AUTHOR=Nithya C. , Roselyn J. Preetha TITLE=Development of grid-side converter-based FRT control and protection in a grid-connected solar photovoltaic park system under different control modes JOURNAL=Frontiers in Energy Research VOLUME=Volume 10 - 2022 YEAR=2022 URL=https://www.frontiersin.org/journals/energy-research/articles/10.3389/fenrg.2022.1009196 DOI=10.3389/fenrg.2022.1009196 ISSN=2296-598X ABSTRACT=In a grid-connected solar photovoltaic system, voltage dips on the grid side, increased grid current, and overshoot in the inverter's dc-link voltage are all noticed during grid disturbances. The grid code stipulates that in order to protect the cascaded power converter systems from high currents and over voltages, the solar PV system disconnects from the grid anytime the voltage level at PCC falls below a particular standard nominal value. This paper proposes a combined GSC based Fault Ride Through (FRT) and protection control strategies which can provide independent real and reactive power control for the inverter for effective FRT in Photovoltaic Park interconnected with large power system during grid faults. The proposed approach operates in three modes—voltage control, power factor control, and reactive power control modes. The developed protection modules in the PV system consists of over/under voltage protection, voltage sag detection and overcurrent detection. The suggested inverter fed Real-Reactive power control technique limits grid overcurrent by modifying active power injection into the grid and stabilizes grid voltage during faults by injecting reactive current. The performance of the proposed FRT and protection control strategy is studied through simulation of 75 MW PV park in EMTP platform and the experimental setup of 5 kVA grid connected inverter-fed solar PV system. The simulation results and hardware discussion presented in this paper validate the performance of the proposed FRT scheme in comparison with conventional control schemes during grid faults.