind speed in September and December.

Method 1 Method 2 Method 3

RMSEp (%) MAEp (MW) RMSEp (%) MAEp (MW) RMSEp (%) MAEp (MW)

September Day 1 11.966 5.965 11.511 7.46 8.906 5.931
Day 2 17.618 10.113 11.989 7.455 11.135 7.378
Day 3 10.335 6.058 8.403 4.68 7.632 4.119
Day 4 12.037 7.621 11.461 7.434 10.25 6.72
Day 5 28.484 20.935 17.206 12.193 15.56 12.95
Day 6 15.868 10.273 9.172 5.773 8.935 5.839
Day 7 15.027 9.438 7.577 4.957 6.537 5.906

December Day 1 16.085 9.217 12.439 6.309 9.207 5.388
Day 2 13.558 7.313 13.442 7.124 13.228 7.017
Day 3 7.818 4.534 7.747 4.239 7.063 4.001
Day 4 6.939 4.039 5.075 3.231 5.062 3.109
Day 5 23.333 16.491 12.901 8.627 12.664 8.561
Day 6 8.26 4.954 7.795 4.715 7.116 4.61
Day 7 7.54 4.566 4.36 2.475 4.354 2.354
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In order to verify the XGBoost forecasting method, MLP and
SVR models, as the traditional machine learning methods, are
compared with it. Figure 9 shows the forecasted result. The
RMSEp of the XGBoost is 7.532%, while that of SVR andMLP are
8.522 and 10.95%, respectively, which shows the superiority of the
proposed prediction model.

CONCLUSION

This article proposes the VMD-BGRU method for the NWP
wind speed correction and XGBoost forecasting model. First,
the VMD algorithm is used to decompose the NWP wind speed
to get abundant input features. The BGRU is used to correct
the NWP wind speed based on decomposed NWP wind speed
sub-series and the measured wind speed. Then, the XGBoost
algorithm is utilized to establish the forecasting model using
measured wind speed and power. Finally, the corrected NWP
wind speed is input into the forecasting model to obtain the
short-term prediction results of wind power. From the
experimental results, some conclusions are drawn as
follows. For NWP wind speed correction, the proposed
method decreases the RMSEv and MAEv by 0.324 and
0.294 m/s in the first week of March, respectively, and 0.639
and 0.612 m/s in the first week of June, respectively, compared
with NWP. For WPF, using corrected NWP wind speed as
input decreases the RMSEp and MAEp by 3.54–6.89% and
2.29–3.71 MW on testing data, compared with NWP as input,

respectively. Moreover, the XGBoost forecasting model
outperforms than MLP and SVR. The results verify the
effectiveness of the proposed wind speed correction method
and WPF model.
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