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Infrared and visible image fusion aims to preserve essential thermal information

and crucial visible details from two types of input images to generate an

informative fusion image for better visual perception. In recent years, several

hybrid methods have been applied in the field of infrared and visible image

fusion. In this paper, we proposed a novel image fusion method based on

particle swarm optimization and dense block for visible and infrared images.

Particle swarm optimization is utilized to optimize the weighting factors of the

coefficients obtained by discrete wavelet transform, then the coefficients are

fusedwith the optimumweight to obtain the initial fusion image. The final fusion

image is created by integrating the first fused image with the input visible image

using a deep learning model, in which dense block is utilized for better feature

extraction ability. The results of comparison experiments demonstrate that our

method produces fusion images with richer details and texture features, and the

fused image reduces the artifacts and noise.
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Introduction

The accurate operation and prompt detection of abnormal conditions are crucial for

the safety of the power grid. In this way, the fusion of power grid images has aroused

increasing attention in recent years for the smart grids (Ma et al., 2021), and the majority

of images are utilized to spot anomalies in the personnel and the devices. The aim of the

image fusion technique is to combine meaningful information from several sensors into a

single informative fused image. By extracting all complementary features from the input

images and avoiding any irregularities in the final fused image, effective image fusion

preserves critical information. Fusion techniques for infrared and visible image have

gained increasing attentions in the recent research on multi-sensor fusion field. Both

visible and infrared sensors have advantages and disadvantages of their own. Infrared

images are more sensitive to the thermal and radiative information, thus heat source

targets have higher pixel values in infrared images and are displayed as high brightness,

which is distinct to observe. However, due to the infrared sensor imaging limitations,

infrared images contain less texture information. Visible images contain rich details since

visible image sensors capture reflected light from objects. Thus, the fusion of images

OPEN ACCESS

EDITED BY

Lianbo Ma,
Northeastern University, China

REVIEWED BY

Cheng Xie,
Harbin Institute of Technology, China
Liu Jie,
Ministry of Industry and Information
Technology, China
Hongjiang Wang,
Shenyang Institute of Engineering,
China

*CORRESPONDENCE

Jing Zhang,
jzhangnuc@163.com

SPECIALTY SECTION

This article was submitted to Smart
Grids,
a section of the journal
Frontiers in Energy Research

RECEIVED 23 July 2022
ACCEPTED 08 August 2022
PUBLISHED 30 August 2022

CITATION

Zhang J, Tang B and Hu S (2022),
Infrared and visible image fusion based
on particle swarm optimization and
dense block.
Front. Energy Res. 10:1001450.
doi: 10.3389/fenrg.2022.1001450

COPYRIGHT

© 2022 Zhang, Tang and Hu. This is an
open-access article distributed under
the terms of the Creative Commons
Attribution License (CC BY). The use,
distribution or reproduction in other
forums is permitted, provided the
original author(s) and the copyright
owner(s) are credited and that the
original publication in this journal is
cited, in accordance with accepted
academic practice. No use, distribution
or reproduction is permittedwhich does
not comply with these terms.

Frontiers in Energy Research frontiersin.org01

TYPE Methods
PUBLISHED 30 August 2022
DOI 10.3389/fenrg.2022.1001450

https://www.frontiersin.org/articles/10.3389/fenrg.2022.1001450/full
https://www.frontiersin.org/articles/10.3389/fenrg.2022.1001450/full
https://www.frontiersin.org/articles/10.3389/fenrg.2022.1001450/full
https://crossmark.crossref.org/dialog/?doi=10.3389/fenrg.2022.1001450&domain=pdf&date_stamp=2022-08-30
mailto:jzhangnuc@163.com
https://doi.org/10.3389/fenrg.2022.1001450
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org/journals/energy-research#editorial-board
https://www.frontiersin.org/journals/energy-research#editorial-board
https://doi.org/10.3389/fenrg.2022.1001450


obtained from both sensors can overcome the restrictions of a

single sensor and produce many complementary characteristics.

Fusion image aim to combine the strengths of source images for

better visual effects results and provide rich information to

enhance decision-making. Therefore, fusion algorithms have

been adopted in various scenarios for different applications

such as object tracking (Zhang et al., 2020), surveillance

(Paramanandham and Rajendiran, 2018), face verification

(Raghavendra et al., 2011).

To implement the fusion of visible and infrared images, a

number of methods have been developed over the last few

decades. These algorithms can be categorized into

conventional methods and deep learning-based methods.

For conventional methods, several multi-scale

decomposition methods have been attempted, the

representative examples are the pyramid and wavelet

transform based methods. For instance, Burt and Adelson

(1985) firstly used Laplacian pyramid to encode images. Du

et al. (2016) proposed a union Laplacian pyramid based image

fusion method which used Laplacian pyramid to transform input

images into multi-scale representations and inversed pyramid to

obtain the fused image. Shen et al. (2014) proposed a boosting

Laplacian pyramid method to fuse multiple exposure images. Li

et al. (2018) proposed a feature fusion strategy using Gaussian

pyramid. In contrast to the multi-scale pyramid transform, the

wavelet transform coefficients are mutually independent (Ma

et al., 2019a). Li et al. (2002) introduced a wavelet transform

based image fusion method for multi-sensor images, which

showed certain strengths over Laplacian pyramid based fusion

methods. As a method of fusion task, the dual-tree discrete

wavelet transform is applied for thermal image fusion

(Madheswari and Venkateswaran, 2016). In the work of (Liu

et al., 2015), this issue is addressed by using a general image

fusion framework in which multi-scale transform is used for

decomposition and reconstruction. However, the accuracy of

conventional approaches is inadequate, which results in subpar

fusion outcomes.

With respect to deep learning-based image fusion tasks,

convolutional neural networks (CNNs) have performed a

number of impressive results. Liu et al. (2017) proposed a

fusion method for multi-focus images in which CNN is

applied for the first time. Li et al. (2018) introduced a deep

learning network using a fixed VGG-19 network to extract detail

content features of infrared and visible images. After that, Li and

Wu, 2019 operated dense block (Li and Wu, 2019) to preserve

useful information of input images. Moreover, by implicitly

executing feature extraction and reconstruction process, the

generative adversarial network (GAN) methods are also well-

performed in visible and infrared image fusion tasks (Zhang

et al., 2021). For instance, Ma et al. (2019) firstly introduced

GANs by considering infrared and visible image fusion task as an

adversarial problem. After that, they utilized GAN to preserve

rich spectral information in remote sensing images (Ma et al.,

2020). Li et al. (2020) proposed a dual discriminator generative

adversarial network to keep more details and textures in the fused

image. However, GAN methods have weaknesses on the balance

of generator and discriminator. Additionally, autoencoder (AE)-

based methods also exhibits good performances, where encoder

extracts features from input images and decoder reconstruct the

features to obtain fusion results, such as DenseFuse (Li and Wu,

2019) and VIF-Net (Hou et al., 2020).

Furthermore, evolutionary computation based

optimization is a new trend in recent research. Many

related algorithms are utilized in different systems to

implement multiple scales and objectives optimization, such

as particle swarm optimization (PSO) (Madheswari and

Venkateswaran, 2016; Paramanandham and Rajendiran,

2018), grey wolf (Daniel et al., 2017) artificial bee colony

(Chatterjee et al., 2017), differential evolution (Kaur and

Singh, 2020), and they all perform good results.

Appropriate weight parameters generated by optimization

algorithms can be used to produce fusion image with better

quality, and the fusion images assist the implementation of

subsequent works in a smooth way.

However, the limitation of conventional methods is apparent

in the treat of image details. Most deep learning based methods

generally have weaknesses on training consumption and are

prone to overfitting problems. Thus, some hybrid image

fusion methods consequently exist to avoid artifact and

blockiness. For instance, PSO is used to optimize weights for

fusing discrete wavelet transform coefficients (Madheswari and

Venkateswaran, 2016) and discrete cosine transform coefficients

(Paramanandham and Rajendiran, 2018) in the fusion process.

Differential evolution is used to enhance feature selection (Kaur

and Singh, 2020). Fu et al. (2020) proposed a multimodal medical

image fusion method using Laplacian pyramid combined with

CNN. Wang et al. (2021) proposed a visible and infrared image

fusion method based on Laplacian pyramid and GAN. These

hybrid methods have improved fusion results in their respective

applications.

Therefore, in this paper, we proposed an innovative hybrid

image fusion method by combining conventional image fusion

method with swarm intelligence technique and deep learning

model. Firstly, the input images are fused using discrete wavelet

transform (DWT) with a weight factor optimized by PSO. Due to

power grid images necessitate greater observational detail, the

final fused image is then produced by synthesizing the initial

fused image with the input visible image using a dense block.

With these fusion architectures, fused images can preserve more

useful details and textures that support the further supervisory

and decisional demands.

The contributions of this paper are summarized as follows:

1) A visible and infrared image fusion method based on the

swarm intelligence technique is proposed. Specifically, PSO is

used to optimize the weighting factors of coefficients obtained
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by DWT, then the coefficients are fused with the optimum

weight to obtain the fusion image.

2) An image fusion method using deep learning model is

proposed for preserving richer details and textures. To

better maintain features from the visible image, dense

block is used in feature extraction process to obtain the

fusion image with high quality for better visual effect.

3) Based on the two mentioned methods, a novel image fusion

method is proposed in this paper, which contains two parts.

In the first part, the input visible and infrared images are

decomposed to coefficients by DWT, and then fused with the

optimal weight generated by PSO. Inverse DWT is utilized to

obtain the initial fusion image. In the second part, the first

fused image is integrated with the input visible image through

a deep learning model in which dense block is utilized for

feature extraction. In the end, the final fused image is

obtained. By comparing with representative methods, the

evaluation results verified the effectiveness of our method.

The remainder of the paper is structured as follows:Methods

Section introduces the specific techniques that we use in our

method. In Proposed Fusion Method Section, details on the

proposed fusion method are provided. Experimental results

are given in Experiments and Results Section, followed by the

conclusions in Conclusion Section.

Methods

This section introduces the techniques we use, including

DWT, PSO, and dense block, in the proposed image fusion

framework.

Discrete wavelet transform

DWT is a commonly used wavelet transform method for

image fusion. The DWT has more advantages compared to

pyramid methods and discrete cosine transform (DCT). For

instance, DWT provides increased directional information,

higher signal-to-noise ratios and no blocking artifacts than

pyramid-based fusion (Lewis et al., 2007); DWT provides

good localization and higher flexibility than DCT (Wu et al.,

2016). DWT can divide the source image into several sub-bands

including low-low, low-high, high-low and high-high bands,

which contains the approximate coefficients, vertical details,

FIGURE 1
The framework of proposed image fusion method.
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horizontal details and diagonal details coefficients, respectively

(Shehanaz et al., 2021).

In this paper, DWT is used to decompose the input infrared

and visible images into wavelet coefficients. The decomposed

coefficients are fused with optimized weights generated by PSO,

and by applying the inverse DWT to the fused coefficients, the

fused image is obtained.

Particle swarm optimization

The PSO is a population-based optimization algorithm

which was first introduced by Kennedy and Eberhart (1995)

in 1995, its fundamental idea came from research on the flock

feeding behavior of birds. The main purpose of PSO is to solve a

problem by utilizing a population of randomly generated

particles in the search space. Swarm is the term for the entire

population, and particles are used to describe each individual.

The swarm is denoted as S � {x1, x2, ..., xN}, where xi represents

the ith particle, and the population contains particle position as

well as random velocity. Each particle position is updated by two

best values called pbest and gbest. The pbest is the best position

achieved by each particle so far, and the gbest is the global best

position among particles in the swarm. The position and velocity

of each particle are updated according to Eqs 1, 2,

Vi
n+1 � ωVi + k1r1(pbestin −Xi

n) + k2r2(gbestn −Xi
n) (1)

Xi
n+1 � Xi

n + Vi
n+1 (2)

where Vi
n+1 and Vi are the new and current velocity of the ith

particle, Xi
n+1 and Xi

n are the new and current position of the ith

particle, ω is the inertia factor, large inertia weight tends to

promote global search while small inertia weight tends to

promote local search, k1 and k2 are two positive acceleration

factors (both k1, k2= 2), r1 and r2 are numbers randomly

generated between 0 and 1, pbestin is the pbest position of the

ith particle at time set n, gbestn is the gbest position of the

optimizer at time set n.

In this paper, PSO generates the optimum fusion weight by

searching the best solution, and the optimum weight is used to

fuse the decomposed coefficients to enhance the fusion results.

Dense block

CNNs have achieved substantial progress in the field of image

processing during the past few years. With the strong ability in

feature extraction, convolutional neural networks have provided

several novel ways for image fusion. Dense block is a key

component of the DenseNet (Huang et al., 2017), the key

concept is that for each layer, the feature mappings of all

preceding layers are utilized as the input of the current layer

while their feature mappings are used as the input for the

subsequent layers, which form a full connection. The feature

mappings extracted from each layer are available for the

following layers. Thus, the features of input images can be

effectively extracted and preserved, which establish the

foundation for subsequent fusion. Advantages of dense block

architecture are as follows: 1) this architecture can alleviate

vanishing gradient and model degradation, which makes the

network easily trained; 2) this architecture can enhance feature

preservation; 3) this architecture reduces the number of parameters.

Proposed fusion method

The proposed fusion method is thoroughly discussed in this

section. The overall framework of the proposed method is shown

in Figure 1. As shown in Figure 1, the proposed framework has

two main steps. Firstly, the input images are fused using DWT

FIGURE 2
The architecture of the proposed network.
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with a weight factor optimized by PSO to obtain the first fused

image. Then, the final fused image is obtained by synthesizing the

input visible image with the initial fused image using the dense

block.

PSO based image fusion rule

Discrete wavelet transform (DWT) is used for decomposing

the input infrared and visible images into approximate and

detailed coefficients, which is used for fusion process to

generate better results. The approximate and detailed

coefficients of input infrared image are calculated by Eqs 3, 4,

respectively.

CIφ(m, n) � 1����
MN

√ ∑M−1
x�0 ∑N−1

y�0 I(x, y)φ(m, n) (3)

CHi
Iφ(m, n) � 1����

MN
√ ∑M−1

x�0 ∑N−1
y�0 I(x, y)φHi(m, n) (4)

The decomposed coefficients of input visible image are

calculated by Eqs 5, 6, respectively.

CVφ(m, n) � 1����
MN

√ ∑M−1
x�0 ∑N−1

y�0 V(x, y)φ(m, n) (5)

CHi
Vφ(m, n) � 1����

MN
√ ∑M−1

x�0 ∑N−1
y�0 V(x, y)φHi(m, n) (6)

where M × N represents the size of input images, i � {1, 2, 3},
CH1 , CH2 and CH3 are the horizontal orientation, vertical

orientation and diagonal orientation, respectively.

Since the approximate and detailed coefficients of

input infrared and visible images decomposed by wavelet

transform contain complementary information and

features, the conventional fusion strategy such as average

strategy and maximum select strategy may not provide

TABLE 1 Architecture of the network.

Parts Layers Size Stride Input Output Activation

Feature extraction Conv(C11,C12) 3 × 3 1 1 16 ReLU

Conv(D11,D12) 3 × 3 1 16 16 ReLU

Conv(D21,D22) 3 × 3 1 32 16 ReLU

Conv(D31,D32) 3 × 3 1 48 16 ReLU

Feature reconstruction Conv(C2) 3 × 3 1 64 64 ReLU

Conv(C3) 3 × 3 1 64 32 ReLU

Conv(C4) 3 × 3 1 32 16 ReLU

Conv(C5) 3 × 3 1 16 1 ReLU

FIGURE 3
Four pairs of example images.
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meaningful fusion of complementary saliency features.

Thus, particle swarm optimization (PSO) is used to

improve the fusion strategy with optimum weights to

enhance entire fusion performance. The PSO algorithm

computes with a population of random particles

and updates the generations for the search of ideal option.

FIGURE 4
Fusion results with different comparison methods on image (a).

FIGURE 5
Fusion results with different comparison methods on image (b).
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The optimum fusion weights are saved when the iteration

ends and are used to fuse the decomposed coefficients based on

the fusion rule. The fusion rule is defined as following Eq. 7.

FC � α × IC + β × VC (7)

where Fc is the fused coefficients, Ic and Vc are the coefficients of

infrared and visible images, α and β are the best weights

optimized by PSO.

The first fused image is then generated by applying the

inverse discrete wavelet transform to the fused coefficients.

FIGURE 6
Fusion results with different comparison methods on image (c).

FIGURE 7
Fusion results with different comparison methods on image (d).
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Dense block based image fusion rule

Network architecture
The architecture of the proposed network is shown in

Figure 2, and the network contains three main parts including

feature extraction, fusion layer and feature reconstruction. The

input images are denoted as IA and IB, respectively. The feature

extraction part contains two channels to extract deep features.

Channel A is made up of C11 and a dense block which is consists

of D11, D21 and D31. Channel B contains C12 and a dense block

that includes D12, D22 and D32. The first layer (C11, C12)

contains 3 × 3 filters to extract rough features, and each dense

block also have three convolutional layers which contain 3 × 3

filters. The input channel number of feature map is 16 in each

convolutional layer in feature extraction part.

With this strategy, the input two channels have same

architecture and share same weights, thus the feature

extraction part has two advantages. First, the computational

complexity and consumption are reduced. Second, the input

images can be any size. Architecture of the network is outlined in

Table 1. In fusion layer, we choose addition fusion strategy to

directly concatenate features. The result of the fusion layer will be

the input of feature reconstruction part. The feature

reconstruction part contains another four convolutional layers

(C2, C3, C4, C5), which also contain 3 × 3 filters, to obtain the

fused result IF.

Loss function
Loss function is used for computing the difference between

the prediction and ground-truth to find appropriate parameters

to reconstruct the input image more accurately and sufficiently.

The structural similarity index (Wang et al., 2004) is a useful

metric for comparing the structural similarity of two images.

SSIM is sensitive to the perception of local structural changes

which resembles the human visual system (HVS), and it contains

three components: luminance comparison, structure comparison

and contrast comparison. The three comparisons can be

combined, and result in a specific form as SSIM(A, F) and

SSIM(B, F), which are respectively defined as Eqs 8, 9.

SSIM(A, F) � (2μAμF + C1)(2σAF + C2)(μ2A + μ2F + C1)(σ2A + σ2F + C2) (8)

SSIM(B, F) � (2μBμF + C1)(2σBF + C2)(μ2B + μ2F + C1)(σ2B + σ2F + C2) (9)

In our network, the loss function SSIM are calculated by

Eq. 10,

SSIM(A, B, F) � 1
2
(SSIM(A, F) + SSIM(B, F)) (10)

where F is the fused image, and A, B are input images; μA, μB and

μF represent the mean of A, B and F; μ2A, μ
2
B and μ

2
F represent the

variance of A, B and F; σAF and σBF represent the joint variances

ofA, B and F. BothC1 and C2 are stable coefficients which are set

as 0 in this work.

SSIM can characterize the differences between two images

more precisely, and the larger SSIM value indicates the smaller

difference between the images.

Training
In order to train the network to reconstruct the input

image more accurately, we discard fusion layer and only

consider feature extraction and reconstruction parts. The

purpose of this training phase is to enhance the ability of

the encoder and decoder in the autoencoder network to

extract and reconstruct features. In training phrase, in

order to improve the feature extraction ability of visible

images to satisfy the requirements for better visual

perception, we train the weights of encoder and decoder

using the MS-COCO (Lin et al., 2014) dataset. The images

in MS-COCO are all resized to 256 × 256 and transformed to

gray scale in the pre-processing phrase, and the learning rate is

set to 10−4.

Experiments and results

In order to verify the performance of the proposed algorithm,

we conduct extensive evaluation and comparison experiments.

TNO database is used in this work, and four example images

numbered as (a, b, c, d) are shown in Figure 3. The top row

TABLE 2 Comparison results of evaluation metrics for image (a).

Method EN MI SD MSE PSNR

DWT 6.2986 1.4527 7.8290 0.0167 41.8264

NSCT 6.4782 1.4758 8.0003 0.0133 42.8285

CBF 6.6181 1.4934 8.0733 0.0158 42.0793

CSR 6.4007 1.5533 7.9221 0.0134 42.7958

DeepFuse 6.7653 1.7104 8.3172 0.0179 41.5324

Proposed 6.5913 2.5036 8.3314 0.0131 42.8870

TABLE 3 Comparison results of evaluation metrics for image(b).

Method EN MI SD MSE PSNR

DWT 5.9789 1.8314 6.9421 0.0307 39.1955

NSCT 6.0585 1.8502 6.9375 0.0248 40.1214

CBF 5.8384 1.2152 6.8541 0.0346 38.6801

CSR 5.9121 2.0877 6.9599 0.0246 40.1481

DeepFuse 5.9399 2.1950 7.0347 0.0206 40.9211

Proposed 6.0659 2.5194 7.1588 0.0205 40.9459
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represents infrared images, while the second row represents

visible images.

In our experiments, we compare the proposed method

with several typical fusion methods, including discrete wavelet

transform (DWT) (Li et al., 2002), non-subsampled

contourlet (NSCT) (Da Cunha et al., 2006), cross bilateral

filter (CBF) (Shreyamsha Kumar, 2015), convolutional sparse

representation (CSR) (Liu et al., 2016), and the DeepFuse

method (DeepFuse) (Prabhakar et al., 2017). The fifilter size is

also set as 3 × 3 for DeepFuse methods in our experiment.

Figures 4–7 represents the contrast experiments results of the

four example images, respectively. The evaluation results of

comparison experiments are all conducted by MATLAB-

2021a.

Evaluation metrics

To quantitatively evaluate the proposed method with the

comparison methods, five commonly used quality metrics are

utilized for evaluation. They are: entropy (EN), mutual

information (MI), standard deviation (SD), mean square error

(MSE), peak signal to noise ratio (PSNR).

Information entropy is a significant metric to assess the depth

of visual information, which reflects the richness of information

contained in the fused image, it can be calculated by Eq. 11,

EN � ∑L

i�1pi log2pi (11)

where L represents the overall number of image pixels, pi denotes

the probability of distribution at each gray level. The more

information that is present in the fused image, the larger the

EN value, and the higher the quality of the fusion.

MI measures the information fused image obtained from the

input images, it can be calculated as follows,

MI � MIAF +MIBF (12)

MIAF(a, f) � ∑
a,f

PAF(a, f)log2
PAF(a, f)

PA(a)PF(f) (13)

MIBF(b, f) � ∑
b,f

PBF(b, f)log2
PBF(b, f)

PB(b)PF(f) (14)

where PA(a), PB(b), and PF(f) represents the normalized

histogram of the image A, image B and the fused image,

respectively. PAF(a,f) denotes the joint normalized histograms

between the fused image and the source images A, PBF(b, f)
represents the joint normalized histograms between the fused

image and the source images B. The larger the MI value, the

more information fused image preserves from input source images.

SD reflects the degree of dispersion in the image between

each pixel value and the average value, it can be calculated by

Eq. 15,

SD �
�������������������������
1

MN
∑M

m�1∑N

n�1(F(m, n) − �F)2√
(15)

where F(m, n) is the pixel at relative coordinates, �F is the average

pixel value. The more dispersed the pixel level distribution, the

higher the image contrast, and the better the fusion effect, the

larger the SD value.

MSE measures the mean square error of the images, which is

a reverse indicator evaluating the accuracy in integrating

information from input images. PSNR indicates the distortion

degree between the source images and the fused image. They can

be calculated as follows.

MSEFA � 1
MN

∑M

m�1∑N

n�1(F(m, n) − A(m, n))2 (16)

MSEFB � 1
MN

∑M

m�1∑N

n�1(F(m, n) − B(m, n))2 (17)

MSE � 1
2
(MSEFA +MSEFB) (18)

PSNR � 10 log10((M × N)2
MSE

) (19)

The fused image is less distorted and more similar to the

source images with a higher PSNR value.

Subjective analysis

Figures 4–7 demonstrates the comparison between our method

and five other methods. We can observe that images generated by

DWT lost too much details, which leads to poor perception. For the

TABLE 4 Comparison results of evaluation metrics for image(c).

Method EN MI SD MSE PSNR

DWT 6.3672 1.6763 8.0665 0.0306 39.2135

NSCT 6.4668 1.6467 8.0793 0.0262 39.8776

CBF 6.3062 1.5914 8.2067 0.0324 38.9566

CSR 6.3993 1.7999 8.0709 0.0260 39.9096

DeepFuse 6.4134 2.1705 8.2431 0.0227 40.5093

Proposed 6.7803 3.0469 8.7027 0.0232 40.4037

TABLE 5 Comparison results of evaluation metrics for image(d).

Method EN MI SD MSE PSNR

DWT 6.5126 1.4833 8.8842 0.0449 37.5427

NSCT 6.6107 1.4644 9.2933 0.0405 37.6900

CBF 6.5452 0.9850 9.4885 0.0512 36.9743

CSR 6.5897 1.6243 9.3471 0.0404 38.0011

DeepFuse 7.0314 2.0268 9.4639 0.0813 34.9668

Proposed 7.3205 2.1473 10.5195 0.0467 37.3682
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fused images of NSCT, some region details are blurred and lost some

texture. More artificial noise and unclear saliency features are

present in images fused by CBF, such as the person and sky

shown in Figure 6 and Figure 7. In CSR, fused images have

some obvious salient features loss and are darker than other

images. As for DeepFuse method, more infrared image features

are obtained and the fused images have too much brightness, which

is unnatural for observation, such as the image shown in Figure 7.

Compared with these five methods, our fusion method preserves

abundant detail and texture information, the images are clearer,

which are qualified for human visual perception.

Objective analysis

In this section, our method is compared with the five methods

using evaluation metrics mentioned above. The objective evaluation

results of five metrics achieved by the comparison methods and

proposed method for the four groups of source images are shown in

Table 2-5, in which the best results of the five indicators are marked

in bold. The results demonstrate that our method outperforms the

comparison methods in almost five assessment metrics. This

indicates that the fused images obtained by our method have

lower artifact and noise levels but richer details and texture

features. The fused images are clearer and have a better visual effect.

In brief, the proposed method can more effectively extract

and preserve detail information and texture features from source

images and fuse with the best scale, which improves human

visual perception. Additionally, the fusion results are validated

using evaluation metrics, verifying the qualification for

subsequent observation and detection.

Conclusion

In this paper, we introduce a novel method based on particle

swarm optimization and dense block. This method combines

conventional image fusion method with swarm intelligence

technique and deep learning model. Firstly, DWT is utilized

to decompose the input images into coefficients, then PSO is used

to optimize the weighting factors and the coefficients are fused

with the optimum weight to obtain the initial fusion image. To

satisfy the observational requirements, the initial fusion image is

then fused with the input visible image using a deep learning

model in which dense block extracts and preserves rich image

information. The experimental results demonstrate that the

output fused images have abundant details and texture

features, which are suitable for visual perception. The fused

results are qualified for subsequent observation and detection.

Although the proposed method achieves good results,

additional works in the fields of medical image and remote

sensing image is required to broaden its application to multi-

modality image fusion.
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