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The Unit Commitment problem (UC) is a complex mixed-integer nonlinear

programming problem, so the main challenge faced by many researchers is

obtaining the optimal solution. Therefore, this dissertation proposes a new

methodology combining the multi-dimensional firefly algorithm with local

search called LS-MFA and utilizes it to solve the UC problem. In addition,

adaptive adjustment, tolerance mechanism, and pit-jumping random strategy

help to improve the optimal path and simplify the redundant solutions. The

experimental work of unit commitment with the output of 10–100 machines in

the 24-hour period is carried out in this paper. And it shows that compared with

the previous UC artificial intelligence algorithms, the total cost obtained by LS-

MFA is less and the results are excellent.
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1 Introduction

The electric power industry is becoming a key instrument in the economic and social

development of a nation. It plays a vital role in the heavy industry and has long been the

leading industry of a nation. With the continuous progress of human society and

civilization, the power system has penetrated into all walks of life, so the effective,

economic, secure, and stable operation of the power system has emerged as a powerful

platform for the economic development of the nation. From national defence to daily life,

the stability and reliability of the power system have been escorting social progress. There

are some pieces of evidence to suggest that with the continuous expansion of the power

system scale, it is challenging to achieve the balance of supply and demand and maximize

economic benefits only by governing the output and commitment of the generators,

which needs to adjust generators unit commitment and output scheduling in advance.

The unit commitment of a power system refers to reasonably adjusting the up-down

state of units and active power distribution of units in a specified period (the example

selected in this paper is a 24-hour period), so as to satisfy the balance between supply,
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demand, and spinning reserve requirement. And it can maximize

the economic benefits of power system operation.

Among the traditional algorithms, literature (Su and Hsu,

1991) adopted fuzzy optimization theory to express load

prediction, operation cost, and spinning reserve. They

designed a fuzzy dynamic programming approach. One

criticism of the literature was that it took a long time. A

combination of the genetic algorithm and the quadratic

programming approach was used in the literature (Mantawy,

1998) based on fuzzy optimization theory to obtain the unit

commitment. Literature (Senjyu et al., 2003) based on heuristic

methods provided a means of solving the problem of unit

commitment, which improved the effectiveness of the

algorithm. Dynamic programming was adopted in literature

(Lee, 1991), and the average full-load consumption combined

with the unit operation factor was selected for its reliability and

validity. To better improve the accuracy of the solution, reference

(Fan et al., 1996) undertook the sequential input method. Later,

the exit commitment algorithm appeared. In literature (Xia et al.,

2000), the use of reversing sorting according to the variation of

unit operating cost after the unit shutdown was a well-established

approach to finding the optimal solution. Besides, many

researchers (Lowery, 1966; van den Bosch and Honderd, 1985;

Snyder et al., 1987) have utilized the dynamic planning method

to solve the problem of UC, but a major problem with the

experimental method was the dimension disaster. So the

procedures of this study were enhanced by the central

improvement idea. That was to initialize the unit according to

some economic characteristics indexes to generate the initial unit

commitment, which greatly reduced the state variables. The

Lagrangian Relaxation method (LR) was one of the most

prominent procedures for determining commitment (Merlin

and Sandrin, 1983; Zhuang and Galiana, 1988; Cohen et al.,

1999) The benefit of this approach was that there was no

dimension of disaster, and it performed well in solving large-

scale optimization problems. However, there were certain

drawbacks associated with the use of LR, for example, the

convergence speed was not fast, and it appeared to oscillate.

Literature (Carrión and Arroyo, 2006; Ostrowski et al., 2012)

adopted a mixed integer programming method, but this method

usually had no requirements on constraint conditions and a large

amount of calculation, with slow calculation speed and

convergence speed, so its practicability was not outstanding.

Recently, publications about UC more frequently adopted

the artificial intelligence algorithm. Literature (Sasaki et al., 1992)

depended on the Hopfield network model in Artificial Neural

Networks (ANN) to solve the UC problem. Analysis of Hopfield

involved in the traditional algorithm was first carried out.

Various inequality constraints were taken into account in

detail to determine the up-down state of each unit. But the

model failed in convergence, and the results were not accurate. In

1996, Bai et al. published a paper in which they described the

Tabu Algorithm (TB) to design a method that can be used for

day-ahead scheduling plan adjustment or plan reorganization

after the change of system running state (Bai and Shahidehpour,

1996). In an attempt to have good robustness and good

calculation speed, the researcher (Maifeld and Sheble, 1996;

Srinivasan and Tettamanzi, 1996) used the Genetic Algorithm

(GA). Literature (Wong, 1998) used simulated annealing, which

was a heuristic random algorithm based onMonte Carlo Iterative

Solution Algorithm, but its convergence speed was behindhand,

and some control parameters were difficult to determine.

This paper focuses on an artificial intelligence

algorithm—Firefly Algorithm (FA) which eradicates the old

and fosters the new. The FA was designed by Yang of

Cambridge University in 2009 (Yang, 2009). It simulates the

unique social behavior of fireflies in nature—luminous. And it

generates a random optimization algorithm. Firefly Algorithm

not only has a simple procedure, but also less relevant data, even

can better overcome the common problem of local fast

convergence of artificial intelligence algorithms. Therefore,

this algorithm is beloved when it solves complex optimization

problems with multiple constraints. The Firefly Algorithm is a

random optimization algorithm generated according to the

characteristics of the firefly’s flashing behavior in nature.

Without considering the biological significance of the firefly’s

luminescence, the firefly only uses its luminescence

characteristics to search for companions in its search area and

advances toward individuals with a higher brightness than itself

to complete the update of the position. Firefly Algorithmwas first

carried out in 2005 at the IEEE conference on Swarm

Intelligence. There has been an amount of application since it

was proposed, such as the use of robots in the group, looking for

multiple source localization, harmful gas emissions,

contamination inspection, and multimodal optimization

problems (Krishnanand and Ghose, 2005, 2006; Krishnanand

K. and Ghose, D. 2009; Krishnanand K. N. and Ghose, D. 2009),

which show the FA has a good performance, causing the favor of

the researchers around the world, gradually becomes new

popular research in the intelligent computing field.

This dissertation employs the Multidimensional Firefly

Algorithm combined with Local Search (Balas and

Vazacopoulos, 1998) named LS-MFA to solve the UC

problem, considering discrete and continuous variables, and

the output of generators, the unit minimum up-down time

constraints, the load constraints. Meanwhile, the ramp rate

constraints are also involved, which has the system is no

longer a single independent section of optimization during the

run time. Instead, it is sequent, setting out to obtain the unit

commitment and the unit output distribution as well as having a

significant price advantage compared with the previous

literature. Meanwhile, the Firefly Algorithm itself is improved,

one of which is to replace the fixed movement factors of FA with

a new dynamic parameter adjustment method. Otherwise,

different from the modern heuristic algorithms which use a

penalty function to deal with equality constraints, this article
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does not add an additional objective function. It engages with the

tolerance mechanism and amends the infeasible solution to the

feasible region, which avoids being difficult to find a feasible

solution due to multifarious equality constraints in the dynamic

economic dispatch (DED). Beyond that, the random strategy is

adopted aiming to increase the diversity of the population and

prevent local premature convergence. It is worth mentioning that

this paper proposes a new methodology for dealing with discrete

variables. It joins the thought of Local Search (LS) including the

“jumping pit strategy”. And according to minimum up-down

time limits, it sets up mandatory units that must run, mandatory

units that must be turned off, and the free unit, which greatly

reduces the amount of calculation of the unit commitment.

Faster and more efficient optimization is achieved by

adjusting free units. Furthermore, the injection of the “self-

comparison” strategy ensures the rapid convergence of the

search range. Frequently, compared with previous literature,

the results show that LS-MFA facilitates the economy.

This paper is composed of six themed chapters. And it has

begun with the above overview and introduction to UC. It will

then go on to specifically introduce the proposed new

methodology LS-MFA. The second part deals with the models

and formulas of UC. Chapter Three begins by laying out the

improvement both in the random movement factor α and the

attractiveness, as well as the theoretical dimensions of LS-MFA,

and looks at how it deals with the UC, which is the novelty of this

study. The fourth chapter is concerned with the methodology

used for this study. Chapter Five analyses the results of

simulations and discussions. The sixth part is the summary of

this paper and the vision for future work.

2 Mathematical model of UC

2.1 Objective function

The UC problem is to determine the best commitment of the

unit state and generate the corresponding active power output in

order to minimize the sum of power generation cost and start-up

cost in the cycle. Its mathematical model is expressed as follows:

min .F � ∑T
t�1
∑N
i�1
[UitCit + Uit(1 − Ui,t−1)Si] (1)

In the formula, F is the total unit cost, N represents the

number of units; T represents the operation period; Uit

represents the state of the generator N in time period t. It can

be described as follows:

Uit � { 1,when themachine is turned on
0,when themachine is turned of f

(2)

Where, Cit presents the generation cost of the unit i in time

period t, and its function can be expressed as:

Cit � aiP
2
i,t + biPit + ci (3)

In the formula,ai(/MW2), bi(/MW),ci() are the fuel cost

coefficients of conventional generator set i.Pit is the active

power output of the generator set during the period. Si is the

start-up cost of generator set i, which can be expressed as:

Si � { Shi,Tof f ≤Xof f ≤Tof f +Hcsi

Sci,Xof f >Tof f +Hcsi
(4)

Where, Shi, is the hot start-up cost of unit i, Sci is the cold start-up

cost of unit i, Toff is the minimum downtime of unit i;Xoff, is

the continuous downtime period from unit i to t, and Hcsi is the

cold start-up time of unit i.

2.2 Unit input also needs to meet the
following constraints

2.2.1 Supply and demand balance constraints
The equality constraint in unit commitment optimization is

the active power balance constraint. The total generating capacity

of the generator needs to be equal to the load in real-time.

∑N
i�1
UitPit � Dt(t � 1, 2,/T) (5)

Where, Dt is the load of the system at the time t

2.2.2 Constraints on spinning reserve
requirement

In order to ensure the reliability of the system, sufficient spare

capacity should be left in the power system, which can be

expressed as:

∑N
i�1
UitPi,t

max ≥Dt + Rt(t � 1, 2,/T) (6)

Where, Pi,t
max is the maximum active power output of unit i

in time period t; Rtis the spinning reserve requirement of the

power system at time periodt, which is generally set as the

percentage of the total load of the system at that time, and is

set as 10% in this paper (Kazarlis et al., 1996).

2.2.3 Constraints on unit operation output

UitPi,t
min ≤Pi,t ≤UitPi,t

max (7)

Where, Pi,t
min is the minimum active power output of unit i in

time period t.

2.2.4 Constraints on start and stop time
When the unit changes its state, it needs to meet a certain

time, otherwise, it will threaten the normal operation of the unit,

which can be expressed in the following formula:
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{ Xon ≥Ton

Xof f ≥Tof f
(8)

Where, Xon is the continuous uptime until t, and Ton is the

minimum uptime of unit i;Xoff is the continuous downtime of

unit i until t, and Toff is the minimum downtime of unit i.

2.2.5 Climbing and descending constraints

max(Pi,t
min,Pi,t−1 − DRi)≤Pi,t ≤min(Pi,t

max ,Pi,t−1 + URi) (9)

The formula, URirepresents the ramp-up rate of unit i, DRi

represents the ramp-down rate of unit i.

3 Proposed improved LS-MFA model

3.1 Firefly algorithm

Light intensity and attractiveness are the crucial roles of FA.

For mathematical expression, the position of fireflies in the space

coordinates determines the brightness of the firefly, which can be

described as different positions matching different brightness.

Meanwhile, its relative brightness decides the attraction between

the individual and the probability of attraction, for this reason, it

affects the distance and the direction of the individual movement.

Therefore, each individual will change its light intensity in the

process of moving. Finally, all kinds of updates are completed

and at the same time, the optimization of the target is completed.

The mathematical expressions in this process are as follows:

3.1.1 Relative attractiveness of fireflies

βk � β0e
−γ(rkmn,t) 2 (10)

Where, β0 is the brightness of the individual’s initial position,

and its intensity decreases with the increase of distance; γ is the

light absorption coefficient. In the original FA, both β0 and γ are

constant constants, usually 1. rkmn,t represents the Cartesian

distance between two individuals.

3.1.2 Cartesian distance
The distance between individuals can be called Euclidean or

Cartesian distance, and it can be expressed as follows:

rpq �
����xp − xq

���� � 														∑d

i�1(xp,s − xq,s)2√
(11)

Where, xpand xqare the positions of two individualsp and q;

xp,sand xq,sare the s-dimensional space coordinates of thep andq

individuals; d is the total number of dimensions;q ∈ {1, 2,/, Fn}
was chosen at random; Fn is the total number of individuals.

3.1.3 Location update basis
The formula that individual i is attracted and updates to the

position of j, which is brighter than itself:

x′p � xp + β(r) × (xp − xq) + α(rand − 0.5) (12)

In the formula, β(r) × (xp − xq) changes according to the

attractiveness; α′, rand represents a function that selects

random numbers between 0 and 1. It is a disturbance term

set to avoid the population falling into the local optimal

solution, and it is based on these random terms that the

algorithm is improved later.

3.1.4 Flow chart of basic firefly algorithm
How the FA gets down evolutionary operation can be

demonstrated as Figure 1

3.2 Improved firefly algorithm

3.2.1 In modifying and improving the random
movement factor α

In Firefly Algorithm, the random movement factor α plays

an important role. If the random movement factor α is always

large, the speed of optimization can be improved, but the

accuracy of the solution will be reduced. If the random

movement factor is always small, although the accuracy of

understanding is improved, the optimization speed of the

algorithm is greatly slowed down. Therefore, in the initial

stage of the algorithm, α is relatively large, which can

accelerate the speed of optimization. At the later stage, a

relatively small step factor is needed, because, at this time,

the population in the space has been mostly concentrated near

the optimal solution, and a small step factor can improve the

accuracy of the solution. Therefore, we need to adopt dynamic

α to adjust the optimization.

In literature (Zhang et al., 2017), Zhang constructed a

Firefly Algorithm with adaptive step size. The paper

pointed out that under ideal conditions, all individuals in

the population would gradually converge to the same

point and eventually converge during the optimization

process. That is, for two individuals Xi and Xj in space,

we can get:

lim
t 



→∞

Xi(t) � lim
t 



→∞

Xj(t),∀i ≠ j (13)
Lim

t 



→∞
Xi(t + 1) � lim

t 



→∞
Xi (14)

Where,i, j � 1, 2,/, N) Eq. 13 means that all individuals

(solutions) converge to a point, and Eq. 14 means that the

convergent solution does not change. According to Eqs 10, 13,

14 it can be obtained:
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( lim
t 



→∞

Xi(t + 1) − Xi(t) � 0

�⇒β0 · lim
t 



→∞

e−γ
2
ij · lim

t 



→∞(Xj(t) − Xi(t)) + ε · lim
t 



→∞

α � 0

�⇒0 + ε · lim
t 



→∞

α � 0

�⇒ lim
t 



→∞

α � 0

(15)

Where, Eq. 15 shows that when the firefly algorithm converges,

the random movement factor α will approach 0.

Therefore, this paper adopts Eq. 16 to dynamically update the

random movement factor α:

Method 1: α(k) � 1 − (1 − (10−4 ÷ 9) 1
K max)) × α(k − 1)(

(16)
From Figure 2, we can see that its value gradually

decreases and tends to zero with the number of

iterations, which is in line with the inference of the above

formula. Meanwhile, the following calculation examples

show that the improved method can help us find the

optimal solution.

At the same time, another four different α adaptive

adjustment methods are used for comparison, respectively.

Method 2: α(t + 1) � (1 − t
T max

) · α(t) (17)

Method 3: α(t + 1) � ( 1
9000

) 1
t · α(t) (18)

Method 4: α(t + 1) � 0.99 · α(t) (19)

Method 5: α(t + 1) � α(t) · exp ( − rand(1) · t
T max

) (20)

It can be seen from Figure 2 that M2 converges too fast,

resulting in too short step factor and local premature maturation.

The initial stage ofM3 is too small and the optimization range is

too small, which is not conducive to population diversity. M4

converges too slowly, so that the step size factor in the final stage

is too large, resulting in slow convergence. From the local

enlarged image, M5 has a random term, which makes the

float and unstable changes. Therefore, M1 is the correct

choice in this paper, which ensures better convergence and

relatively stable.

3.2.2 In terms of improving the attractiveness
According to previous studies, it is found that the

optimization result of the algorithm is not so satisfactory

when the algorithm is based on Eq. 10. To deal with this

phenomenon, many change strategies have been proposed by

researchers, among which the most well-known is the change

mechanism proposed by Fister et al. (Fister et al., 2012). The

improvement in this example is shown in Figure 3, and the

formula can be expressed as follows:

βk � β min + (β max − β min)e−γ(rkmn,t)2 (21)

As can be seen from Figure 3, in the optimization of

the whole stage, the values of attractiveness remain at

around 0.2, but there are a few times that the attractiveness

reaches 1, ensuring the diversity of the population, avoiding

excessive prematurity, meanwhile, as progress through the

iteration is smooth, this is because most of the fireflies are

already clustered around the brightest individuals in the

space. Most of the attraction converges at about 0.2, which

FIGURE 1
Firefly algorithm flow chart.
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is conducive to improving the convergence rate of the

population.

3.3 Combine local search

Local Search is a simple, efficient, and fast local search algorithm.

A local search is constructed for the unit commitment problem, and

a local adjustment method is created to ensure that the final result

obtained by the algorithm can satisfy all the constraints and to

ensure the feasibility of the optimization results.

In this essay, the Local Search method is used to solve the

discrete variable problem of unit commitment. Firstly, according

to Eq. 8, mandatory units that must be turned on, mandatory

units that must be turned off, and the free units are determined. If

Con represents a mandatory unit that must be turned on, Coff

represents a mandatory unit that must be turned off, and Cfree

represents free unit that can be started or stopped, the three shall

meet the following requirements:⎧⎪⎨⎪⎩ Con�⇒Xon <Ton

Cof f�⇒Xof f <Tof f

Cf ree�⇒Xon >Ton &Xon <Tof f

(22)

There are many indexes to measure the unit input sequence,

and different parameter indexes can be selected according to the

characteristics of different units and loads. In this paper, based on

the minimum specific consumption, Eq. 23 is used as the ranking

index of units that are free:

k � Minimum specif ic consumption
Maximumoutput of the unit

(23)

FIGURE 2
The iterated graph of alpha.

FIGURE 3
The iterated graph of β.
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According to the Eq. 6 to form the initial unit commitment,

but in the process, to take into account for a certain period that

the load is too heavy or subsequent unit start-up costs are too

expensive to open, it is necessary to include opening a

mandatory unit that must be turned off, to meet the

requirements of load and the spinning reserve. While

combining with the economic dispatch followed considering

ramp rates constraints, it can appear that it does not satisfy Eq.

6. Therefore, to simplify the calculation, this paper first forms

the bandwidth of an upward expansion unit, as shown in

Figure 4. If the unit in sequence willing turn on is a

mandatory unit that must be turned off, it is necessary to

find the stopped time during the T − Toff period and make

it into the unit to be started, which will not add the unit start-up

cost at the same time. However, redundant units may be

generated during the T − Toff period, thus it increases the

operation cost. Therefore, the unit commitment of the T − Toff

period should be reconsidered according to the constraints of

load and spinning reserve requirement, as shown in Figure 5. If

Eq. 6 is still not satisfied, continue to expand one bandwidth,

but ensure that the previous units still satisfy Eq. 8, i.e. execute

loop Figure 5 until Eq. 6 is satisfied. Because the operation

consumption function of the unit is a quadratic function, the

Firefly Algorithm is used to find the best output balance for

economic dispatch.

4 Application of LS-MFA in solving
unit commitment problems

4.1 Bionic model of unit commitment
problem

In this paper, fireflies in the population represent the unit

output commitment of NT periods, expressed as follows:

Pk
G,n � [Pk

n,1,P
k
n,2,/,Pk

n,T], n � 1,/,Nf iref ly (24)

Firefly position updates are made by the following formula:

Pk
m,t � Pk

m,t(1 − βk) + βk · Pk
n,t

+αk
∣∣∣∣P max − P min

∣∣∣∣(rand1×NG(.) − 1
2
) (25)

Where: Pk
n,t is the firefly whose brightness is higher than P

k
m,t.

When there is no firefly whose brightness is greater than Pk
m,t

itself in the space around Pk
m,t, the position will be moved and

updated randomly. Where:Pmax � [P1
max, P2

max,/, PNG
max],

Pmin � [P1
min, P2

min,/, PNG
min].The Cartesian distance

between the two units is expressed as follows:

FIGURE 4
Initial unit commitment and their primary local search.

FIGURE 5
Flow chart for converting the unit to be started from the unit
to be stopped.
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FIGURE 6
Overall flow chart for solving unit commitment problem.

TABLE 1 Unit parameters.

Unit
parameters

UNIT

1 2 3 4 5 6 7 8 9 10

Pimax/MW 455 455 130 130 162 80 85 55 55 55

Pimin/MW 150 150 20 20 25 20 25 10 10 10

ai/(/h) 1,000 970 700 680 450 370 480 660 665 670

bi/(MWh) 16.19 17.26 16.60 16.50 19.70 22.26 27.74 25.92 27.27 27.79

ci/(MW2 − h) 0.48 0.31 2 2.11 3.98 7.12 7.9 4.13 2.22 1.73

min up(h) 8 8 5 5 6 3 3 1 1 1

min down(h) 8 8 5 5 6 3 3 1 1 1

hot start cost($) 4,500 5,000 550 560 900 170 260 30 30 30

cold start cost($) 9,000 10000 1,100 1,120 1800 340 520 60 60 60

cold start hours(h) 5 5 4 4 4 2 2 0 0 0

initial status(h) 8 8 -5 -5 -6 -3 -3 -1 -1 -1
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rkmn,t �

															∑NG

i�1
(Pk

n,t,i − Pk
m,t,i)2

√√
(26)

4.2 Flow chart of the solving process

The flow chart of the optimization solving process can be

shown in Figure 6.

Step 1: The unit parameters, load, and spinning reserve

requirement are the first input.

Step 2: The initial unit commitment is determined according to the

maximum unit output, Eq. 8, and the method of local structure

construction, and whether it meets the load and spinning reserve

requirement of the unit is considered, i.e. Eq. 6. If Eq.6 is satisfied, go to

Step 4.

Step 3: If not, according to the process shown in Figure 4 and

Eq. 8, restarting the units in the previous period makes the

units will be opened into units to be available, and initialize

the firefly population of the reopened units again to eliminate

redundant units. Then repeat Step 2.

Step 4:When Eq. 6 is met, MFA is used to carry out economic

dispatch corresponding to this unit commitment. However,

since ramp rate limits should be considered in the process of

economic dispatch, other units in the same segment need to

be opened again to meet the load and spinning reserve

requirement. Therefore, if Eqs 5–9 is not satisfied, go to

Step 5, otherwise, go to Step 6.

Step 5: In this step, Figure 4 should be used again. Initialize

the firefly population of the reopened units again to

eliminate redundant units, until the units satisfy Eqs 5–9

again. Then, repeat Step.4.

Step 6: In this step, MFA is used to further optimize the iteration of

the population, including unit commitment and economic dispatch,

and the “self-comparison” strategy is used to prevent the iteration

from deviating from the optimal value.

TABLE 2 Unit Commitment for 10-unit system.

Hour Load
(MW)

UNIT

1 2 3 4 5 6 7 8 9 10

1 700 1 1 0 0 0 0 0 0 0 0

2 750 1 1 0 0 0 0 0 0 0 0

3 850 1 1 0 0 1 0 0 0 0 0

4 950 1 1 0 0 1 0 0 0 0 0

5 1,000 1 1 0 1 1 0 0 0 0 0

6 1,100 1 1 1 1 1 0 0 0 0 0

7 1,150 1 1 1 1 1 0 0 0 0 0

8 1,200 1 1 1 1 1 0 0 0 0 0

9 1,300 1 1 1 1 1 1 1 0 0 0

10 1,400 1 1 1 1 1 1 1 1 0 0

11 1,450 1 1 1 1 1 1 1 1 1 0

12 1,500 1 1 1 1 1 1 1 1 1 1

13 1,400 1 1 1 1 1 1 1 1 0 0

14 1,300 1 1 1 1 1 1 1 0 0 0

15 1,200 1 1 1 1 1 0 0 0 0 0

16 1,050 1 1 1 1 1 0 0 0 0 0

17 1,000 1 1 1 1 1 0 0 0 0 0

18 1,100 1 1 1 1 1 0 0 0 0 0

19 1,200 1 1 1 1 1 0 0 0 0 0

20 1,400 1 1 1 1 1 1 1 1 0 0

21 1,300 1 1 1 1 1 1 1 0 0 0

22 1,100 1 1 0 0 1 1 1 0 0 0

23 900 1 1 0 0 0 1 0 0 0 0

24 800 1 1 0 0 0 0 0 0 0 0
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5 Simulation results and analysis

In this essay, the example of 10 units in literature (Kazarlis

et al., 1996) for a 24-hour period is first adopted. The unit

parameters are provided in Table 1, which includes the

maximum active power output of the unit i in the period t,

the minimum active power output of the unit i in the period t,

the fuel cost coefficients of the conventional generator set i,

the minimum up-down time, and the initial continuous

uptime of units. Table 2 presents the unit commitment in

the 24-hour period and the load demand by LS-MFA for a 10-

unit system. As can be seen from the table, the unit

commitment belongs to the local structure formed in

Figure 4. And it conforms to the minimum up-down time

limits. Table 3 shows the economic dispatch of unit

commitment in Table 2. Further analysis showed that the

units with a good economy will not only be put into priority,

but also be arranged to run at full load as far as possible.

TABLE 3 Economic Dispatch for 10-unit system.

Hour UNIT

1 2 3 4 5 6 7 8 9 10

1 455 245 0 0 0 0 0 0 0 0

2 455 295 0 0 0 0 0 0 0 0

3 455 370 0 0 25 0 0 0 0 0

4 455 455 0 0 40 0 0 0 0 0

5 455 390 0 130 25 0 0 0 0 0

6 455 360 130 130 25 0 0 0 0 0

7 455 410 130 130 25 0 0 0 0 0

8 455 455 130 130 30 0 0 0 0 0

9 455 455 130 130 85 20 25 0 0 0

10 455 455 130 130 162 33 25 10 0 0

11 455 455 130 130 162 73 25 10 10 0

12 455 455 130 130 162 80 25 43 10 10

13 455 455 130 130 162 33 25 10 0 0

14 455 455 130 130 85 20 25 0 0 0

15 455 455 130 130 30 0 0 0 0 0

16 455 310 130 130 25 0 0 0 0 0

17 455 260 130 130 25 0 0 0 0 0

18 455 360 130 130 25 0 0 0 0 0

19 455 455 130 130 30 0 0 0 0 0

20 455 455 130 130 162 33 25 10 0 0

21 455 455 130 130 85 20 25 0 0 0

22 455 455 0 0 145 20 25 0 0 0

23 455 420 0 0 25 0 0 0 0 0

24 455 345 0 0 0 0 0 0 0 0

TABLE 4 Optimal operating cost per hour for 10-unit system.

Hour 1 2 3 4 5 6

COST/h 13683.12975 14554.49975 17709.4485 18597.66775 20580.0195 23487.0445

HOUR 7 8 9 10 11 12

COST/h 23261.9795 24150.34075 28111.056 30117.5503 31976.0611 33950.22152

HOUR 13 14 15 16 17 18

COST/h 30057.5503 27251.056 24150.34075 21513.6595 20641.8245 22387.0445

HOUR 19 20 21 22 23 24

COST/h 24150.34075 30547.5503 27251.056 22735.521 17684.6935 15427.41975
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Meanwhile, it satisfies the load demand, the spinning reserve

requirement, and the ramp rate. The results obtained from the

preliminary analysis of optimal operating cost per hour are set

out in Table 4.

With the aim of presenting the optimization process, Figure 7

shows the trend of 200 iterations of the optimization process.

From the figure, the results have been smooth around the

100th iteration. And it can be seen from the whisker diagram

of the ordinate axis, that in the initial iterations of the

optimization, convergence speed is quick, and most of the

results are concentrated around the optimal solution, this

phenomenon also confirms the improvement in both in the

random movement factor α and the attractiveness β, namely

in the initial iterations of the optimization needs larger random

movement factor and enough stable attractiveness to find the

optimal solution, and as the iteration goes on, the decrease

of random movement factor α is beneficial to the

optimization in a small range, and in this process, the

attractiveness function is dynamic, which ensures the

convergence speed and the diversity of the population and

avoids premature convergence. Finally, from the enlarged

image about the last period of the iteration, at 178th, the cost

FIGURE 7
The iterative optimization of LS-MFA.

TABLE 5 Comparison of total cost with reported optimization techniques for 10-unit system.

Methods Total production
costs ($)

Cost difference
(%)

Methods Total production
costs ($)

Cost difference
(%)

BGOA 563,027 −0.1684 BF 564,842 0.1534

SFLA 563,937 −0.0071 ABFMO 565,136 0.2055

HPSO 563,942 −0.0062 ALR 565,508 0.2715

ELR 563,977 0.0000 DPSO 565,804 0.3239

GAUC 563,977 0.0000 LR 565,825 0.3277

BDEr 563,989 0.0021 GA 565,825 0.3277

DPLR 564,049 0.0128 PSO-LR 565,869 0.3355

BPSOGWO 564,402 0.0754 ICGA 566,404 0.4303

BGWO 564,549 0.1014 BCGA 567,367 0.6011

EP 564,551 0.1018 ABC 641,303 13.7108

BCS 564,673 0.1234 LS-MFA 563,977 0.0000

LRGA 564,800 0.1459
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is 563984$. It is worth mentioning that at 180th the cost

converges on 563977$, and the trend is stable.

In order to further illustrate the advantages and practicability of

LS-MFA, the clustering results of the other twenty-two methods of

DPLR, ALR, ELR (Ongsakul and Petcharaks, 2004), LR, GA

(Kazarlis et al., 1996),EP (Juste, 1999), LRGA (Cheng and Liu,

2000), GAUC(Yamashiro, 2001), DPSO(Gaing, 2004), ICGA,

BCGA(Damousis et al., 2004), BF(Eslamian et al., 2009), PSO-LR

(Balci and Valenzuela, 2004), SLFA (Ebrahimi et al., 2011),

HPSO(Ting et al., 2006), BGOA (Shahid et al., 2021),

ABC(Kokare and Tade, 2018), ABFMO(Pan et al., 2021),

BCS(Reddy Surender, 2017), BDEr (Kamboj et al., 2017),

BGWO(Panwar et al., 2018), BPSOGWO(Kamboj, 2016) which

are shown in Table 5, meanwhile, the results are compared with the

result of LS-MFA, obtaining the cost difference. Figure 8 visualizes

the comparison, ranking several methods using operating costs as

FIGURE 8
Comparison of total cost with reported optimization techniques for 10-unit system.

TABLE 6 Comparison of total cost with reported optimization techniques for 20-unit system.

Methods Total production
costs ($)

Cost difference
(%)

Methods Total production
costs ($)

Cost difference
(%)

BGOA 1,120,470 −0.2517 LR 1,130,660 0.6555

LRGA 1,122,622 −0.0601 ABFMO 1,131,551 0.7348

ELR 1,123,297 0.0000 BDEr 1,132,763 0.8427

EP 1,125,494 0.1956 BGWO 1,140,027 1.4894

GAUC 1,125,516 0.1975 BCS 1,142,930 1.7478

GA 1,126,243 0.2623 BPSOGWO 1,145,016 1.9335

ALR 1,126,720 0.3047 LS-MFA 1,123,297 0.0000

DPLR 1,128,098 0.4274

TABLE 7 Comparison of total cost with reported optimization techniques for 40-unit system.

Methods Total production
costs ($)

Cost difference
(%)

Methods Total production
costs ($)

Cost difference
(%)

BGOA 2,240,277 0.0000 LR 2,258,503 0.8136

LRGA 2,242,178 0.0849 ABFMO 2,265,867 1.1423

ELR 2,244,237 0.1768 BDEr 2,291,992 2.3084

EP 2,249,093 0.3935 BGWO 2,298,588 2.6028

GAUC 2,249,715 0.4213 BCS 2,305,632 2.9173

ALR 2,249,790 0.4246 BPSOGWO 2,311,725 3.1892

GA 2,251,911 0.5193 LS-MFA 2,240,277 0.0000

DPLR 2,256,195 0.7105
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the primary axis (black) and cost differences (blue) as the secondary

axis. By checking the output obtained from SLFA, whose cost is

better than LS-MFA, we find that although the cost is 563937$, it

does not meet the load demand in the period of T � 22. What is

striking about thefigures in Figure 8 is that LS-MFAproposed in this

paper has good optimization performance, is better than most

methodologies, and is worthy of consideration by researchers in

future work studies.

In order to further demonstrate the good performance of LS-

MFA, the 20,40,60,80,100-unit systems are used to verify. The 20, 40,

60, 80, and 100-unit data are obtained by duplicating the base case

(ten units), whereas the load demands are adjusted in proportion to

the system size. And the comparisons of the larger systems are

shown in. Meanwhile, for a more intuitive comparison, the methods

are sorted. Figures 9–13 visualize the comparison, ranking several

methods using operating costs as the primary axis (black) and cost

differences (blue) as the secondary axis. Figures 10, 12 present that

LS-MFA acquires the best data in 40-unit and 80-unit.

As can be seen by the above results, the result obtained by LS

- MFA is better than most methods, and in the process of

TABLE 8 Comparison of total cost with reported optimization techniques for 60-unit system.

Methods Total production
costs ($)

Cost difference
(%)

Methods Total production
costs ($)

Cost difference
(%)

BGOA 3,356,574 −0.2056 LR 3,394,066 0.9090

ELR 3,363,491 0.0000 ABFMO 3,397,162 1.0011

LRGA 3,371,079 0.2256 BDEr 3,451,346 2.6120

ALR 3,371,188 0.2288 BGWO 3,460,080 2.8717

EP 3,371,611 0.2414 BCS 3,464,932 3.0159

GAUC 3,375,065 0.3441 BPSOGWO 3,478,950 3.4327

GA 3,376,625 0.3905 LS-MFA 3,363,491 0.0000

DPLR 3,384,293 0.6185

TABLE 9 Comparison of total cost with reported optimization techniques for 80-unit system.

Methods Total production
costs ($)

Cost difference
(%)

Methods Total production
costs ($)

Cost difference
(%)

BGOA 4,475,407 0.0000 LR 4,526,022 1.1310

ELR 4,485,633 0.2285 ABFMO 4,531,605 1.2557

ALR 4,494,487 0.4263 BDEr 4,616,190 3.1457

EP 4,498,479 0.5155 BGWO 4,622,671 3.2905

LRGA 4,501,844 0.5907 BCS 4,625,838 3.3613

GA 4,504,933 0.6597 BPSOGWO 4,645,223 3.7944

GAUC 4,505,614 0.6750 LS-MFA 4,475,407 0.0000

DPLR 4,512,391 0.8264

TABLE 10 Comparison of total cost with reported optimization techniques for 100-unit system.

Methods Total production
costs ($)

Cost difference
(%)

Methods Total production
costs ($)

Cost difference
(%)

BGOA 5,596,414 −0.1380 LR 5,657,277 0.9481

ELR 5,605,678 0.0273 ABFMO 5,660,087 0.9982

LRGA 5,613,127 0.1603 BDEr 5,776,923 3.0830

ALR 5,615,893 0.2096 BGWO 5,786,794 3.2592

EP 5,623,885 0.3522 BCS 5,788,367 3.2872

GAUC 5,626,514 0.3991 BPSOGWO 5,812,001 3.7090

GA 5,627,437 0.4156 LS-MFA 5,604,146 0.0000

DPLR 5,640,488 0.6485
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FIGURE 9
Comparison of total cost with reported optimization techniques for 20-unit system.

FIGURE 10
Comparison of total cost with reported optimization techniques for 40-unit system.

FIGURE 11
Comparison of total cost with reported optimization techniques for 60-unit system.
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optimization, compared with the mixed-integer nonlinear

programming, the use of local search avoids the dimension

disaster, and improves convergence speed. Meanwhile, few

parameters using the firefly algorithm program and strong

randomness make the optimization not too premature and

effectively prevent the local convergence. The improvement of

the Firefly algorithm itself makes the final results tend to be

stable, and the results obtained are well.

6 Conclusions and future work

In the process of the optimization problem of the power

system, the unit commitment problem is always the top

priority. And its economic dispatch power system is efficient,

safe, stable, and economic operation indispensable safeguard.

By finding the optimum commitment, the electric power

industry of a country can not only get considerable income

but also alleviate the problems of energy shortage and

environmental pollution in today’s era. Meanwhile, it is a

powerful catalyst to promote the implementation of

sustainable a development strategy.

Unit Commitment of electric power system and the economic

dispatch problem is discrete and continuous variables of the

nonconvex, nonlinear, multi-dimensional. Besides, the

distribution of the process is complex. Therefore, only set up

accurate realistic models of the actual working state of the power

grid, can we obtainmore conducive for the further optimization and

development of the power system. The focus of this paper lies in:

1) Use dynamic α factor to further improve the optimization of

the FA.

2) The self-adjustment strategy is used to prevent the target value

from deviating from the optimal solution due to iteration.

3) A tolerance mechanism was adopted to modify the infeasible

solution to the feasible region and increase the population diversity.

4) Combined with the Local Search method, the “pit-jumping

strategy” is adopted to determine the unit commitment, which

not only ensures the diversity of unit commitment solutions

but also avoids dimension disaster to a certain extent.

FIGURE 12
Comparison of total cost with reported optimization techniques for 80-unit system.

FIGURE 13
Comparison of total cost with reported optimization techniques for 100-unit system.
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5) The Firefly Algorithm combined with the Local Search

method can be found through the simulation results that

its unit commitment and economic dispatch results are not

inferior to other algorithms

In the future, the author will strive to improve LS-MFA and

add an integrated energy management system, including

combining heat and power generation (CHP), wind and

hydropower units, and battery energy storage systems, so as

to make it meet the modern energy needs.

In recent years, the living level has continuously improved,

and people are no longer taking the environmental problem for

granted, we must adhere to the new concept of development,

sustainable development. So when solving the UC problem, the

power system should not only consider whether or not the

operation efficiency, the cost is considerable, and incorporated

into the new energy. Beyond that, some uncontrollable factors

should be taken into account, such as inaccurate load

prediction, failure of output unit start and stop, accidents in

the transmission process, and the probability of interference

factors that may occur. And finally, the objective function and

each constraint probability are calculated to build a scheduling

model in line with the actual operation situation. That is, to say,

the premise of our pursuit of economic benefits is to protect

nature and build an energy-conserving society.
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