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A significant amount of bypassed oil resources often remain in a mature

waterflooding reservoir because of non-uniform sweep caused by natural

complexities of a subsurface reservoir and improper management of the

reservoir. Infill drilling is one of the most attractive options for increasing oil

recovery in consequence of its operational simplicity, low risk and promising

results. Determining optimal infill well placements in heterogeneous mature

reservoirs is a critical and challenging task that has a significant impact on the

recovery performance andeconomic revenueof subsurface remainingoil resources.

An integrated framework is constructed to attain best-obtained optimal location and

completionof infill wells inmulti-layermatureoil reservoirs. Theplacementof an infill

vertical well is parameterized in terms of two sets of variables that define the location

and completion respectively. A variant of SPSA algorithm is used to solve the defined

optimization problem. The performance of the proposed algorithm is first tested for

the joint optimization of well location and completion of an injection well using a

synthetic model. The results show that the algorithm with average SPSA gradients

outperforms the single SPSAgradientmethodboth in solution andconvergence rate.

Besides, there are two plateaus on the performance curve of all algorithms: on the

first plateau, each algorithm is approaching to its optimal well location with relatively

little change on the completion parameters, while on the second plateau, each

algorithm obtains the corresponding optimal completions. A complex

heterogeneous reservoir model is then constructed by using the data of a mature

oil reservoir in Shengli Oilfield in China to design an optimal 10 years’ infill drilling

program. Four vertical production wells are placed in the oil-rich regions and both

simultaneous and sequential algorithms are tried toobtain their optimal locations and

completions. The performances of simultaneous joint optimization and sequential

joint optimization are compared and as a result it is recommended to use sequential

joint optimization as the optimization algorithm in the integrated framework.
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1 Introduction

About 92% of oil reservoirs in China are characterized by

continental clastic sediments with complex vertical and lateral

heterogeneities and high levels of crude oil viscosity (Han, 2010).

Waterflooding with uniformly spaced well pattern has always

been the main development approach for Chinese oilfields. After

decades of producing, most of the major oilfields have entered the

late stage of waterflooding life cycle featured by high water-cut

(greater than 80%) and high recovery of recoverable reserves

(greater than 70%). Although most of mature oilfields are

encountering such terrible situations, they still contribute to a

great proportion of crude oil supply in China. According to

official statistics, more than 70% of the total national oil

production are from mature oilfields at present (Han, 2010).

Production practice shows that there still is a great potential to

improve the recovery of high water-cut oilfields. The decreasing

trend in discovering new conventional hydrocarbon resources is

necessitating optimal recovery from existing reserves in a more

cost-effective manner.

Due to strong reservoir heterogeneities, the remaining oil

distribution generally presents a feature of “highly scattered on

the whole and relatively abundant in local areas” when the

comprehensive water-cut in oilfields is beyond 80% (Han,

2007). The two major methods to improve water sweep

efficiency that were once applied effectively at lower water-cut

stage, including subdivision of development intervals and

uniform infilling wells, began to show little or even no effects.

This is mainly because the achievements of the above methods at

lower water-cut stage of development are owed to the large-area

distributions of remaining oil in relatively low-to-moderate

permeability layers at that time, but the current condition

becomes very different in that the overall remaining oil is

highly scattered even in low-to-moderate permeability layers.

In this case, uniform infilling wells are not as efficient as before.

The initial water-cut inmost newly drilled infilling wells can be as

high as 80% and few even higher than 90% (Han, 2010). In order

to further improve the recovery of remaining oil reserves, it needs

to drill individualized infill wells rather than uniform infill wells.

Determining appropriate well placements of producers and

injectors is an important aspect of overall development strategy

of any field. Well placement optimization becomes particularly

noteworthy in mature oilfields where an enormous amount of

pore volumes are occupied by water and both reservoir geological

characteristic and remaining oil distribution are extremely

complex. Thus, new wells have to be drilled based on a

comprehensive understanding of reservoir description. In

Chinese mature oilfields, each wellbore may penetrate many

prospective reservoir layers that can range, depending on the

field size and number of reservoirs, from a few into the hundreds.

However, technical and reservoir management considerations

usually make every wellbore capable of producing from only a

limited completion interval. The region that an infill well to be

located in, the reservoir layer to be penetrated and the length of

the perforated or open section of a well will together influence the

development performance greatly. Hence, the main objective of

infill well placement optimization should be optimizing not only

the areal drainage pattern but also the vertical scheme.

Optimizing both well location and perforation along

formation intervals could help maximize the control reserve of

a single well, homogenize the inflow-velocity profile and prevent

early water breakthrough and rapid water-cut increase in high-

permeability completion intervals, which are all critically

important for enhancing oil recovery and improving

economic revenue of mature oilfields. However, there could be

a large number of possible candidate locations for a new well. To

search through and evaluate all the possible locations is not

practically feasible, particularly for high resolution geologic

models consisting of multimillion cells. For large scale field

applications, a practical method is needed to mitigate the

computational burden associated with the possibly large

number of simulation runs.

Traditionally, optimization of well placement has been done

by using quality maps that indicate which regions of the reservoir

have not been adequately swept by the injected water (Badru,

2003; Kharghoria et al., 2003; da Cruz et al., 2004; Guimaraes

et al., 2005; Taware et al., 2012). The quality maps are typically

based on static properties such as permeability, porosity,

structure and net thickness, and dynamic properties such as

remaining oil, pressure, well productivity and cumulative oil

production. Although this method is convenient for application,

it cannot properly place wells in locations that take advantage of

long-term high oil saturation or respond to the dynamics of

reservoir fluid flow over a long period of time. Simply placing

wells based on saturation or quality mapsmay not guarantee long

term profitability of the project. In recent years, various

simulation-based optimization techniques have also been

introduced to automate the process of attaining the optimal

well locations. There are many challenges in the field of

automatic well placement optimization, such as variable

design, objective function, constraints formulation,

optimization algorithm, geological uncertainty, computational

cost and so on. We will just discuss a few of them for brevity in

this paper.

One important aspect of automatic well placement

approaches is the description of well location and/or well

trajectory. As for well placement problem, the actual physical

problem of determining well location and trajectory is a

continuous problem, while the completions of a well in the

formation are commonly introduced into the numerical

simulation model as integral indices of the connected

gridblocks. Thus, to parameterize the location and, in general

the trajectory of the wells, both discrete variables (Yeten et al.,

2003; Bangerth et al., 2006; Ozdogan and Horne, 2006; Emerick

et al., 2009; Bellout et al., 2012; Li et al., 2013) and continuous

real-valued variables (Onwunalu and Durlofsky, 2010;
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Bouzarkouna et al., 2012; Forouzanfar et al., 2012; Forouzanfar

and Reynolds, 2013; Nwankwor et al., 2013; Forouzanfar et al.,

2016) are used. For a discrete optimization problem, decision

variables are well connection gridblock indices. The center point

of the well is moved from one gridblock to another at each

iteration of whatever optimization algorithm is used. For a

continuous optimization problem, the well trajectory is

generally parameterized in a more real but complex way,

which could make the method uneasy to implement.

Another important aspect of automatic well placement

approaches is the optimization algorithm. To solve the

optimal well placement problem, most researchers have

utilized heuristic global optimization methods such as genetic

algorithm (GA) (Montes et al., 2001; Yeten et al., 2003; Ozdogan

and Horne, 2006; Emerick et al., 2009; Salmachi et al., 2013),

differential evolution (DE) (Afshari et al., 2015; Awotunde,

2016), simulated annealing (Sa) (Beckner and Song, 1995),

particle swarm optimization (PSO) (Onwunalu and Durlofsky,

2010; Bouzarkouna et al., 2013; Afshari et al., 2014; Forouzanfar

et al., 2016), the covariance matrix adaptation-evolution strategy

(CMA-ES) algorithm (Bouzarkouna et al., 2012; Jesmani et al.,

2016a; Forouzanfar et al., 2016) and some hybrid algorithms

(Nwankwor et al., 2013). Although these methods have the ability

to avoid local solutions, their convergence to the global solution

is heuristic in natural and typically require a very large number of

reservoir simulation runs in an optimization loop. Moreover, to

account for model uncertainty, it is often need to evaluate the

performance of well placements over multiple geological

realizations, which makes them too computationally expensive

and thus, may not be well-suited for large scale field applications.

Some local search optimization algorithms were also applied to

the well placement optimization problem such as gradient-based

method algorithms with adjoint gradient (Wang et al., 2007;

Sarma and Chen, 2008; Zandvliet et al., 2008; Vlemmix et al.,

2009; Li and Jafarpour, 2012; Forouzanfar and Reynolds, 2014),

methods on the basis of the simultaneous perturbation stochastic

approximation (SPSA) (Bangerth et al., 2006; Li et al., 2013;

Jesmani et al., 2016b), derivative-free methods (Forouzanfar

et al., 2012; Forouzanfar and Reynolds, 2013; Isebor et al.,

2014a; Isebor et al., 2014b) and generalized pattern search

(GPS) (Bellout et al., 2012). Among these local search

algorithms, gradient-based method has the superior

computational efficiency. However, one must calculate the

gradient of the objective function and the constraints with

respect to the optimization variables to apply the efficient

gradient-based method. The adjoint for computing these

gradients is not commonly provided in commercial reservoir

simulators, which makes the adjoint methods are difficult to

implement and require access to the simulator source code.

An alternative approach to gradient-based method is the

stochastic optimization method. In particular, the simultaneous

perturbation stochastic approximation (SPSA) has been

developed for solving large dimensional multivariate

optimization problems where the gradient information is not

available (Spall, 1992; Spall, 1994; Spall, 1998; Spall, 2000).

Various kinds of SPSA algorithms have been successfully

applied in several engineering fields. Early applications of

SPSA algorithm in petroleum engineering field were

performed by Bangerth et al. (Bangerth et al., 2006) and

Gao et al. (Gao et al., 2007). In Bangerth et al. (Bangerth

et al., 2006), a variant of SPSA (integer SPSA) is introduced

to solve the well placement problem. The authors compared

and analyzed the efficiency, effectiveness, and reliability of

several optimization algorithms, including the simultaneous

perturbation stochastic approximation (SPSA), finite

difference gradient (FDG), very fast simulated annealing

(VFSA) and genetic algorithm (GA), for the well

placement problem by a set of numerical waterflooding

experiments and found that none of these algorithms

guarantees to find the optimal solution, but both SPSA

and VFSA are very efficient in finding nearly optimal well

locations with a high probability. In Gao et al. (Gao et al.,

2007), both SPSA and adaptive SPSA are applied to the

history matching problem. The authors presented

modifications for improvement in the convergence

behavior of the SPSA algorithm for history matching and

compared its performance to the steepest descent, gradual

deformation and LBFGS algorithm and concluded that

although the convergence properties of the SPSA

algorithm are not nearly as good as the LBFGS methods,

the SPSA algorithm is not simulator specific and it can be

coupled easily with any commercial reservoir simulator to do

automatic history matching. Since the two primary works,

the SPSA algorithm has been widely used to solve various

optimization problems in petroleum engineering field

(Wang et al., 2009; Li and Reynolds, 2011; Do et al., 2012;

Do and Reynolds, 2013; Li et al., 2013; Jesmani et al., 2016b;

Pouladi et al., 2020).

For simulation-based well placement optimization

approaches, the reliability of the solution depends

seriously on the main parameters defining the geological

model, including formation structure, porosity and

permeability distributions, and fluid contacts. Due to

limited reservoir description knowledge, these parameters

are all uncertain and generally described by some probability

density functions. Management of the effect of geological

uncertainty on well placement optimization is another

research area that is gaining more and more consideration

from researchers (Ozdogan and Horne, 2006; Li and

Reynolds, 2011; Li et al., 2013; Chang et al., 2015; Jesmani

et al., 2016b; Temizel et al., 2018). A common practical

approach for taking into account the uncertainty in well

placement problem is to approximate the probability

distributions with multiple equally probable geological

realizations, and then optimize the expected value of the

objective function over an ensemble of the model
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realizations, namely ensemble-based optimization. To

reduce the computation time associated with the

optimization process, a variety of techniques have been

developed to select a relatively small ensemble of model

realizations, as the representatives of all possible

realizations. A fit-for-purpose sampling selection

procedure is preferred, as it in general can guarantee to

capture the underlying uncertainty by using as few samples

as possible.

Although there is a significant advancement on the subject of

well placement optimization in the last decades, few have

been done to consider the effect of perforation scheme in

multiply layers with different reservoir properties and oil

distributions. This work presents a methodology for joint

optimization of infill well location and completion using a

variant of SPSA algorithm. Our optimization algorithm is an

extension of the work by Bangerth et al. (Bangerth et al.,

2006). We follow Bangerth et al. (Bangerth et al., 2006) to

apply a bounding operator and a rounding operator to

handle inequality constraints and the integer problem of

well location variables, respectively. However, additional

treatments to the particular problem presented in this

study are also conducted. A parameter scaling handling

process is implemented to eliminate the impact of

different ranges of optimizing variables since we solve a

joint optimization problem. Besides, we use average

stochastic gradient calculated by multiply random

sampling of perturbation vectors to improve the

estimation of the search direction. We also introduce a

simple line search procedure and a blocking step to

guarantee the convergence and stability of the algorithm.

The paper is organized as follows: Section 2 presents the basic

components that are used for the solution of the well placement

problem, including the formulations describing the optimization

problems and the objective function; Section 3 illustrates the

methodology for solving the combined well location and

completion optimization problem based on SPSA algorithm

and the framework for coupling the reservoir flow simulator

and the optimization algorithm; Section 4 presents the validation

of the proposed method by using a synthetic model and its

application on optimization of an infilling plan for a mature

oilfield in China; Section 5 summarizes the results of the

presented work and discusses possible directions of further

research.

2 Problem description

The problem considered in this work is to determine the

optimal location and completion of infill wells to maximize oil

recovery and profits for mature waterflooding reservoirs in the

future. Numerical simulations are conducted using a commercial

reservoir simulator (Eclipse E100 (GeoQuest, 2018)) to evaluate

the performance of the reservoir under different well

configurations.

2.1 Optimization problem formulation

2.1.1 Well placement parameterization
We consider the placement of a vertical well in a

heterogeneous multi-layer reservoir. The wellbore is assumed

to have one or several completion/perforation intervals. Figure 1

is the typical schematic of the location and completions of a

vertical well as a function of well placement variables in multiple

layers. The placement of well w with nw,c completion intervals

can be parameterized in terms of 2 + 2nw,c continuous variables

that are given by

Pw � [xw, yw, zw,1, lw,1, zw,2, lw,2, . . . , zw,nw,c, lw,nw,c]T (1)

where nw,c is the number of completion intervals of well w;

(xw, yw) represents the spatial coordinate of the well

location; zw,i and lw,i are the center point and the length

of the ith completion interval. It is noted that there are two

variables representing the well location and 2nw,c variables

representing the nw,c well completion intervals for a

vertical well.

With regard to numerical simulation, in most commercial

reservoir simulators, the set of well placement variables are often

treated as integers since the simulators require wells to be

FIGURE 1
Schematic of perforations of a vertical well in multiple layers.

Frontiers in Energy Research frontiersin.org04

Li et al. 10.3389/fenrg.2022.1005749

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2022.1005749


assigned to discrete grid blocks in the model, namely “connecting

gridblocks (I, J, K)”. This implies that for a given number of infill

wells to be optimized, Ninf ill, the dimension of the set of well

location variables, nw, is determined, that is, nw � 2Ninf ill.

However, the dimension of the set of well completion

variables, ∑ 2nw,c, is related not only to the number of infill

wells but also to the perforation intervals being optimized of each

well. This makes the optimization problem more complicated to

define and to solve, because the number, the position and the

length of the well completion in multi layers are all the

optimization variables. In order to simply the optimization

problem, we use the “well productivity index (WPI)

multiplier” instead of “connecting gridblocks” in reservoir

simulators (Eclipse E100) as the optimization variables,

because the inflow performance between the wellbore and the

connecting gridblock is calculated by WPI and WPI multiplier

can take into consideration the partially-penetrated length of a

connecting gridblock. We define WPI multiplier as η � Δl/Δz in

this paper, where Δl is the connecting length of a single gridblock
with the well and Δz is the thickness of that gridblock. It is worth
to mention that, to our knowledge, the concept of WPI multiplier

has been applied by Forouzanfar et al. (Forouzanfar et al., 2012)

for a different purpose. In Forouzanfar et al. (Forouzanfar et al.,

2012), the placement of a vertical and horizontal well was

described as four continuous parameters, (xw, yw, zw, lw) and

WPI multiplier was used to modify well productivity indices in

the reservoir simulator to account for the location of the

centerline of a well that does not have to be at the center of a

gridblock when the optimal well placement is formulated as a

continuous optimization problem. However, the authors did not

consider multi-segment perforated intervals which are

commonly demanded for the redevelopment of mature oilfield

in China.

The infill well is initially assumed to connect with each layer

of the reservoir and then a guess WPI multiplier η is assigned to

each connection, where η � 1 means the layer is fully penetrated

and η � 0 means the layer is fully shut. By using the WPI

multiplier concept as a replacement of directly using

connecting grid blocks, the placement of well w can be re-

parameterized in terms of 2 +Nz variables that are given by

Pw � [Iw, Jw, ηw,1, ηw,2, . . . , ηw,Nz
]T (2)

Here, Nz is the dimension of the reservoir model in

z-direction; (Iw, Jw) represents the integer grid coordinate of

the well location; ηw,i is the WPI multiplier of the ith connecting

grid block. Thus, the placement of a vertical well is parameterized

with a set of integer and continuous variables. In order to simplify

notation, we define the well location feasible set w �
{w ∈ ZNw ;wl ≤w ≤wu} and the well completion variable set c �
{c ∈ RNc ; cl ≤ c≤ cu}.

2.1.2 Joint well placement optimization problem
Based on the parameterization method for well placement,

the problem considered here can be given as the following

formulation:

ŵ, ĉ � arg min
w∈ZNw ,c∈RNc

f(s(m,w, c, t),m,w, c) (3)
g(s(m,w, c, t),m,w, c) � 0 (4)

wl ≤w ≤wu (5)
cl ≤ c≤ cu (6)

where f(·) is a specified objective function; s is the state of the

reservoir at time t; w denotes the discrete well location variables

with wu represents its upper bound and wl the lower bound; c is

the continuous completion variables with cu represents its upper

bound and cl the lower bound; g(s(m,w, c, t),m,w, c) denotes
the discretized multiphase flow equation with m represents the

reservoir model input parameters (e.g. petrophysical and fluid

properties).

2.2 Objective function

In the hydrocarbon production problems, the objective

function can be any user-specified performance measure, such

as cumulative oil production or recovery factor and net present

value (NPV). This paper considers the negative of the reservoir

NPV increment due to infilling wells as the minimization

objective function f(·). In general, the NPV is described as

the summation of present values in a time interval when present

values are calculated based on incoming and outflows cash,

which is calculated by below equation:

NPV � ∑Nt

n�1

CFn

(1 + d)tn/365 (7)

CFn is the cash flow in the nth time interval;Nt is the number of

time intervals for evaluation of the infill project; d the annual

discount rate, tn represents the total production time in days at

the end of the nth time interval.

As for infill project, the outflows of cash include not only

the operational costs of existing wells but also the capital

expenditures associated with new wells drilled in the

reservoir. The capital expenditures consist of the initial

investment for drilling new wells and the need for

additional surface facilities at the start of the infill project.

The operational costs include costs of water treatment and

disposal for production wells and water injection for injection

wells in each time interval. The incoming cash flow is the

profit of oil production from production wells. Thus, the net

present value of the infill project can be further defined as the

following equation:
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NPV � ∑Nt

n�1
⎡⎢⎢⎣ ∑Nprod

i�1
(roqno,i − rwpq

n
wp,i) − ∑Ninj

j�1
(rwiqnwi,j)⎤⎥⎥⎦ Δtn

(1 + d)tn/365
−Niwciw

(8)
where, ro, rwp and rwi are the oil price, cost of water production

disposal and cost of water injection per unit volume respectively;

qno,i and q
n
wp,i are the average oil and water production rates of the

ith producer over the nth time interval; qnwi,j is the average water

injection rate of the jth injector over the nth time interval; ciw is

the cost of drilling per well; Nprod and Ninj, respectively, denote

the total number of both existing and infill production wells and

injection wells; Niw is the number of infill wells.

In this formulation, the NPV increment objective function

depends on the oil production rate qo, the water production rate

qwp, the water injection rate qwi and the number of infill wells.

The reservoir simulation model can be used to forecast the

production performance for an infill project with fixed

number and placement of infill wells, and then the revenue of

the project can be estimated using the economic objective

function. Increment of net present value compared with the

value evaluated without infill wells means drilling additional

wells adds value to the current production from mature oil

reservoir and project should be economically acceptable.

3 Optimization methodology

The objective function is minimized using an approximate

gradient method, SPSA, which has been used successfully for

both well placement and well control optimization as discussed

in the Introduction. This section first presents an overview of the

general SPSA algorithm and its important properties. Then,

based on the general SPSA algorithm, some particular

procedures with respect to the problem of well placement

optimization are illustrated. The last of this section presents

an integrated framework that developed to couple the reservoir

simulator with the SPSA algorithm to form an automatic

optimization tool for infill well project in oil reservoir.

3.1 Basic SPSA algorithm

Assume that noisy measurement y(x) of the loss function

f(x) and its gradients are available at any value of x ∈ Rp, which

are respectively denoted as y(x) � f(x) + ε and ∇f(x) with ε

representing the noise term. Considering f(x) as the objective

function and x as the p-dimensional vector of decision variables,

the goal of an optimization algorithm is to find the minimum

solution x* such that g(x*) � zf(x)
zx |x�x* � 0. By using the method

of stochastic approximation (SA), the optimization variables are

found through the following standard recursive form:

xk+1 � xk − akĝk(xk) (9)

where ĝk(xk) is a stochastic approximation of ∇f(xk) at the kth
iteration and ak is a nonnegative scalar gain coefficient. The

iterative form in Eq. 9 represents the steepest descent algorithm if

ĝk(xk) is replaced by ∇f(xk).
The central finite difference method is usually used to

approximate the gradient by perturbing the elements of the

decision variable vector one at a time and evaluating the

objective function for each perturbation, which can be written as

ĝki(xk) �
y(xk + ckei) − y(xk − ckei)

2ck
(10)

where ei denotes a unit vector with its ith entry equal to unity and

all other entries equal to zero; ck is a small positive scalar referred

to as the perturbation size.

It is easy to see that 2p function evaluations are required to

approximate the gradient using the finite-difference method,

which makes the method increasingly inefficient for

application as the problem dimension p grows. The SPSA

algorithm provides an efficient alternative by perturbing all

vector elements simultaneously to obtain a stochastic gradient

approximation ĝk(xk) that is defined as

ĝk(xk) �
y(xk + ckΔk) − y(xk − ckΔk)

2ck
× [Δ−1

k1 Δ
−1
k2 . . . Δ−1

kp]T
(11)

where Δk is a p-dimensional random perturbation vector,

Δk � [Δk1 Δk2 . . . Δkp]T, which contains independent and

symmetrically distributed entries with finite inverse moment

expectation E[|Δki|−1]. A common and simple distribution

that fulfills this condition is the symmetric Bernoulli (±1)

distribution. It is worth mentioning that symmetric uniform

and normal distributions do not have finite inverse moment

expectation, and thus they cannot be used with SPSA.

The basic step of SPSA algorithm is that: 1) in any given

iteration, generate a random perturbation vector Δk for the

decision variables in their search space; 2) run simulation and

evaluate objective functions at the two points, y(xk + ckΔk) and
y(xk − ckΔk); 3) compute the approximate gradient using Eq.

23; 4) take a step in the descent direction with an appropriate

value of the gain sequence ak to find the new vector of variables

using Eq. 9. The main attraction of SPSA algorithm lies in its

efficiency on approximate gradient estimation, which is based

on only two function evaluations. This property makes the

algorithm suitable for large-dimensional optimization

problems where gradient information is not available or easy

to compute. Moreover, the approximate nature of gradient

estimation provides robustness to noisy measurement of the

cost function, which is another key property of the SPSA

algorithm. It has been shown that under fairly general

conditions, the method can be superior to other gradient

free optimization methods.
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Although the gradient approximation in Eq. 11 requires less

function evaluations, it is important to consider the number of

iterations required for effective convergence of the algorithm.

The SPSA algorithm converges to a local optimum point under

some conditions on the SPSA parameters (gain sequences),

smoothness of the objective function close to the optimum, and

when the properties regarding the perturbation distribution Δk

discussed above are fulfilled (Jesmani et al., 2016b). The

conditions for the gain sequences are as follows:

ak > 0, ck > 0, ak → 0, ck → 0,∑∞
k�0

ak � ∞,∑∞
k�1

a2k/c2k <∞ (12)

To satisfy the above conditions, Spall (Gao et al., 2007)

provided some useful guidelines to select the perturbation size

ck and gain step length ak for SPSA, which are defined

respectively as follows:

ak � a

(A + k + 1)β (13)

ck � c

(k + 1)γ (14)

where a, A, c, β, and γ are positive real numbers which should

satisfy the conditions of A≥ 0, β − 2γ> 0 and 3γ − (β/2)> 0. The

choice of these parameters can have some influence on the

performance of the SPSA algorithm. In Spall (Gao et al.,

2007), the commonly recommended values for β and γ are

0.602 and 0.101, respectively. Moreover, it is suggested to set

A at or around 10% of the maximum number of expected or

allowed iterations kmax, that is, A � 0.1kmax. After specifying A

and β, parameter a can be chosen such that a0ĝ0(x0) � aĝ0(x0)
(A+1)β is

approximately equal to the minimum desired changes of x in the

early iterations. Finally, a suggested rule-of-thumb is to set c at a

level approximately equal to the standard deviation of the noise

in computing the objective function. However, it is inconvenient

to evaluate the magnitude of the standard deviation of the noise.

Do (Do and Reynolds, 2013) presented a simple and feasible

method to estimate the value of c. In his work, he first set the

maximum number of allowable iterations kmax and let the

minimum allowable change in perturbation size be denoted by

cmin, then calculated c from cmin � c/(kmax + 1)γ. In the two

examples presented later, we applied this recommendation in our

study to estimate the stochastic gradient.

3.2 Well placement with SPSA

In its basic form as outlined above, SPSA can only operate on

unbounded continuous sets, and is thus unsuited for

optimization on our bounded problem. Therefore, in order to

enhance the applicability of the SPSA algorithm to solve the

problem of well placement optimization, the basic SPSA was

modified in this study. Additional treatments include a

parameter scaling and constraint handling process, a simple

line search procedure and a blocking step.

Firstly, because the well placement and completion

optimization formulation is a constrained optimization

problem and the elements of optimization variable set x has

very different magnitudes, the variables are scaled using a linear

transformation with their upper and lower bounds. For the ith

variable xi, we define the transformed new variable ui such that

ui � xi − xm,i

xr,i
fori � 1, 2, L,Nx (15)

where xm,i � xu,i+xl,i
2 and xr,i � xu,i−xl,i

2 with xl,i and xu,i denoting

the lower and upper bounds for the ith control variables. When

xi → xu,i, ui → 1 and when xi → xl,i, ui → − 1. With this

transformation, the optimization algorithm may simply works

within [−1, 1]. However, since SPSA is an unconstrained

optimization algorithm, it needs to incorporate a constraint

handling procedure. In this work, a bounding operator and a

rounding operator suggested by Bangerth et al. (Bangerth et al.,

2006) are applied to handle inequality constraints and the integer

problem of well location variables, respectively.

In addition, as the gradients are stochastic and approximated,

the descent direction might not have sufficient accuracy and the

magnitudes of the gradient may change significantly for each new

generation. To avoid this problem and guarantee an appropriate

step size that minimizes the objective function, we also

implement the averaged stochastic gradient as a search

direction, i.e.

�gk(uk) � 1
Ng

∑Ng

n�1
ĝkn(uk) (16)

where each ĝkn(uk) is obtained from Eq. 11 using a different

sample of Δk. Averaged stochastic gradient has been tried by

Wang, et al. (Wang et al., 2009) to use to solve production

optimization problem in closed-loop reservoir management, and

the results were proven to be more reasonable than single

stochastic gradient. We adopt averaged stochastic gradient in

this study to see if it works as well.

When the optimization is start, a trial step size ak is used to

update the control vector uk+1. In order to have a better idea of

how to choose an initial value of ak so that we can potentially vary

the components of uk+1 over its expected range, we normalized

the search direction using the infinity norm of the gradient. With

such a normalization, the recurrence formula is given by

uk+1 � uk − ak
�gk(uk)�����gk(uk)

����∞ (17)

Here, ‖ · ‖∞ denotes the infinity norm. If the objective function

does not decrease with the trial step size, ak is cut by half until

f(uk+1) is less than f(uk). If the objective function at the

intended value uk+1 does not show reduction relative to the

value uk after several line search steps, we simply reject this step,

Frontiers in Energy Research frontiersin.org07

Li et al. 10.3389/fenrg.2022.1005749

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2022.1005749


generate a new set of perturbation vectors Δk, and repeat the

above process, which is referred to as a blocking step. We specify

a maximum allowable number of iterations (or function

evaluations) and a maximum allowable number of blocking

steps after a successful iteration as the stopping criteria. The

implementation of the modified SPSA is shown in Algorithm 1.

3.3 Integration of reservoir simulation with
the SPSA algorithm

The optimization algorithm presented above is integrated

with the reservoir numerical simulation software Eclipse

E100 using Matlab. Figure 2 is the flow chart demonstrating

the required steps needed to be taken to run the optimization. For

fix number and type of infill wells, well locations are chosen

initially using quality map such as reservoir permeability, well

productivity, remaining oil, etc. by engineers. Then oil and water

flow are calculated using the reservoir flow simulator for the

period of the infill program. Total oil and water production and

water injection is simulated monthly and imported into Eq. 8 to

calculate the net present value for the infill program. This value

and the corresponding infill well locations are stored in a data file

at each iteration step.

The next infill well locations are selected by the SPSA

algorithm and assigned to new grids in the reservoir. Oil and

water production and water injection are again calculated using

the flow simulator and another net present value is calculated for

new placements. This continuous procedure is an automatic-

intelligent approach. The coupling of reservoir simulator and

Matlab enables us to repeat this procedure automatically for

numerous wells arrangements across the reservoir while the

program intelligently produces new allocations.

4 Results and discussion

The integrated framework was first validated with the

standard five spot well placements in a synthetic reservoir

with lateral homogeneous permeability. Then computationally

expensive simulations were performed to attain the best

distributions for infill wells intended to enhance development

of a mature oil reservoir in China.

FIGURE 2
Flowchart of the optimization framework.

TABLE 1 Reservoir model parameters used in the synthetic model.

Reservoir parameters for simulation

Phases Three-phase (o/g/w)

Reservoir top depth 9030 ft

Reservoir dimensions 1250 ft × 1250 ft × 40 ft

Cell dimensions 25 × 25×4

Horizontal permeability 50, 200, 50, 50 mD

Vertical permeability 0.5 mD

Porosity 0.2

Reference depth 9035 ft

Pressure at reference depth 3600psi

Depth of water-oil contact 9950 ft

Numerical of production wells 4

Numerical of injection wells 1
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4.1 Synthetic reservoir model

To examine the effectiveness of the integrated approach, a

multiple-layer reservoir model was constructed on a 25 ×

25×4 three-dimensional grid system. The reservoir model

parameters used in this simulation are summarized in

Table 1. Initial pressures and saturations were calculated by

Eclipse’s equilibration facility. The simulation model involves

a three-phase oil-water-gas flow without capillary pressure,

running for 900 days. The well configuration consists of five

wells, four of which are vertical producers with fixed locations at

the corners of the reservoir and penetrate the first three layers.

FIGURE 3
Initial well location and the corresponding final oil saturation profiles for the synthetic model.
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The fifth well is a vertical injector and the goal of this example is

to find its best location and perforations. Thus, the number of

optimization variables is equal to 6, two of which are well location

coordinates (I and J) and the others are well production indexes

(WPI) in each reservoir layer. The producers are set to maintain a

constant liquid production rate of 500STB/day with a lower limit

bottom-hole pressure (BHP) of 1 atm, and the injector is

controlled using a constant injection rate of 2000 STB/day

with a BHP limit of 4500psi.

The injection well was initially located at grid (5, 5) and was

assumed to penetrate each layer fully. Figure 3 represents the

corresponding oil saturation distributions in each layer at the end

of the simulation. Obviously, the initial guess is not an ideal

candidate for the reservoir development. Then, the optimization

run was started with a carefully chosen parameter set for SPSA

algorithm as discussed above. Table 2 lists parameters used in the

SPSA algorithm. We tried several average numbers in SPSA

gradient calculation. The values for economic parameters ro, rwp
and rwi are set to 70, 10, and 10 USD/STB, respectively, and b � 0.

The cost of drilling and completion of a well is assumed to be

800,000USD. However, we did not consider the cost of drilling

since this case is just designed for the purpose of validation. Two

predictable results of the optimization are in order here. First, the

injection well should be located at the center of the reservoir for

homogeneous displacement of origin oil in place. Second,

perforation in the second layer should be controlled in order

to avoid early water breakthrough and uneconomical water

injection.

Figure 4 shows the increase in net present value as the SPSA

iteration proceeds with different average of the approximate

gradients. Note that, in the right part of Figure 4, function

evaluations consist of simulation runs for gradient calculation,

line search and occasional blocking steps. As can be seen in this

figure, within 100 iterations all algorithms converge to a local

solution successfully. The algorithm with a single SPSA gradient

converges to an NPV of USD 3.927×107 in 86 iterations with

approximately 1,000 simulation runs, which is obviously lower

than the value obtained from the average SPSA gradient method.

Among the three average SPSA methods, the algorithm with

average of 10 SPSA gradients took the fewest iterations but the

most simulation runs for convergence, while the algorithm with

average of 3 SPSA gradients took the most iterations but the

fewest simulation runs for convergence. The number of iterations

are 64, 51and 41 and the number of simulation runs are 669,

773 and 912, respectively for the cases of Ng � 3, Ng � 5 and

Ng � 10. The NPV increases from USD 3.179×107 to USD

4.028×107, 4.037 × 107and 4.045×107, respectively, with only

slightly difference among them. It is interesting to note that there

are two plateaus on each performance curve of all the algorithms

in this case. We tracked the proceeding of each algorithm and

found that on the first plateau, each algorithm is approaching to

its optimal well locations with relatively little change on the

completion parameters, and on the second plateau, each

algorithm obtains the corresponding optimal completions. The

TABLE 2 The applied SPSA options for optimization.

SPSA parameters

Gain sequence of perturbation size ck c min � 0.08, γ � 0.101

Gain sequence of step size ak A � 0.1kmax, a � 0.2, α � 0.602

Average number of gradients Ng 1, 3, 5, 10

Maximum number of line search steps lmax 5

Maximum number of blocking steps bmax 10

Maximum number of iterations kmax 100

FIGURE 4
Iteration of the objective function for the synthetic model. Left: NPV as a function of iteration number; Right: NPV as a function of objective
function evaluation numbers.
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convergence for optimal well completions is significantly slower

than for the optimal well locations.

The optimal injection well location obtained with the single

SPSA method is at grid (17, 13), while the others are all at grid

(13, 13). As expected, the injection well is moved toward the

center of the rectangle reservoir forming a standard inverted 5-

spot pattern by all the optimization algorithms except the single

SPSA method. Figure 5 and Figure 6 display the optimum well

location that found by the algorithm with average of 10 SPSA

gradients on maps of oil saturation distributions at the end of the

simulation and the corresponding estimated open fraction of

each perforation layer respectively. Note that in the injection

FIGURE 5
Optimized well location and the corresponding final oil saturation profiles for the synthetic model.
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well, the second layer is fully shut, while the other three

simulation layers is partially open to flow. This is reasonable

due to the significantly higher permeability of the second layer

than others.

It can be confirmed that the presented method is effective for

the problem of identifying the optimal well placement or at least

the local optimal one. However, the optimization results of the

perforation schedule as shown in Figure 6 are more difficult to be

verified exactly, because the generalized mix-integer multivariate

optimization problem considered in this paper is expected to

have very complex objective functions with multiple local

solutions and thus the response surface of the objective

function with respect to all possible well locations and

completions cannot be plotted. For comparison, 10 possible

trial well perforation schedules on the optimal well position

were tested and the NPV values for the solutions are listed in

Table 3.

The highest NPV for all the solutions tried is USD3.963×107

which is slightly lower than the estimated optimum automatically

determined with the optimization algorithm. As a remark, we note

that thewell perforation schedule of solution 8with the highestNPV is

somewhat similar to the estimated: the second layer is shut and the

other three layers are partially open to flow for both the two solutions.

The results of the numerical experiments confirm the effectiveness of

the optimization approach.

4.2 Field application

4.2.1 Field general situation
The integrated optimization framework was applied to

optimize an infilling plan for the mature oil reservoir of Bin8-

FIGURE 6
WPI multiplier for perforations of the injection well for the
synthetic model.

FIGURE 7
Production history curves of Bin8-3 unit in Shengli Oilfield (China).

TABLE 3 NPV for some possible well completions.

Solution Well location WPI multipliers of
perforations

NPV, USD

1 (13, 13) η1 � η2 � η3 � η4 � 1.0 3.523×107

2 (13, 13) η1 � η3 � η4 � 1.0, η2 � 0.5 3.555×107

3 (13, 13) η1 � η3 � η4 � 1.0, η2 � 0 3.655×107

4 (13, 13) η1 � η3 � 1.0, η2 � η4 � 0.5 3.546×107

5 (13, 13) η1 � η3 � 1.0, η2 � η4 � 0 3.847×107

6 (13, 13) η1 � η2 � η3 � η4 � 0.5 3.668×107

7 (13, 13) η1 � η3 � η4 � 0.5, η2 � 1.0 3.514×107

8 (13, 13) η1 � η3 � η4 � 0.5, η2 � 0 3.963×107

9 (13, 13) η1 � η3 � 0.5, η2 � η4 � 1.0 3.522×107

10 (13, 13) η1 � η3 � 0.5, η2 � η4 � 0 3.833×107
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3 unit in Shengli Oilfield (China). Bin8-3 unit is a lithological

reservoir located in Dongying Sag, Bohai Gulf basin, East China,

with the Shahejie Formation of the Paleogene being the main

petroliferous strata. Primary oil production is from the fourth

section of the Shahejie Formation, which is divided into eight

layers. The oil bearing area is 345.9acre with an average effective

thickness of 91.8 ft. The reservoir has been developed for about

32 years and experienced three stages: Ⅰ. Natural energy drive; Ⅱ.
Waterflooding with the basic well patterns (wide spacing inverted

seven-spot well pattern); Ⅲ. Waterflooding with the uniformly

infilled well patterns (dense spacing inverted seven-spot well

pattern). As we can see from Figure 7, the recovery and the water-

cut of the reservoir is about 29.5% and 83.1% respectively and the

field oil rate continues to decline. A major redevelopment effort

to sustain and improve production from this reservoir is selective

infill drilling. For an infill plan, the locations and completions of

additional wells should be intelligently found to maximize oil

production while water production is minimized.

4.2.2 Reservoir simulation model
The reservoir model is constructed from available well log,

core analysis and seismic data of the area. There are 55 wells

drilled in this reservoir and the wells placement are based on

inverted seven-spot pattern. The structure model is made of 85 ×

40×8 grid blocks with each cell having uniform planar

dimensions of 100 ft × 100 ft but variable vertical dimensions

of 2ft–85 ft to reflect the complex geologic structure. The

property model (permeability and porosity) is created by

using Sequential Gaussian Simulation method and shows

extreme heterogeneity both in porosity and permeability

distributions. Figure 8 shows the geologic structure of the

reservoir and the permeability distribution. Table 4 records

the statistical data of the lateral permeability distributions in

each layer, including the maximum value, minimum value,

average value and median value of each layer. We use

variation coefficient, heterogeneity coefficient and max-min

ratio of the permeability to characterize the degree of

reservoir heterogeneity in each layer, where the three

coefficients are defined as follows: variation coefficient is the

ratio of the standard deviation of permeability to the mean value

in a single layer, i.e.,Kv �

�������∑n
i�1

(Ki−K
—)2

n

√
/K
—
; heterogeneity coefficient

is the ratio of the maximum permeability to the mean value in a

single layer, i.e., Kh � Kmax/ �K; max-min ratio is the ratio of the

maximum permeability to the minimum permeability in a single

layer, i.e., Kr � Kmax/Kmin. As can be seen, different layers show

distinct geologic characteristics, and both lateral and vertical

heterogeneity are obvious.

According to the geological research reports of the oilfield,

the reservoir lies in a fault-block and has a different oil-water

system with the surrounding reservoirs. Thus, we use

impermeable boundaries in the numerical model. The model

is initialized by the equilibration facility of Eclipse E100. Table 5

lists the basic parameters used for the purpose of simulation. The

oil-water and oil-gas relative permeability curves used for oil/

water/gas flow simulation are presented in Figure 9A,B

respectively.

The reservoir model is then calibrated to the historical data

available by using an iterative process with a hierarchic structure.

In the history matching process, well historical controls are set to

be liquid production rate for producers and water injection rate

for injectors. The target is to match oil and water production rate

of the field (FOPR and FWPR), as well as each producer. We first

FIGURE 8
Geological structure and permeability field of Bin8-3 unit in Shengli Oilfield (China).
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conduct experimental design to establish reasonable global level

uncertainty parameters ranges and inspect their influences on

reservoir and production. Then, field liquid production rate

(FLPR) is matched to obtain rough estimates of global level

pore volume and transmissibility ranges. After the field liquid

matching is achieved, we adjust saturation profile to match FOPR

and FWPR. While maintaining FOPR and FWPR, we move

forward to the well level to improve pore volume and

transmissibility ranges. We end the process when acceptable

matching results are obtained in both global level and well level.

Figure 10 shows a part of the validation results, on which the

observation data are represented with circles and the prediction

data are represented with curves. From Figure 10, one observes

that both oil production (A) and water production (B) match

closely with historical data. We use the calibrated numerical

model to perform well placement optimization.

TABLE 4 Characteristics of lateral permeability heterogeneity.

Permeability
value

Layer
1

Layer
2

Layer
3

Layer
4

Layer
5

Layer
6

Layer
7

Layer
8

Max 1715.8 560.59 311.27 168.96 400.26 436.29 449.16 403.22

Min 0.57 8.52 2.51 1.56 18.47 10.07 23.18 2.63

Mean 218.05 141.52 55.73 53.05 161.50 160.83 259.95 159.26

Median 41.84 66.11 29.97 49.20 154.63 133.27 242.86 117.84

Variation
Coefficient

1.51 1.16 1.19 0.70 0.53 0.74 0.54 0.83

Heterogeneity
Coefficient

7.87 3.96 5.59 3.19 2.48 2.71 1.73 2.53

Max-Min Ratio 3010.2 65.80 124.01 108.31 21.67 43.33 19.38 153.32

TABLE 5 Reservoir model parameters used in the field example.

Simulation parameters used in the field example

Phases Three-phase (o/g/w)

Reservoir top depth 4855–5085 ft

Reservoir bottom depth 5118–5348 ft

Cell dimensions 85 × 40×8

Horizontal permeability Heterogeneous

Vertical permeability Heterogeneous

Porosity Heterogeneous

Reference depth 5085 ft

Pressure at reference depth 2248psi

Depth of water-oil contact 5184 ft

Numerical of production wells 35

Numerical of injection wells 20

FIGURE 9
Relative permeability curves.
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4.2.3 Performance of the optimization algorithm
To identify the initial locations of infill wells, we first

examined the potential regions of poorly swept and poorly

drained oil in the reservoir. Figure 11 is the final distribution

of remaining oil pore volume after approximate 32 years’

production, which is generated by adding layer upon layer. It

is observed that there are amount remaining oil scattered in the

eastern part of the reservoir, mainly near the faults and the

boundary of the reservoir. In order to boost oil production rate,

we tried to place four new vertical production wells in the oil-rich

regions and located them initially at the points marked with

white circles in Figure 11. Then, the proposed optimization

framework was used to find the optimal placements of the

four new wells, including the locations and their completions

in such a complex multi-layer reservoir. To get a more reliable

solution, three cases of optimization work were carried out. In

case 1, the well locations are fixed at the initial guess and only

completions are optimized. This case with the initial

configuration of the infill wells is used as the reference case

because of the assumed potential oil productivity in the selected

oil-rich regions. In case 2, the well location and the well

completion are optimized simultaneously with the SPSA

algorithm and we refer to it as simultaneous joint

optimization problem. In case 3, the joint optimization

problem is broken into two steps and we refer to it as

sequential joint optimization framework. In the first step, the

optimal well location problem is solved with the SPSA algorithm

with the well penetrating all layers fully. After the optimal

location of the wells is estimated, we perform the completion

optimization step, in which, the well locations are fixed and

specified and the completions of each well are optimized.

To compare the results of the three cases, we performed the

optimization runs with the same initial conditions. Besides, a

simulation run without infill wells was also conducted for

comparison. All infill wells are initially assumed to penetrate

each layer fully and maintain a constant liquid production rate of

95STB/day with a lower limit bottom-hole pressure of 1 atm.

The existing wells are set to continue to work in their last control

mode. The duration of the infill project is set to 10 years.

Algorithm with average of 5 SPSA gradients is used. The

maximum allowed iteration times of the optimization

algorithm is 500 and the optimization run is terminated

ahead after it encountered 10 times of continuous trials of

ineffectual iteration. Other parameters that related to the

optimization are the same with the example of the synthetic

model. The NPV value for the simulation run without infill wells

is USD2.111×107 and the values for the optimization runs are

shown in Figure 12. Results show that, even without

optimization, the economic revenue of the infill project

significantly surpasses the case of no infill wells. Optimization

of infill well location and completions enhances the performance

of the infill project. In case 1, the optimization converged after

311 algorithm iterations, and NPV increased from

USD5.845×107 at the initial guess to USD6.992×107 at

convergence. In case 2, the optimization converged after

39 algorithm iterations, and NPV increased to USD7.266×107

at convergence. In case 3, the optimization converged after

407 algorithm iterations which include 21 iterations for well

FIGURE 10
Field production history matching results.

FIGURE 11
Initial locations of infill wells on map of remaining oil
distribution at the end of production history.
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location optimization and 386 iterations for well completion

optimization, and NPV increased to USD8.577×107 at

convergence. Comparing the NPV values for the optimization

runs corresponding to case 2 and case 3 with the optimization

run for case 1 shows that the optimization runs for well

locations, regardless of the order of optimizing well

completions, obtained higher NPV values than the

optimization run for well completions only. Thus, it can be

inferred that for the subject reservoir, NPV is more sensitive to

the well location than to the completions of the wells.

It is also important to mention that in the case of

simultaneous joint optimization (case 2), the algorithm

iteration was stopped by the convergence criterion of

allowance maximum number of blocking steps before it

arrived at a real optimal solution. This can be justified by

Figure 13, in which the optimization was continued with

regard to well completions based on the obtained optimal

well locations and as a result the NPV value increased from

USD7.266 × 107 to USD7.872 × 107 after extra 205 algorithm

iterations. The main reason that SPSA does not find the

optimal well completions in case 2 is that the algorithm

proceeded first to a solution with optimal well locations

which is similar with the first plateau observed in the

validation example, and in the following iterations, the

increase of NPV value caused by perturbation of well

completion parameters was offset by the decrease of NPV

value caused by perturbation of well location parameters due

to the natural property of simultaneous perturbation of

SPSA algorithm. Based on these results, it is not

unreasonable to recommend the sequential joint

optimization, when using SPSA as the algorithm, as the

optimization framework for obtaining the best scheme for

the placement of infill wells.

As mentioned above, the convergence of the three cases

requires 311, 39, 407 iterations respectively, and one iteration

requires running 10 times of the model, and the time of running

1 time of the model is about 66 s. Therefore, in the current

computer configuration, the convergence of the three cases take

57 h, 7.15 h, and 74.62 h, respectively.

4.2.4 Quality placements of infill wells
Initial and final locations of the infill production wells for

case 2 and case 3 are shown in Figure 14, where crosses

represent for the results of Case 2 and pentagrams for the

FIGURE 12
Objective function value versus number of iterations for three
optimization cases in the field application.

FIGURE 13
Objective function value versus number of iterations for
continued optimization of completion based on Case 2.

FIGURE 14
Optimal locations of infill wells on the map of remaining oil
distribution for two optimization cases in the field application.
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results of Case 3, respectively. The final WPI multipliers for

perforations at the four infill wells are shown in Figure 15 for

case 2 and Figure 16 for case 3, respectively. Since the initial

locations of the infill wells are all in the oil-rich regions, we

expect an optimum solution that has less adjustments with

respect to the initial guess. However, our algorithm did not

achieve this for all infill wells. For example, Well 1 is moved

far away from its initial location to another oil-rich region

both in case 2 and in case 3, and Well 3 is moved toward a

margin region that is not controlled by the original well

patterns in case 3. Although significant changes in the

location of these wells occurred, a general trend can be

observed that the infill production wells are moved far

away from the injection wells to somewhere nearby the

boundary of the reservoir or the faults where a

considerable amount of oil remains. By contrast, changes

in the completions of the wells are specialized and very

dependent on the well location. Comparing the WPI

multipliers of the four infill wells in case 2 shows that the

best obtained completions of these wells are significantly

different with each other because of the different obtained

well locations for these four wells. The same result can be

observed in case 3. However, comparing the best obtained

completion of well 2 in case 2 and case 3 shows that very

similar well completions are obtained because of the same

well locations for these two cases.

Optimizing quality location and completions in the

mature reservoir for infill well placement is a very complex

function of various factors including reservoir properties such

as permeability, porosity, net thickness and reservoir structure

etc., well configuration and production control of existing

producers and injectors, distribution of remaining oil and

economic indexes. Undoubtedly, it is hard to set up a

universally applicable principle to guard the well placement

of infill wells. Although in practice locations and completions

can be proposed by experienced reservoir engineers, the

considerable difference between infill project revenues

obtained by using optimization method and by selecting

based on best engineering practice makes well placement

across the reservoir a crucial practice and magnifies the

need for employing the integrated framework to design

infill well locations intelligently.

FIGURE 15
WPI multipliers for perforations of the four infill wells, Case 2.
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5 Conclusion

In this study, an integrated framework is developed to

couple the reservoir flow simulator and a SPSA algorithm

based optimizer to find optimal infill well locations and

completions for enhancing waterflooding recovery of a

mature oil reservoir. A synthetic reservoir model with four

production wells located in the corners is created to validate

the effectiveness of the integrated approach. The integrated

framework is used to find the best obtained injection well

location and also the completion in the reservoir. A complex

heterogeneous reservoir model is then constructed by using

the data of a mature oil reservoir in Shengli Oilfield in China

to design an optimal 10 years infill drilling program.

According to the remaining oil distributions, four new

producers are placed in the oil-rich regions as the start of

the optimizations. Since the potential regions are assumed to

be the best candidates of infill wells, both only well

completions optimization with the fixed initial locations

and coupled well locations and completions optimization

are performed by the integrated framework and the results

are compared. The main conclusions of this study are as

follows:

1) The well placement problem given here consists of joint

optimization of the location and completion of a vertical

well. Well location is parameterized in terms of discrete

integral lattice variables and well completion is represented

by WPI multiplier for the connection with each simulation

layer. With this parameterization, the well placement

problem is simplified and a variant of SPSA algorithm can

be applied to obtain optimal well placement which is easy to

implement and computationally feasible.

2) The algorithm with average SPSA gradients obtains better

results than does the single SPSA gradient method. Although

it needs more function evaluations to obtain the approximate

gradients for a single recursion step, the algorithm with

average SPSA gradients converges more quickly than the

single SPSA gradient method.

3) The proposed framework is successfully applied for the

optimization of infill well location and completion in a mature

oilfield with high water-cut and heterogeneous reservoir properties.

FIGURE 16
WPI multipliers for perforations of the four infill wells, Case 3.
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For the complex reservoir, the sequential optimization shows

superior performance than the simultaneous optimization for

jointly optimizing well location and well completion.

4) In joint optimization of well location and completion, the

convergence for optimal well completion is significantly

slower than for the optimal well location. Moreover, the NPV

value is more sensitive to well location than to well completion

parameters for extremely heterogeneous reservoir.

This work provides an initial attempt to formulate and solve a

development optimization problem by focusing on well location

and completion optimizations that frequently encountered in the

redevelopment of mature oilfields. The more generalized problem

may also involve the type and the number of infill wells, drilling

schedule, production controls, and the reservoir life cycle.

However, considering all of these decision variables while trying

to maximize oil recovery in a real reservoir, turns into a complex

optimization problem which is not only hard to describe in

mathematical formulas but also hard to solve in an efficient

way. On the other hand, it has been widely recognized that

optimization by fixing some of the decision variables a priori

must lead to the problem of suboptimality. Thus, more

sophisticated treatment approaches and solution algorithms are

required to tackle the complex problem. Besides, as any description

of realistic objects, there is a large degree of uncertainty in

describing the physical properties of the subsurface reservoirs

which makes the problem further complicated. Geologic

uncertainty should be considered to reduce the risk of an infill

plan. In future work, we will first extend our approach to well

placement optimization of more complicated wells, such as

horizontal wells and multilateral wells. Then, we will try to

combine well placement and control optimizations under

geologic uncertainty to solve a more generalized problem. In

addition, several other optimization algorithms may be

compared in solving our problems.
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Appendix 1:

Algorithm 1: Modified SPSA algorithm for well placement

optimization

Modified SPSA Algorithm.

Set iteration number k � 0, b � 0;

Initialize the optimization variable x0;

While k< kmax and b< b max do

Update ak and ck using Eq. 13 and Eq. 14, and Generate a set

of Δk; Transform xk to uk using Eq. 15; Calculate u+k � uk +
ckΔk and u−k � u−k − ckΔk; Apply the bounding operator and

the rounding operator; Evaluate f(u+) and f(u−) using Eq. 8;
Calculate the averaged gradient using Eq. 11 and Eq. 16;

Calculate uk+1 using Eq. 17; Evaluate f(uk+1) using Eq. 8

Set l � 0;

while f(uk+1)≥f(uk) and l≤ nl do

Cut gain step using ak � ρak Calculate uk+1 using Eq. 17;

Evaluate f(uk+1) using Eq. 8 l � l + 1;

end

if f(uk+1)<f(uk) then
Accept the kthth iteration step; uk+1 � uk+1; k � k + 1;

Set b � 0

end

if f(uk+1)>f(uk) then
Reject the kthth iteration step; Try a new set of Δk; b � b + 1;

end

end.
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