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The economic operation and scheduling of community integrated energy

system (CIES) depend on accurate day-aheadmulti-energy load forecasting.

Considering the high randomness, obvious seasonality, and strong

correlations between the multiple energy demands of CIES, this paper

proposes an adaptive forecasting method for diverse loads of CIES based

on deep transfer learning. First, a one-dimensional convolutional neural

network (1DCNN) is formulated to extract hour-level local features, and the

long short-term memory network (LSTM) is constructed to extract day-level

coarse-grained features. In particular, an attention mechanism module is

introduced to focus on critical load features. Second, a hard-sharing

mechanism is adopted to learn the mutual coupling relationship between

diverse loads, where the weather information is added to the shared layer as

an auxiliary. Furthermore, considering the differences in the degree of

uncertainty of multiple loads, dynamic weights are assigned to different

tasks to facilitate their simultaneous optimization during training. Finally, a

deep transfer learning strategy is constructed in the forecasting model to

guarantee its adaptivity in various scenarios, where the maximum mean

discrepancy (MMD) is used to measure the gradual deviation of the load

properties and the external environment. Simulation experiments on two

practical CIES cases show that compared with the four benchmark models,

the electrical and heating load forecasting accuracy (measured by MAPE)

increased by at least 4.99 and 18.22%, respectively.
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1 Introduction

Integrated energy system (IES) (Cheng et al., 2018) is

recognised as a potential solution for reducing carbon

emissions and improving energy utilisation efficiency (Quelhas

et al., 2007). In contrast to conventional independent energy

systems, IES is dedicated to the integration of various energy

carriers such as electricity, gas, heat, and cooling, as well as

different energy technologies such as distributed generation and

energy storage (Yan et al., 2021). Community integrated energy

system (CIES) involves the implementation of the IES concept

near the demand side. The CIES facilitates the synergy of

different energy carriers, obtains higher operational flexibility,

and achieves better economic and environmental performance in

the simultaneous supply of various energy forms (Gianfranco

et al., 2020). Owing to these advantages, the CIES plays an

important role in the development of the IES and has been

put into practice in many countries.

Fluctuation of loads in a CIES is a critical factor that

deteriorates operational performance and increases security

risks, making load forecasting technologies indispensable in

the planning and operation of modern CIES (Wang et al.,

2021; Yu et al., 2022). Generally, load forecasting methods

focus on different timescales. Short-term load forecasting

(typically day-ahead forecasting) (Daniel et al., 2022) is most

commonly used in the operation of CIES for the optimization of

scheduling plans (Liu, 2020; Qin et al., 2020). It is also the basis

for a CIES to determine future optimal strategies for demand

response (Lyon et al., 2015; Ming et al., 2020), energy trading (Fu

et al., 2021), and system maintenance (Kuster et al., 2017). As the

granularity of these tasks becomes more refined, the requirement

for accurate load forecasting is also promoted, motivating

extensive studies on novel load forecasting theories and methods.

Load forecasting methods mainly fall into two categories: the

statistical methods such as regression analysis (Bracale et al.,

2020) and autoregressive integrated moving average (ARIMA)

(López et al., 2019), and the machine learning methods such as

artificial neural networks (Wang et al., 2018), support vector

machine (SVM) (Wang et al., 2016), and extreme learning

machine (ELM) (Sachin et al., 2018). Deep learning (Le et al.,

2015) is a new type of machine learning method, which has

gained popularity in load forecasting in recent years because of its

superior learning ability, adaptability, and portability. For

example, the electrical loads of 42 resident users (Yang et al.,

2021) were forecasted, where it was demonstrated that deep

learning has a higher accuracy than back propagation (BP) neural

network and extreme gradient boosting (XGBoost) method. A

novel evolutionary-based deep convolutional neural network

(CNN) model (Jalali et al., 2021) was proposed for intelligent

load forecasting, which mainly solved the problem of finding the

optimal hyperparameters of the CNN efficiently. A novel

pooling-based deep recurrent neural network (RNN) (Shi

et al., 2018) was proposed, which batches a group of customer

load profiles into a pool of inputs, and addresses the overfitting

problem by increasing data diversity and volume. A deep belief

network (DBN) was improved from three aspects (Kong et al.,

2020), including input data, model, and performance, to consider

demand-side management (DSM) in electrical load forecasting.

Variational mode decomposition (VMD) and stacking model

were employed to forecast short-term electrical loads (Zhang

et al., 2022). These studies have demonstrated the applicability

and effectiveness of deep learningmethods in the load forecasting

of energy systems.

However, load forecasting in a CIES is quite different from

these existing studies, that mainly focus on aggregated load

forecasting at the system level (Yu and Li, 2021). There are

two new challenges need to be addressed. First, the variation and

uncertainty in the diverse loads of a CIES are intensified. This is

due to the smaller system scale of a CIES, as well as the coupling

of different energy forms that enhance the propagation of

uncertainties (Li et al., 2022). The interchangeability between

different energy consumptions of users, which is enabled by

flexible energy conversion equipment, would also complicate the

characteristics of the load profiles.

Second, it is challenging to maintain the adaptivity of the

forecasting model during long-term operation of a CIES. The

load diversity in a CIES is generally reduced because of its specific

functions such as commercial, residential, industrial, and

educational. Under these conditions, the effects of long-term

factors, such as changes in seasons, energy consumption habits,

total loads, and system configurations, are magnified. For

example, the characteristics of the load profile usually differ

during the summer, winter, and seasonal transition periods.

The gradual evolution of demand restricts the continuable

applicability of a single model in the load forecasting of a

practical CIES. It is also difficult to train a unified model that

is suitable for all scenarios because there is no guarantee that the

training data over a long period share the same distribution.

A feasible solution to deal with the uncertainty in the load

forecasting of a CIES is to utilize the correlations between

multiple energy demands, and perform joint forecasting. For

example, a multi-energy forecasting framework based on deep

belief network was designed for the short-term load forecasting

of integrated energy systems, in which the correlation among

electrical, gas, and heating loads were considered (Zhou et al.,

2020). A hybrid network based on CNN and gated recurrent unit

(GRU) was proposed for the multi-energy load forecasting of the

main campus of the University of Texas at Austin (Wang et al.,

2020a). A CNN-Sequence to Sequence (Seq2Seq) model was

developed to consider temperature, humidity, wind speed, and

the coupling relationship of multiple energy carriers in the hour-

ahead load forecasting (Zhang et al., 2021). Long short-term

memory (LSTM) and the coupling characteristic matrix of

multiple types of loads were employed to extract the inherent

features of loads and improve forecasting accuracy (Wang et al.,

2020b). Multi-task learning (MTL) is also widely used as a basic
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framework for joint load forecasting, because it improves the

cognition ability of different tasks by utilizing shared layers

(Zhang and Yang, 2018). This framework was employed in

similar studies for joint forecasting of electrical, heating,

cooling, and gas loads (Tan et al., 2019; Zhang et al., 2020).

Overall, for correlated load forecasting, MTL can learn the

intrinsic relationships between different types of loads and

usually achieves better performance than single-task

approaches. However, differences in the degree of uncertainty

of various loads may hinder the simultaneous optimization of

multiple tasks, which remains a problem.

For the adaptivity of forecasting models, the transfer learning

method can be considered a potential solution (Pinto et al., 2022).

Existing studies on transfer learning in load forecasting primarily

address the problem of insufficient training samples by learning

from other similar scenarios. For example, in (Lu et al., 2022),

transfer learning was utilized to solve the problem of insufficient

historical load data samples when smart meters have just been

deployed for a short time. The historical data of similar buildings

were utilized to establish a regression model for the energy

consumption forecasting of different schools (Ribeiro et al.,

2018). Transfer learning was introduced into the short-term

forecasting of the cooling and heating loads of buildings based

on the knowledge learned from typical load models (Qian et al.,

2020). Different transfer learning strategies were compared for

different scenarios (building types or sample sizes) in short-term

forecasting of building power consumption (Fan et al., 2020). In

summary, transfer learning facilitates the sharing of common

features in similar learning tasks, and can be expected to solve the

problem of load data expiration in a CIES caused by gradual

changes over time, such as seasonal transitions.

In this study, a multi-task deep transfer learning method with

an online rolling mechanism is employed to address the

challenges in the load forecasting of CIES, which enables the

joint day-ahead forecasting of electrical and heating loads while

dynamically adapting to the varying load properties. The main

contributions of this study are summarised as follows:

1) A novel framework is established for day-ahead

forecasting of electrical and heating loads in a CIES. CNN

and LSTM are employed to extract the features of the loads at

different time scales separately. Subsequently, an attention

mechanism is designed to determine the key features and

track them in the forecasting results. Day-ahead weather

forecasting information is considered through a shared layer

to further improve accuracy.

2) A novel loss function is applied to improve the training

performance of the forecasting model. In this loss function,

different weights are assigned to the learning tasks of the

electrical and heating loads. These weights are dynamically

adjusted in the training process based on the difference in the

degree of uncertainty of different types of loads, which balances

the convergence speed of multiple learning tasks and facilitates

their simultaneous optimization in training.

3) A deep transfer learning strategy is constructed in the

forecasting model to guarantee its adaptivity in various scenarios.

The maximummean discrepancy (MMD) is used to measure the

gradual deviation of the load properties and the external

environment. Then, different transfer learning strategies are

adopted according to the range of the MMD, which enables

the forecasting model to rapidly capture the new features of

the CIES.

The remainder of this paper is organized as follows. Section 2

describes the overall forecasting model, including its architecture

and loss function. Section 3 details the transfer learning strategy,

and summarises the entire application process. Case studies are

presented in Section 4 to verify the effectiveness of the proposed

method by conducting simulations using two typical cases.

Finally, Section 5 concludes the paper.

2 Multi-task learning for diverse load
forecasting

2.1 Architecture of the proposed multi-
task learning model

As shown in Figure 1, the architecture of the proposed

forecasting model can be divided into four levels. In Level-1,

the multisource inputs are normalized to reduce the

computational complexity and accelerate the model

convergence. In Level-2, a combination of CNN, LSTM, and

the attention module is employed for electrical and heating loads

to extract the features at different time granularities. At this level,

because weather data do not contain temporal characteristics, we

directly extract weather data features through a fully connected

(FC) layer. In Level-3, the features of the loads and weather data

are fused together using a shared layer. Finally, in Level-4, a hard-

sharing mechanism is realized using two separate FC layers with

identical topologies for electrical and heating loads, through

which the normalized forecasted values are simultaneously

output. The forecasting results are then obtained after an

inverse normalization process. Since the features have been

sufficiently extracted, the output can be learned from the

features of the shared layer by a simple mapping. Therefore,

in this paper, the number of fully connected layers from the

shared layer to the output layer is set to 1. The configurations of

CNN, LSTM, and the attention mechanism are detailed in the

following sections.

2.1.1 One-dimensional convolutional neural
network

A CNN is used to extract the fine-grained features of the

loads. In this study, the input load data to the CNN is represented

by time-series data. Therefore, a one-dimensional convolutional

neural network (1DCNN) is adopted in the proposed model, in

which the convolution operations are performed in only one
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dimension. The shape of a single sample input to the

convolutional layer is expressed as [time steps, dimensions],
where time stepsrepresents a given number of days before the

forecasting day, and dimensions are determined by the time

granularity of forecasting. In this study, we set time steps as

7 considering the similarity in load patterns for each week, and

dimensions equals to 24 to capture the hourly variation features

of loads within a day.

The structure of the 1DCNN is shown in Figure 2. The

convolution kernel is convolved with the input data and then

FIGURE 1
Architecture of the forecasting model.

FIGURE 2
Structure of 1DCNN.
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summed with the corresponding bias to obtain the result of this

operation. All input data are traversed according to the given step

information. This process is repeated for multiple convolution

kernels to obtain the final matrix, that is, the features extracted by

the convolution layer. The convolution calculation process is

shown in Eq. 1:

zjl � ∑i�T,p�j+T−1
i�1,p�j wi

l · xpl + bl (1)

where T is the given step information; xpl ∈ R1×d is the input

vector at time step p for the convolution operation with the lth

convolution kernel, d is dimensions of each time step; wi
l ∈ R1×d

is the ith weight parameter vector of the lth convolution kernel;

“·” denotes the dot product operation; bl is the corresponding

bias parameter; and zjl is the jth output result of the lth

convolution operation.

Because the 1DCNN is intended to extract hourly local

features of loads within a day, we set T as 1. A small number

should be selected for the convolutional layers to avoid the

impact of convolution operations on the original features. In

addition, we choose the rectified linear unit (ReLU) as the

activation function to avoid exploding gradients (Wang et al.,

2020a). The numbers of network layers and convolution

kernels are hyperparameters that need to be tuned in the

1DCNN.

2.1.2 Long short-term memory network
The LSTM takes the output of the CNN and is used to extract

coarse-grained load features. In other words, it attempts to

further learn how loads vary from day to day. The shape of a

single-sample input to the LSTM is also

[time steps, dimensions], which is the same as the output of

the 1DCNN.

The input of the LSTM cell at the current moment includes

the input of the current moment (xt), hidden state of the previous
moment (ht−1), and cell state (ct−1). ht and ct are reserved for the
input at the next moment. These input data are processed via

three types of gates, as shown in Figure 3: the forgetting gate,

input gate, and output gate.

The equation for the forgetting gate is expressed as:

f t � σ(Wf[ht−1, xt] + bf) (2)

where σ()is the sigmoid function. The output range of the

sigmoid function is [0,1]; therefore, f t represents the

probability of forgetting the cell state at time step t − 1. Wf

and bf are the weights and biases of the forgetting gate,

respectively.

The equation of the input gate is expressed as Eqs. 3, 4:

it � σ(W i[ht−1, xt] + bi) (3)
at � tanh(W tan[ht−1, xt] + b tan) (4)

where W i and bi are the weights and biases of the input gate,

W tan and b tan are the weights and biases of the tanh layer.

tanh () denotes the activation function.

The update equation of the cell state is expressed as:

ct � ct−1☉f t + it☉at (5)

where ☉ denotes the Hadamard product. ct−1☉f t determines

whether to retain the original cell state at time step t − 1, which

represents the effect of the cell state at time step t − 1 on the cell

state at time step t. it☉at determines whether to update the cell

state at time step t, which represents the effect of the load at time

step t on the cell state at time step t.

The equation of the output gate is expressed as Eqs. 6, 7:

ot � σ(Wo[ht−1, xt] + bo) (6)

FIGURE 3
Structure of LSTM.

Frontiers in Energy Research frontiersin.org05

Wang et al. 10.3389/fenrg.2022.1008216

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2022.1008216


ht � ot☉tanh (ct) (7)

where Wo and bo are the weights and biases of the output gate,

respectively.

The hyperparameters of LSTM include the number of

network layers and the number of neurons in the hidden

layer. The activation function also uses ReLU.

2.1.3 Attention mechanism module
The attention mechanism module is used to capture the

temporal long-term dependencies in the load sequence (Zang

et al., 2021). The core idea of the attention mechanism is to

allocate more attention to important information and less

attention to other information, thereby achieving the purpose

of focusing on a specific region. In this study, the attention

mechanism module is used to focus on historical key load

features. The input of the attention mechanism module is the

output vector h processed by the LSTM activation layer. The

structure of the attention mechanism module is shown in

Figure 4.

The specific implementation of the attention mechanism can

be expressed as follows:

ei,j � tanh (Wa · hj + ba) (8)

αi,j �
exp (ei,j)∑i�T
i�1 exp (ei,j) (9)

ĥi,j � ∑i�T
i�1αi,jhi,j (10)

where hi,j is the jth output feature vector at time step i,

hj � [hi,j, i � 1, 2, . . . , T], T is the total time step, Wa and ba
are trainable weights and biases, ei,j is the attention score of hi,j,

αi,j is the corresponding weight of hi,j, and ĥi,j is the final output

feature of attention mechanism layer.

By introducing the attention mechanism, more prominent

features can achieve higher scores and thus occupy more weight

in the output features. Thus, long-distance interdependent

features of loads can be captured more easily.

2.2 Loss function based on uncertainty for
multi-task learning

Owing to the influence of different factors such as the

external environment and temperature, the uncertainty of

electrical and heating loads generally varies significantly. This

brings difficulty in the multi-task learning model to define a

unified loss function for the training of multiple tasks.

The simplest approach is to integrate the loss functions of the

different tasks and then sum them up. This approach has some

shortcomings, particularly when there are significant differences

in the degree of uncertainty for different tasks. For example,

when the model converges, the electrical load may be more

regular and performs better in forecasting, whereas the heating

load is much more uncertain and exhibits poor forecasting. The

reason behind this is that certain loss functions with larger

magnitude dominates the entire loss function and hides the

effects of loss functions with smaller magnitude. The solution

to this problem is to replace the “average summation” of multiple

loss functions with a “weighted summation.” Weighting can

make the scale of each loss function consistent; however, it

also introduces a new problem: the hyperparameter of the

weight coefficient is difficult to determine.

A weight optimisation approach for MTL using uncertainty

was proposed in 2018 by Kendall et al. (2018). In this study, we

apply the loss function to dynamically adjust the weight

coefficient during the training process, which is expressed as

follows:

L(W, σ1, σ2) � 1
2σ21

����y1 − fW(x)����2 + 1
2σ22

����y2 − fW(x)����2 + log σ1σ2

(11)
where x is the input data of the sample, fW denotes the MTL

model (Section 2.1), y1and y2 are the sample labels, W is the

weight of the network, σ (σ ∈ {σ1, σ2}) is the trainable variate.

The parameters σ1 and σ2 are used to measure the

uncertainty of different tasks, and by dividing by σ2, the effect

of the uncertainty of different tasks can be eliminated to some

FIGURE 4
Structure of the attention mechanism.

Frontiers in Energy Research frontiersin.org06

Wang et al. 10.3389/fenrg.2022.1008216

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2022.1008216


extent. It has the following advantages: 1) by dividing by σ2,

equivalently, different weight coefficients are assigned to

different tasks, which can ensure that the individual tasks

converge simultaneously; 2) log σ1σ2 is a regular term, which

prevents σ1 and σ2 from becoming infinitely large and ensures

reliable convergence of the model; and 3) this loss function does

not decrease the accuracy of the original well-performed model,

but mainly optimises the parameters of the original poorly

performing task.

2.3 The dropout layer and hard sharing
mechanism

Owing to the small number of samples and large number

of trainable parameters of LSTM, a dropout layer is added

between the LSTM and attention module to prevent

overfitting. During each round of training, the dropout

layer discards the nodes with a certain probability. The

discarded nodes are not identical each time; therefore, the

structure of the model is slightly different in each training

process (Srivastava et al., 2014). The dropout rate is a

hyperparameter of the dropout layer.

Hard sharing is the most widely used sharing mechanism,

that embeds the data representation of multiple tasks into the

same space and extracts the task-specific representation for

each task using a task-specific layer. Under the hard sharing

mechanism, the input features are uniformly shared, and the

top-level parameters of each model are independent, mainly

by constructing a shared feature layer between individual

tasks. Because most of the features are shared, the

overfitting probability of the MTL model with the hard

sharing mechanism is much smaller (Ye et al., 2022). Hard

sharing is easy to implement and suitable for tasks with a

strong correlation such as the coordinated load forecasting in

a CIES (Wang et al., 2020a). Because features extracted from

multi-source input data have been concatenated together at

the shared layer, we directly use two separate fully connected

layers with identical topology to quickly learn the mapping

relationship between features and outputs based on the shared

layer.

3 Transfer learning strategy for
adaptive load forecasting

3.1 Methodology of transfer learning

For transfer learning, there are two basic concepts: the source

domain DS and target domain DT. The source domain is the

domain with knowledge and a large number of data annotations,

which represents the object to be transferred, and the target

domain represents the object to which knowledge and

annotations are eventually given. Tasks are also divided into

source-domain tasks ψS and target-domain tasks ψT. The

transfer learning process involves transferring the knowledge

of the source domain to the target domain, finding the forecasting

function of the target domain, and completing the task of the

target domain. Specifically, transfer learning can be divided into

two categories given a labelled source domain i.e., DS ≠ DT or

ψS ≠ ψT.

A schematic of knowledge sharing for the load

forecasting of a CIES is shown in Figure 5. In this paper,

the centralized heating period of the CIES is considered as

the source domain DS and used to initialize the forecasting

model, because there is sufficient historical data, and the data

distribution for each type of data (the load data and weather

data) varies closely from day to day during this period. The

transition season is considered as the target domain DT,

which has less historical data, and the distribution property

for each type of data has changed from that of the centralised

heating period.

Traditional machine learning methods require sample

data to be independent and identically distributed, which

creates challenges for maintaining the precision of the

forecasting model. At the same time, the relatively small

amount of data in the transition season also limits the

ability to obtain an efficient model. Fortunately, although

the quantity of user demand changes gradually with the

seasons, the energy usage habits of the same user are

generally unchanged. Therefore, transfer learning can be

introduced to reduce the difference between the source and

target domains, and thus obtain an adaptive forecasting

model. Here, the role of transfer learning is to extract

knowledge sharing from a centralised heating period. This

knowledge is then combined with the new data observed

during the transition season to continuously adjust the

previous model, and finally obtain the target domain model

quickly and effectively.

FIGURE 5
Schematic of knowledge sharing in load forecasting of CIES.
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3.2 Strategies of transfer learning based on
maximum mean discrepancy

MMD is used in transfer learning mainly to measure the

distribution of two different but related datasets, and is an

effective method to measure the correlation of data in the

source and target domains. The MMD of two datasets X and

Y is defined as:

MMD(X,Y) � 1
m2

∑i�m
i�1 ∑j�m

j�1 k(xi, xj) + 1
n2
∑i�n

i�1∑j�n
j�1k(yi, yj)

− 2
mn

∑i�m
i�1 ∑j�n

j�1k(xi, yj)
(12)

where m denotes the number of X, n denotes the number of Y ,
and k() is the kernel function.

Typically, radial basis kernel (RBF) functions are used as the

kernel function:

k(xi, xj) � exp ( −
����xi − xj

����2
2λ2

) (13)

where λ denotes the width parameter of the kernel function.

It can be observed that if X and Y are identically distributed,

MMD(X,Y) is approximately zero. In other words, if

MMD(X,Y) is sufficiently small, the two distributions can be

considered identical. Then, MMD is used as a criterion to

measure the difference in the distribution of electrical and

heating loads as well as weather data when seasons change.

As shown in Figure 6, the dynamic source and target domains

are divided using a fixed-day sliding time window. For example,

if the deviation of the model on day t does not meet the pre-set

forecasting accuracy, the historical data of N days before day

t + 1 are considered as the target domain data, and the historical

data from the previous (M +N) to N days before day t + 1 are

considered as the source domain.M andN are the pre-set values

of the number of days in the source and target domains,

respectively. The value of M is much larger than N, so the

source domain data can be used as a reference and can stably

reflect the distribution of loads and weather in the previous

period. The value of N is generally small; therefore, it can

sensitively reflect the gradual degree of recent loads and

weather. Then, the MMD values for each type of data in the

source and target domains on day t (MMDE
t ;MMDH

t ;MMDW
t )

are separately calculated using Eq. 12.

If MMDE
t ≤ αEt , MMDH

t ≤ αHt , and MMDW
t ≤ αWt , no

adjustment is required to the forecasting model, where

α ∈ {αEt , αHt , αWt }, is the threshold value on day t for different

types of data. This indicates that the distributions of the source

and target domains are very close. Under this condition, the

forecasting model does not need to be adjusted, and forecasting

deviations are mostly caused by weather anomalies on a certain

day. Occasional poor performance does not indicate a substantial

change in load or weather patterns in recent times.

A major advantage of using MMD is that onceM andN are

given, the thresholds for evaluating the differences in the data

distribution over time can be easily obtained. For example, if the

allowable average deviation of the electrical load is RE, the finalN

days of electrical load data are multiplied by a random number

uniformly distributed over [1 − RE, 1 + RE] and use it as the

simulation data of the target domain. The MMD of both (αEt ) is

calculated as a criterion to judge whether the data distribution of

electrical load in the source and target domains has changed. In

this paper, the allowable average deviation of weather data RWis

the same as the allowable average deviation of heating load RH.

If MMDE
t > αEt or MMDH

t > αHt or MMDW
t > αWt , it means

that seasonal changes lead to variation of electrical and heating

loads or user energy habits, and the transfer and fine-tuning of

model parameters are performed at this time. This can be divided

into two categories, as shown in Figure 7.

a) If MMDE/H
t > αE/Ht and MMDW

t ≤ αWt , using the newest data

in the target domain as the new training set and fixing the

other parameters of the model on day t, only the parameters

located in the fully connected layer between the shared layer

and the output layer of electrical/heating load (located in the

blue/red frame of Figure 7) are fine-tuned. The fine-tuned

model is used as the forecasting model on day t + 1.

b) If MMDW
t > αWt , using the newest data in the target domain

as the new training set and fixing the other parameters of the

model on day t, only the parameters of all fully connected

layers between the weather data and the output layer (located

in the green frame of Figure 7) are fine-tuned. The fine-tuned

model is used as the forecasting model on day t + 1.

It can be seen that the MMD helps to decide which parts of

the network should be fine-tuned. For example, in Scenario a),

the weather data does not change significantly, but the electrical

or heating load changes significantly, which often occurs at the

end of the heating period. During this period, the heating

demand decreases, the central heating equipment may be

turned off, and the shortfall in the heating load is replaced by

FIGURE 6
Schematic of dynamic source and target domains.
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other energy conversion equipment. Because the weather features

are roughly unchanged, it is not necessary to adjust the

parameters corresponding to the weather features. Thus, fewer

parameters need to be fine-tuned, which is beneficial for the

model to quickly learn dynamic changes in the target domain.

3.3 Overall framework of the proposed
method

The entire online rolling forecasting process using the proposed

model is shown in Figure 8. The specific steps are as follows:

Step 1. : Train the initial model on day 1 offline based on

historical data, and use the model to forecast electrical and

heating loads on day 2. Set t � 1;

Step 2. : Forecast the load on day t with the model on day t;

Step 3. : At the end of day t, electrical load deviation MAPEE
t

and heating load deviation MAPEH
t are calculated using Eq. 14.

If MAPEE
t ≤RE, and MAPEH

t ≤RH, the model is not adjusted

and is used directly for the forecasting task on day t + 1, where RE

and RH are pre-set electrical and heating load accuracy

thresholds;

FIGURE 7
Strategies of the transfer learning.

FIGURE 8
Overall framework of the proposed method.
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Step 4. : If MAPEE
t >RE or MAPEH

t >RH, the parameters are

fine-tuned according to the different strategies in Section 3.2.

After updating the parameters, the new model is used for the

forecasting task on day t + 1;

Step 5. : t � t + 1, repeat Step 2 to Step 4, continuously update

the model online to complete the following forecasting tasks.

4 Case studies and analysis

In this section, to demonstrate the effectiveness of the

proposed method, we present simulation experiments based

on real-world data of a CIES provided by the official website

of the National Renewable Energy Laboratory (NREL Data

Catalog, 2011) and a CIES in China. The results are

compared with the following models and updating strategies:

Model-1 (no update): The model is initially trained in an

offline batch manner and utilised permanently without updating.

Model-2 (daily update): The model is trained daily in a batch

manner. The training set of the model keeps the number of

training samples constant, continuously adding the newest

observed data and eliminating the oldest data. The model

adopts the structure described in Section 2.

Model-3 (single-task model, online update): This model

adopts the most widely used LSTM network, and its results

can be used as a reference for evaluation. The model also adopts

the transfer learning strategy described in Section 3.

Model-4 (without considering the degree of uncertainty):

Except for the loss function, the rest of the model is the same as in

Model-5.

Model-5: The multi-tasking rolling adaptive forecasting

method proposed in this study.

The determination of the hyperparameters adopts the

longitudinal comparison method (Yu et al., 2021). The initial

model is obtained by conducting several trials on the training set

to determine optimal parameters. The longitudinal comparison

method adopts the idea of the control variable method.

According to the importance of each hyperparameter, the

hyperparameters of different models are determined in the

following priority: number of network layers–number of filters

in 1DCNN—number of neurons in LSTM layer—dropout

rate—number of iterations—batch size. The candidate sets for

each hyperparameter are shown in Supplementary Table SA1.

For example, when determining the number of layers of 1DCNN,

the values of other hyperparameters are temporarily given

empirically. The number of layers that minimizes the RMSE

of the training set is used as the number of layers of 1DCNN and

remains fixed throughout the optimization search process. Then,

the next hyperparameters are determined in order of priority.

To unify the magnitudes, smooth the gradients between

different batches and different layers of data, we use

0–1 normalization to normalize the data of the training set.

To prevent possible changes in the maximum/minimum values

when new data of the testing set are added, the maximum/

minimum values for each type of data are determined based on

the entire original data set, which can also prevent the effects

from anomalous data. Eq. 14 is used to normalize the input data:

xn � xo − xmean

x max − x min
(14)

where xn is the normalized data, xo is the original data, xmean,

xmax and x min are the mean, maximum, and minimum values of

all data in the dataset, respectively.

The evaluation criteria used in this study are the mean

absolute percentage deviation (MAPE) and root mean square

error (RMSE), which are calculated as follows:

MAPE � ∑i�24
i�1

1
24

∣∣∣∣∣∣∣∣∣∣xi − x̂i

xi

∣∣∣∣∣∣∣∣∣∣ × 100% (15)

RMSE �
���������������∑i�24

i�1
1
24
(xi − x̂i)2

√
(16)

where x̂i is the forecasting value for the ith hour and xi is the

actual value for the ith hour.

The simulation experiments for Case 1 and Case 2 are

conducted under the framework of TenserFlow 2.4.1, with

Intel Core i7 CPU as the hardware platform and Pycharm

2020.3 as the integrated development environment.

Case 1. : A typical park from NREL

The typical park from NREL consists of electrical, thermal,

and cooling systems, with energy conversion equipment,

including boilers and chillers. The dataset is composed of the

hourly average electrical load, heating load, temperature, and

solar radiation, collected from January 2011 to December 2011.

Cosine similarity is used to measure the similarity of load

patterns between weekdays and weekends, and the results are

shown in Supplementary Figure SA1. The results indicate that

there is a significant difference between the weekday and

weekend load patterns for this park; therefore, separate

forecasting models are constructed for weekdays and

weekends. The data collected from 1 January 2011 to

10 February 2011 are used as the training set, and the

remaining data are used as the testing set. The number of

days of the source and target domains are 20 and 4,

respectively. The accuracies of the electrical and heating loads

are set as 8% and 12%, respectively. The optimal

hyperparameters of the different models in Case 1 are

presented in Supplementary Table SA2.

The forecasting results of the different models during the

heating period are shown in Figure 9. It is clear from Figure 9 that

Model-1 has the lowest forecasting accuracy. In the first few days,

its accuracy is almost identical to that of the other models, but

over time, the forecasting performance of Model-1 drops

dramatically. Because the training set of Model-2 is updated
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with time, its forecasting accuracy can be improved adaptively

over a period of time; however, it also performs poorly in

transition seasons and cannot fully capture the dynamic load

changes over time.

Figure 10 shows the forecasting results of different models in

detail. It can be concluded the overall performance of Model-3 is

better than Model-1 and Model-2, but there are a few time

periods with large forecasting deviations that even inferior to

Model-1. This is due to the fact that the single-task model does

not consider the mutual coupling relationship between the

electrical and heating loads and is more prone to overfitting.

Figure 10 4) demonstrates that all models perform poorly when

the daily fluctuation of the heating load in the transition season

(from 14 February 2011 to 18 February 2011) is drastic. However,

after 2 days of fine-tuning model parameters, the results of

Model-5 are closest to the actual values, which indicates that

Model-5 can capture the load change characteristics most quickly

and stably.

Figure 11 shows the distribution of RMSE of the different

models. It demonstrates that that the results of Model-1

deviate significantly from the actual values and cannot be

used for day-ahead forecasting throughout the year. Model-2

with the constantly updated training set has better forecasting

performance in the period of smooth changes, but cannot

capture load dynamics quickly when the seasonal changes are

drastic. Model-3 is generally better than Model-1 and Model-

2, but large deviations still occur in a few periods, which is due

to the failure to consider the relationship between electrical

and heating loads at the same moment. This problem makes

Model-3 prone to overfitting phenomena, insufficient

generalization ability and poor stability. When entering the

heating period from the transition period again, Model-5 can

also learn the dynamic changes of the diverse loads fastest and

most stably.

The specific statistics for the heating period are listed in

Table 1. Combining Figure 11 with Table 1, it can be concluded

that Model-5 has higher forecasting accuracy than Model-4. The

performance of the two methods on the electrical load is almost

the same, but the accuracy improvement of Model-5 on the

heating load is more obvious. Because the Pearson correlation

coefficient of the electrical and heating loads of the park is as high

as 0.94, the degree of homoscedastic uncertainty between the two

is comparable, so the improvement obtained by considering

uncertainty is not very obvious.

FIGURE 9
Comparison of the load forecasting results in Case 1.
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Case 2. A practical CIES in China

The studied CIES in China consists of electricity, thermal and

cooling systems, with energy conversion equipment including CCHP

units, electrical boilers, and ground source heat pumps (Zhao et al.,

2022). The dataset is composed of hourly average electrical load,

heating load, temperature, photovoltaic power, solar radiation,

humidity, and wind speed, collected fromOctober 2019 to June 2020.

Similarly, cosine similarity analysis shows that there is no

difference between weekdays andweekends on this park; therefore,

there is no need to model these cases separately. In fact, the park is

operational all year round because of its business type. The Pearson

correlation coefficients for diverse loads and influencing factors are

shown in Supplementary Figure SA2. The influencing factors with

correlation coefficients less than 0.4 (weak correlation) are not

considered to avoid the influence of noise, and the final selected

environment input is the temperature data.

Another difference compared with Case 1 is that the correlation

coefficient of the electrical and heating loads for this park is 0.63

(moderate correlation), so there is a relatively obvious difference in

uncertainty between the two. The data collected from 1 October

2019 to 12 February 2020 are used as the training set, and the

remaining data are used as the testing set. The optimal

hyperparameters of the different models in Case 2 are listed in

Supplementary Table SA3.

A comparison of the electrical and heating load accuracies for

each algorithm is shown in Figure 12. It is clear from Figure 12 that

Model-1 and Model-2 still have the worst forecasting performance,

and Model-3 still exhibits large deviations during certain periods,

which is consistent with the previous conclusions of Case 1. The

daily curves of the electrical load are more regular and their

uncertainties are small, whereas the fluctuation of the heating

load is much higher.

In Figure 12 1), comparing Model-4 and Model-5, it can be

concluded that the forecasting performance of the model with and

without considering load uncertainty differences is

comparable, which is due to the high regularity of the

FIGURE 10
Comparison of the details in Case 1.

Frontiers in Energy Research frontiersin.org12

Wang et al. 10.3389/fenrg.2022.1008216

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2022.1008216


electrical load. The dynamic weight of the loss function

corresponding to the electrical load in Model-5 is larger;

therefore, the parameters corresponding to the electrical

load are not easily adjusted.

Figure 12 2) demonstrates that compared with Model-4, the

forecasting effect of Model-5, which uses homoscedastic uncertainty

to optimise the overall loss, has a significant improvement in

forecasting performance, especially in the transition period.

FIGURE 11
Comparison of distribution of RMSE for the different models in Case 1.

TABLE 1 Indicator results of the different models for the heating period in Case 1. The exact meaning of Model 1-5 has been given at the beginning of
Section 4.

Indicators Model-1 Model-2 Model-3 Model-4 Model-5

MAPE (electrical) 86.71 32.41 19.65 14.65 14.62

RMSE (electrical) 628.58 252.10 204.28 158.85 158.50

RMSE (heating) 330.17 122.62 83.92 63.80 54.90

FIGURE 12
Comparison of the forecasting results in Case 2.
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Although the RMSE of the heating load forecasted by Model-4

decreases rapidly after large deviations occur, the RMSE of the

heating load forecasted by Model-5 remains at a low level. To

minimise the comprehensive loss function, the weight of the heating

forecasting task is smaller. This allows significant adjustment of the

parameters corresponding to the heating load and effectively learns

new load characteristics caused by changes in the external

environment, thereby improving forecasting accuracy.

The specific statistics for the heating period inCase 2 are listed in

Table 2. Compared with the four models, the MAPE and RMSE of

the electrical and heating loads forecasted byModel-5 decrease by at

least 4.99%, 5.61%, 18.22%, and 16.72%, respectively. Figure 13

shows the number of days that meet the different forecasting

precisions in Case 2. Based on a comparison of the results

shown in Table 2 and Figure 13, it can be concluded that the

forecasting performance of the proposed method (Model-5) is

superior to that of the other methods in all aspects, both in

terms of load type and different evaluation criteria. This

improvement is particularly evident for the heating load

forecasting task.

TABLE 2 Indicator results of the different models for the heating period in Case 2.

Indicators Model-1 Model-2 Model-3 Model-4 Model-5

MAPE (electrical) 15.57 11.82 7.75 7.53 7.15

RMSE (electrical) 258.52 190.95 127.43 123.43 116.51

MAPE (heating) 58.94 48.90 16.95 16.00 13.08

RMSE (heating) 823.06 626.05 292.67 280.28 233.40

FIGURE 13
Distribution of the number of days to meet different precision.
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5 Conclusion

Oriented to the adaptive multi-energy load forecasting of CIES,

this paper proposes an adaptive forecastingmethod for diverse loads

of CIES based on deep transfer learning. The proposed model uses

multi-task learning to learn the interrelationships among diverse

loads. CNN and LSTM are constructed to extract the features of

loads at different time scales separately, and then an attention

mechanism module is introduced to pay more attention to the

important features. Furthermore, the dynamic weights of different

tasks are assigned according to the differences in the degree of

uncertainty of diverse loads to optimise the overall forecasting

model. To address the adaptation of the proposed model, a deep

transfer learning strategy is adopted, which enables the forecasting

model to rapidly capture new CIES features. Two simulation

experiments are conducted for different scenarios. The results

show that the performance of the proposed method in this study

is better than that of four benchmark models in forecasting diverse

CIES loads. The following conclusions are drawn.

First, transfer learning is an effective method for addressing

seasonal changes in CIES loads. The model without updating does

not produce a consistently accurate forecast. The model whose

training set is continuously updated over time can reflect the

dynamic changes in load, but its performance is also poor when

the load changes drastically during the seasonal transition. Second,

compared to the single-task learning model, the multi-task learning

model has better performance because the MTL considers the

relationship between diverse loads and shares their potential

information, owing to which the model has stronger generalisation

ability. Finally, the MTL loss function applied in this study can

improve the forecasting accuracy of the task with larger uncertainty.

Limited by the availability of data, none of the cases in this

study include gas loads. In future work, CIES containing

electrical, gas, and heating loads can be investigated. In

addition, this study does not consider the impact of demand-

side management, which can be studied further.
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