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DC interconnection at the second side of distribution transformers helps

achieve power sharing among nearby low-voltage distribution networks

(LVDNs) and promote integration of intermittent inverter-based distributed

generators (DGs). This paper proposes an adaptive model predictive

scheduling method for flexible interconnected LVDNs considering charging

preferences of electric vehicles (EVs). Firstly, the steady-state models of flexible

resources including voltage source converters, energy storage systems along

with AC and DC power flow models are established. Then, a model predictive

control (MPC)-based rolling optimization model is formulated aiming to

minimize the daily energy loss considering uncertainties of DGs, load and

each charging station as a whole. To further explore the flexibility and

dispatchability of each charging station, an adaptive MPC-based rolling

optimization model is built considering three types of EVs with different

charging preferences, i.e., uncontrollable EVs, charging-only EVs and

vehicle-to-grid EVs. The scheduling window of the adaptive MPC-based

scheduling is dynamically updated according to the maximum departure

time of currently charging EVs to fulfill expected energy requirements of all

EVs. Simulation results on a typical flexible LVDN show that the daily energy loss

and total load fluctuation can be further reduced through real-time scheduling

of controllable EVs in addition to existing flexible resources.
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1 Introduction

Increasing penetration of distributed generators (DGs) and

fast growth of electric vehicles (EVs) at the user-side keeps

challenging secure and reliable operation of distribution

networks. Due to intermittent nature of DGs and overlapping

of EV charging load with normal load, distribution transformers

frequently suffer overloading conditions which is harmful to

their state of health. As it is very costly to replace existing

distribution transformers with larger-capacity ones, flexible

resources such as energy storages, controllable loads and

power electronic converters can be helpful to alleviate this

burden thanks to their dispatchability and flexibility.

Specifically, DC interconnection at the second side of

distribution transformers with fewer power conversion stages

and enhanced network controllability helps achieve power

sharing among nearby low-voltage distribution networks

(LVDNs) and promote integration of intermittent inverter-

based DG, which is promising for distribution networks to

host more DGs and EVs without upgrading of existing

infrastructure (Pei et al., 2014; Yang et al., 2015; Mokgonyana

et al., 2018).

Scheduling of flexible resources in medium-voltage

distribution networks, LVDNs and microgrids has been

investigated for the past years. The key focus is to counteract

uncertain voltage fluctuation and predicted source-load

deviations for high renewable penetrated distribution

networks. Model predictive control (MPC) is a closed-loop

control method that can reduce model and parameter

uncertainties effectively, which is very suitable for scheduling

of flexible resources and voltage/var optimization problems

(Wang et al., 2014; Zhang et al., 2017; Qiu et al., 2018a; Qiu

et al., 2018b; Zafar et al., 2018). MPC has been widely used in

scheduling of combined heat and power systems (Yao et al.,

2018), active distribution networks (Zhang et al., 2021),

intelligent home energy management systems (Minhas and

Frey, 2021) and microgrids (Rana et al., 2021). For the

voltage/var optimization of distribution networks as an

example, the circuit breakers, onload tap changers and

capacitor banks are scheduled hourly in a rolling horizon

based on predictive outputs of wind turbines and photovoltaic

(PV) generators over a finite prediction horizon, e.g., 4 h,

followed by a 15-min timescale scheduling of PV inverters

and battery storage systems (Zafar et al., 2018) or furthermore

a real-time inverter local droop control (Zhang et al., 2017; Qiu

et al., 2018b). The hourly decisions are optimized for the whole

horizon to minimize the energy loss while satisfying the voltage

constraints. But only the decision of the first hour is

implemented, and the remaining decisions are discarded

aiming at addressing the coupling constraints of the whole

optimization time horizon and reserving sufficient capacity for

the following hours. In the real-time operation of the system, the

influence of the prediction error on the control results can be

reduced by reducing the prediction time scale (Zhao et al., 2020;

Ma et al., 2022).

As most small-scale DGs, EVs and user-side energy storages

are integrated at the low-voltage side of distribution

transformers, local energy management systems are getting

more attention to manage these flexible resources in a

distributed manner without upper-level coordination from the

remote control center. In (He et al., 2012), an optimal scheduling

scheme is proposed for EV charging and discharging aiming to

minimize the total cost of the EVs in the current ongoing EV set,

which is resilient to the dynamic EV arrivals. In (Van Kriekinge

et al., 2021), two MPC-based EV charging schedulers for four

different charging strategies are proposed to minimize electricity

bills and peak powers for a local energy system. However, the

scheduling is limited in the EV charging stations (EVSs) and

distribution network constraints are not modeled. In (Su et al.,

2014), an MPC-based power dispatch approach is proposed to

minimize the operational cost while accommodating the EV

charging uncertainty. In (Zheng et al., 2018), an online

optimal charging strategy is proposed for multiple EV

charging stations (EVSs) in distribution systems in a time-

receding manner aiming to minimize the total system energy

cost with power flow and bus voltage constraints satisfied. A

distributed MPC-based scheme is designed to solve the

optimization problem regarding data privacy, individual

economic interests and EV uncertainties. However, the EVS is

modeled as a whole and the dispatchability of controllable EVs is

not fully taken into account. In (Jiao et al., 2022), a two-stage

optimal framework for the online dispatch of a grid-connected

DC microgrid is proposed, where the first stage determines the

schedule plans of the main grid, the energy storage unit and the

EVS by a combined robust and stochastic MPC approach and the

second stage allocates the charging power for every EV taking

into account the max-min fairness of the charging power. In

(Kou et al., 2019), a hierarchical MPC method is proposed to

coordinate the optimal power reference of wind power and EV

charging in the microgrid. In (Wang et al., 2019), aiming at the

voltage problems caused by the increasing charging demand and

high photovoltaic penetration in residential LVDNs, a two-level

coordinated voltage control scheme for EV chargers is proposed

to ensure the voltages are within the allowable range without

affecting users’ charging demand. In (Sha’aban et al., 2017), the

economic MPC-based decentralized optimization algorithm is

proposed for EVs during the grid-to-vehicle and vehicle-to-grid

operations, which utilizes the variability of energy prices at

different times of the day to realize the charging and

discharging of EVs within the optimal time zone. However,

power flow constraints are not considered in these methods.

Most existing researches either take the EVS as a whole or

neglect charging preferences and power flow constraints. The

dispatchability of controllable EVs for flexibility improvement of

LVDNs are not fully taken into account. In view of this, this

paper proposes an adaptive model predictive scheduling method
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for flexible interconnected LVDNs considering charging

preferences of electric vehicles (EVs). The contributions are

summarized as follows:

(1) The steady-state models of flexible resources including

voltage source converters (VSCs), energy storage systems

(ESSs) along with AC and DC power flow models are

established. An MPC-based rolling optimization model is

formulated aiming to minimize the daily energy loss

considering uncertainties of DGs, load and each EVS as a

whole.

(2) To further explore the flexibility and dispatchability of each

EVS, an adaptive MPC-based rolling optimization model is

built considering three types of EVs with different charging

preferences, i.e., uncontrollable EVs, charging-only EVs and

vehicle-to-grid EVs. The scheduling window of the adaptive

MPC-based scheduling is dynamically updated according to

the maximum departure time of currently charging EVs

which guarantees full charging at the departure time for

each EV.

(3) Simulation results on a typical flexible LVDN show that the

daily energy loss and total load fluctuation can be further

reduced through real-time scheduling of controllable EVs in

addition to existing flexible resources while fulfilling

expected energy requirements of all EVs.

The rest of this paper is organized as follows. Section 2

presents the models of flexible interconnected LVDNs. Section 3

presents the MPC-based rolling scheduling method for LVDNs.

Section 4 presents the adaptive MPC-based rolling scheduling

method for LVDNs. Section 5 describes the simulation results.

Conclusions are drawn in Section 6. Figure 1 shows the overall

architecture of the paper.

2 Modeling of flexible interconnected
low-voltage distribution networks

2.1 Steady-state model of voltage source
converters

Voltage control modes of VSCs for DC distribution networks

can be divided into three types, naming master-slave control,

droop control and margin control. The master-slave control

mode is utilized in this paper due to its advantage in

maintaining voltage stability of the DC distribution network.

VdcQ control is used for the master VSC, i.e., the voltage at the

DC side and the reactive power at the AC side is controlled to be

constant. PQ control is used for all the slave VSCs, i.e., the real

power at the DC side and the reactive power at the AC side are

controlled to be constant. The control variables are the reactive

FIGURE 1
The main diagram.
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power of the master VSC and the real, reactive power transmitted

in all slave VSCs. Assuming that the power injection into the DC

grid is positive, the following constraints should be satisfied for

normal operation of a VSC:

Ploss
i,t � Aloss

������������������(Pi,t,VSC)2 + (Qi,t,VSC)2√
,∀i ∈ ΩVSC,∀t ∈ ΩT (1)

Pmin ,VSC ≤Pi,t,VSC ≤Pmax ,VSC,∀i ∈ ΩVSC,∀t ∈ ΩT (2)
Qmin ,VSC ≤Qi,t,VSC ≤Qmax ,VSC,∀i ∈ ΩVSC,∀t ∈ ΩT (3)������������������(Pi,t,VSC)2 + (Qi,t,VSC)2√

≤ Si,max,∀i ∈ ΩVSC,∀t ∈ ΩT (4)

where Pi,t,VSC, Qi,t,VSC are the real and reactive power of the VSC

injected into bus i at time t, respectively;Aloss is the loss coefficient of

VSC; Pmin,VSC, Pmax,VSC are the upper limit and lower limit of the

real power transmitted by VSC, respectively; Qmin,VSC, Qmax,VSC are

the upper limit and lower limit of the reactive power transmitted by

VSC, respectively; Si,max is the maximum apparent power

transmitted by the VSC at bus i; ΩVSC is the set of all AC buses

with a VSC connected; ΩT is the set of all 96 optimization periods.

The constraints make the transmitted real, reactive and apparent

power of each VSC not exceed their maximum values at any time.

2.2 Steady-state model of energy storage
systems

The following constraints should be satisfied for each ESS:

0≤P+
i,t,ESS ≤P

+
i,max, 0≤P−

i,t,ESS ≤P
−
i,max,∀i ∈ ΩESS,∀t ∈ ΩT (5)

Ei,t � Ei,t−1 + ηci P
+
i,t,ESSΔt − (1/ηdi )P−

i,t,ESSΔt,∀i ∈ ΩESS,∀t ∈ ΩT

(6)
Ei,ESS · SOCi,min ≤Ei,t ≤Ei,ESS · SOCi,max,∀i ∈ ΩESS,∀t ∈ ΩT (7)

where P+
i,t,ESS,P

−
i,t,ESS are the charging and discharging power of

ESS at bus i at time t, respectively; P+
i,max,P

−
i,max are the maximum

charging and discharging power of the ESS at node i, respectively;

Ei,t is the remaining energy of the ESS at bus i at time t; ηci ,η
d
i are

the charging and discharging efficiencies of the ESS at bus i,

respectively; Ei,ESS is the capacity of ESS at bus i; SOCi,max,

SOCi,min is the maximum and minimum state of charge

(SOC) of the ESS at bus i, respectively; ΩESS is the set of all

DC buses where ESSs are located. The first constraints make the

charging and discharging power of each ESS not exceed their

maximum values at any time. The second constraint makes the

SOC of ESS satisfy the continuity constraint. The third constraint

prevents the ESS from deep charging or discharging.

2.3 Power flow model of AC distribution
networks

The DistFlow-based branch power flow model (Fourer et al.,

1990; IBM, 2022) is used for AC distribution networks, where the

power flow balance equation should be satisfied for each non-

slack bus, i.e., the real and reactive power injection of a bus

should be equal to the difference between the real and reactive

power generation and load of the same bus. The real and reactive

power flow balance constraints are as follows:

Pi,t � −Pi,t,L − Pi,t,VSC,∀i ∈ ΩACbus\ΩREF,∀t ∈ ΩT (8)
Qi,t � −Qi,t,L − Qi,t,VSC,∀i ∈ ΩACbus\ΩREF,∀t ∈ ΩT (9)
−Pi,t � ∑

(k,i)∈ΩACbr

(Pki,t − I2ki,trki)
− ∑
(i,j)∈ΩACbr

Pij,t,∀i ∈ ΩACbus,∀t ∈ ΩT (10)

−Qi,t � ∑
(k,i)∈ΩACbr

(Qki,t − I2ki,txki)
− ∑
(i,j)∈ΩACbr

Qij,t,∀i ∈ ΩACbus,∀t ∈ ΩT (11)

V2
j,t � V2

i,t − 2(Pij,trij + Qij,txij) + (r2ij
+ x2

ij)I2ij,t,∀(i, j) ∈ ΩACbr,∀t ∈ ΩT (12)
P2
ij,t + Q2

ij,t � V2
i,tI

2
ij,t,∀(i, j) ∈ ΩACbr,∀t ∈ ΩT (13)

where Pi,t, Qi,t are the real and reactive power injection of bus i at

time t;Vi,t is the voltage magnitude of AC bus i at time t; Pij,t,Qij,t,

Iij,t are the real power, reactive power and current magnitude of

AC branch i-j at time t, respectively; Pi,t,L, Pi,t,VSC are the real

power extracted by the load and the real power injected by the

VSC at the AC bus i at time t, respectively; Qi,t,L, Qi,t,VSC are the

reactive power extracted by the load and the reactive power

injected by the VSC at the AC bus i at time t, respectively; rij, xij
are the resistance and reactance of the AC branch i-j, respectively;

ΩACbus is the set of all AC buses; ΩREF is the set of all AC slack

buses; ΩACbr is the set of all AC branches.

2.4 Power flow model of DC distribution
networks

Similarly, the DistFlow-based branch power flow model is

adopted by the DC distribution networks, where the real power

flow balance equation should be satisfied for all DC buses

(including the voltage-controlled bus at the master VSC),

i.e., and the real power injection at a DC bus should be equal

to the difference between the real power generation and the load

at the same bus. The real power flow balance constraints are as

follows:

Pi,t � Pi,t,DG + Pi,t,VSC − Ploss
i,t − Pi,t,L − P+

i,t,ESS + P−
i,t,ESS

− Pi,t,EVS,∀i ∈ ΩDCbus,∀t ∈ ΩT (14)
∑

(k,i)∈ΩDCbr

(Pki,t − I2ki,trki) − ∑
(i,j)∈ΩDCbr

Pij,t

� −Pi,t,∀i ∈ ΩDCbus,∀t ∈ ΩT (15)
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V2
j,t � V2

i,t − 2Pij,trij

+ r2ijI
2
ij,t,∀i ∈ ΩDCbus,∀i ∈ ΩDCbus,∀(i, j) ∈ ΩDCbr,∀t ∈ ΩT

(16)
P2
ij,t � V2

i,tI
2
ij,t,∀i ∈ ΩDCbus,∀(i, j) ∈ ΩDCbr,∀t ∈ ΩT (17)

whereVi,t is the voltagemagnitude of DC bus i at time t; Pij,t, Iij,t are

the real power and current magnitude of DC branch i-j at time t,

respectively; Pi,t,L, Pi,t,EVS, Pi,t,VSC are the real power extracted by

the load, EVS and the real power injected byVSC at the DC bus i at

time t, respectively;Ploss
i,t is the real power loss of the VSC at AC bus

i at time t; rij is the resistance of the DC branch i-j;ΩDCbus is the set

of all DC buses; ΩDCbr is the set of all DC branches.

3 Model predictive control-based
rolling scheduling of flexible low-
voltage distribution networks

3.1 Problem formulation

Aiming to minimize the daily energy loss of the LVDN, the

scheduling model is formulated as follows:

minfloss � ∑
t∈ΩT

⎛⎝ ∑
i∈ΩACbus∪ΩDCbus

Pi,t + ∑
i∈ΩVSC

Ploss
i,t

⎞⎠Δt

s.t (1) ~ (18)
(18)

Vi ≤Vi,t ≤ �Vi,∀i ∈ ΩACBUS ∪ ΩDCBUS,∀t ∈ ΩT (19)
I2ij,t ≤ I2ij,max,∀(i, j) ∈ ΩACbr ∪ ΩDCbr,∀t ∈ ΩT (20)

where the total power loss of the network is equal to the sum of

the real injection power of all AC buses and DC buses (including

the AC slack bus), plus the VSC real power loss; Δt = 15min; �Vi,

Vi are the upper and lower limits of the voltage magnitude at bus

i, respectively; Iij,max is the ampacity of branch i-j.

The above optimization model is a nonlinear programming

problem, which is difficult to solve. Therefore, we convert it into a

second-order cone programming (SOCP) problem through the

big-M method and second-order cone relaxation. A lot of

researches have been done on whether the optimal solution

after the relaxation is consistent with the optimal solution of

the original problem. Specifically, (Li et al., 2012; Taylor and

Hover, 2012; Farivar and Low, 2013) strictly deduce the sufficient

conditions for the accuracy of the second-order cone relaxation,

i.e., (1) the objective function must be an increasing function of

the branch current and (2) the network topology is a tree-like

connected graph. Both conditions are exactly fulfilled by the

multi-period optimization formulation in this paper, and

therefore the accuracy of the second-order cone relaxation can

be guaranteed. In fact, the second-order cone relaxation based on

the DistFlow model has been widely used in the field of

distribution system operation optimization (Liu et al., 2020);

(Ji et al., 2018).

By introducing auxiliary variable ui,t, wij,t, to replace V2
i,t,I

2
ij,t ,

(10)~(13) become:

−Pi,t � ∑
(k,i)∈ΩACbr

(Pki,t − wki,trki)
− ∑
(i,j)∈ΩACbr

Pij,t,∀i ∈ ΩACbus,∀t ∈ ΩT (21)

−Qi,t � ∑
(k,i)∈ΩACbr

(Qki,t − wki,txki)
− ∑
(i,j)∈ΩACbr

Qij,t,∀i ∈ ΩACbus,∀t ∈ ΩT (22)

���� [ 2Pij,t 2Qij,t wij,t − ui,t]T����2 ≤wij,t + ui,t,∀(i, j) ∈ ΩACbr,∀t ∈ ΩT

(23)
ui,t − uj,t � 2(Pij,trij + Qij,txij) − (r2ij

+ x2
ij)wij,t,∀(i, j) ∈ ΩACbr,∀t ∈ ΩT (24)

Similarly, by introducing auxiliary variable ui,t, wij,t, to

replaceV2
i,t, I

2
ij,t, (15)~(17) become:

∑
(k,i)∈ΩDCbr

(Pki,t − wki,trki) − ∑
(i,j)∈ΩDCbr

Pij,t

� −Pi,t,∀i ∈ ΩDCbus,∀t ∈ ΩT (25)����[2Pij,t wij,t − ui,t]T����2≤wij,t + ui、,t,∀(i, j) ∈ ΩDCbr,∀t ∈ ΩT

(26)
ui,t − uj,t � 2Pij,trij − r2ijwij,t,∀(i, j) ∈ ΩDCbr,∀t ∈ ΩT (27)

(1), (4) can also be relaxed to the following second-order

cone constraints:������������������(Pi,t,VSC)2 + (Qi,t,VSC)2√
≤ Si,max,∀i ∈ ΩVSC,∀t ∈ ΩT (28)����[Pi,t,VSC Qi,t,VSC]T����2 ≤Ploss

i,t /Aloss,∀i ∈ ΩVSC,∀t ∈ ΩT (29)

By introducing auxiliary variable ui,t, wij,t, to replaceV2
i,t, I

2
ij,t,

(19)–(20) become:

V2
i ≤ ui,t ≤ �V

2
i ,∀i ∈ ΩACBUS ∪ ΩDCBUS,∀t ∈ ΩT (30)

0≤wij,t ≤ I2ij,max,∀(i, j) ∈ ΩACbr ∪ ΩDCbr,∀t ∈ ΩT (31)

Using the day-ahead short-term forecasted DG and load

values, the day-ahead optimal scheduling model for the whole

96 period is as follows:

min ∑
t∈ΩT

⎛⎝ ∑
i∈ΩACbus∪ΩDCbus

Pi,t + ∑
i∈ΩVSC

Ploss
i,t

⎞⎠Δt

s.t (2) ~ (3), (5) ~ (7), (8) ~ (9), (14), (21) ~ (31)
(32)

where (2), (3), (28) and (29) include the VSC operation

constraints; (5)~(7) include the ESS related constraints; (8),

(9), (21)~(24) are the power flow constraints of the AC

distribution network; (14), (25)~(27) are the power flow

constraints of the DC distribution network; (30), (31) include

the voltage magnitude limit and branch current magnitude

ampacity constraints.
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At this time, the model has been converted to a SOCP

problem, which can be efficiently solved by commercial

solvers. If the true values of DG and load at all time periods

are known, the solution is called the global optimum, which can

be viewed as a reference for other scheduling strategies.

3.2 Rolling scheduling via model
predictive control

The key principle of MPC is to calculate the input sequence

over a finite prediction horizon in future using predicted states of

the system in the window, and applies the input of only the first

time period to the system being controlled. And then, the time

window is moved forward and the rolling control is repeated in a

time-receding manner.

Intra-day rolling optimization strategy of the LVDNdivides a

day into 96 time periods by 15 min. According to the philosophy

of MPC, at the starting time of any period t, a multi-period

problem is formulated using the ultra-short-term forecasted DG

and load value in a finite horizon, i.e., the scheduling window.

Once the multi-period problem is solved, only the decision of the

first period is delivered to the control devices while the decisions

of other periods are discarded. At the starting time of period t + 1,

the scheduling window is moved forward by one and a new

multi-period problem is formulated and solved using newly

updated DG and load forecasts of the current scheduling

window. This process is repeatedly executed in a rolling and

time-receding manner. When the length of the remaining

periods of the day is less than the preset MPC step size, the

scheduling window becomes all remaining periods of the day.

The MPC scheduling window is shown in Figure 2.

Using the intra-day ultra-short-term forecasted DG and load

values, the MPC-based rolling optimization model is as follows:

min ∑
t∈ΩW

⎛⎝ ∑
i∈ΩACbus∪ΩDCbus

Pi,t + ∑
i∈ΩVSC

Ploss
i,t

⎞⎠Δt

s.t (2) ~ (3), (5) ~ (7), (8) ~ (9), (14), (21) ~ (31)
(33)

where allΩT in the objective and constraints are replaced byΩW,

which is the set of periods in the current scheduling window.

4 Adaptive model predictive control-
Based scheduling considering
charging preferences of electric
vehicles

In the MPC-based rolling scheduling formulation (33), the

EVS is viewed as a single uncertain load with forecasted values,

which neglects the dispatchability and flexibility of EVs. In this

section the EVs in the EVSs are viewed as dispatchable flexible

resources and are integrated into the multi-period problem

aiming to obtain better performance by scheduling their

charging power.

4.1 Modeling of electric vehicle charging
preferences

Firstly, all EVs are classified into three categories and

modeled separately as follows.

4.1.1 Type-1 electric vehicles: Uncontrolled
electric vehicles

The type-1 EVs require to not participate in scheduling and

be charged at the rated power until the desired SOC is reached.

After that, these EVs maintain physical connection with the

charging piles until the EV user drives away although no power

is delivered during the spare time. The following constraints

should be satisfied for the k-th type-1 EV in the EVS located at

DC bus i:

Pk,t,EV1 � {Pc,k,rate, if Ek,t ∈[Ek,ini, Ek, exp)
0, if Ek,t ≥Ek, exp

,∀k ∈ ΩEV1(i),∀t ∈ ΩW

(34)
Ek,t � Ek,cur−1 + ∑

s∈ΩQ

ηkPk,s,EV1Δt,ΩQ

� [tcur,/, t],∀k ∈ ΩEV1(i),∀t ∈ ΩW (35)
Eini
k ≤Ek,t ≤Ek,cap,∀k ∈ ΩEV1(i),∀t ∈ ΩW (36)

Ek,cur−1 + ∑
t∈ΩT

ηkPk,t,EV1Δt≥Ek, exp,∀k ∈ ΩEV1(i),∀t ∈ ΩW (37)

where tcur is the current period; Pk,t,EV1 is the charging

power of the kth type-1 EV; Pc,k,rate is the rated charging

power of the kth EV; Ek,t is the battery energy of kth EV at

ending time of period t; Ek,cur-1 is the battery energy of the

kth EV at starting time of the current scheduling window

ΩW; Ek,ini is the initial battery energy of the kth EV at arrival

time; Ek,exp is the expected energy set by the EV user; Ek,cap is

the rated battery capacity of the k-th EV; ΩEV1(i) is the set of

all type-1 EVs in the EVS located at DC bus i; ΩQ is the set of

FIGURE 2
Scheduling window of the MPC.
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all periods between the starting time of the current

scheduling window ΩW and t;ηk is the charging efficiency

of the k-th EV.

4.1.2 Type-2 electric vehicles: Charging-only
electric vehicles

The type-2 EVs can flexibly adjust the charging power during

the charging cycle, but are not allowed to discharge. The

following constraints should be satisfied for the k-th type-2

EV in the EVS located at DC bus i:

0≤Pk,t,EV2 ≤Pc,k,rate,∀k ∈ ΩEV2(i),∀t ∈ ΩW (38)
Ek,t � Ek,cur−1 + ∑

s∈ΩQ

ηkPk,s,EV2Δt,ΩQ

� [tcur,/, t],∀k ∈ ΩEV2(i),∀t ∈ ΩW (39)
Eini
k ≤Ek,t ≤Ek,cap,∀k ∈ ΩEV2(i),∀t ∈ ΩW (40)

Ek,cur−1 + ∑
t∈ΩT

ηkPk,t,EV2Δt≥Ek, exp,∀k ∈ ΩEV2(i),∀t ∈ ΩW (41)

where Pk,t,EV2 is the charging power of the kth type-2 EV; ΩEV2(i)

is the set of all type-2 EVs in the EVS located at DC bus i.

4.1.3 Type-3 electric vehicles: V2G electric
vehicles

The type-3 EVs can be scheduled to charge or discharge

during the charging cycle. The following constraints should be

satisfied for the k-th type-3 EV in the EVS located at DC bus i:

0≤P+
k,t,EV3 ≤Pc,k,rate, 0≤P−

k,t,EV3 ≤Pc,k,rate,∀k ∈ ΩEV3(i),∀t ∈ ΩW

(42)
Pk,t,EV3 � ηkP

+
k,t,EV3 − P−

k,t,EV3/ηk,∀k ∈ ΩEV3(i),∀t ∈ ΩW (43)
Ek,t � Ek,cur−1 + ∑

s∈ΩQ

Pk,t,EV3Δt,ΩQ

� [tcur,/, t],∀k ∈ ΩEV3(i),∀t ∈ ΩW (44)
0.2Ek,cap ≤Ek,t ≤Ek,cap,∀k ∈ ΩEV3(i),∀t ∈ ΩW (45)

Ek,tcur−1 + ∑
t∈ΩT

ηkPk,t,EV3Δt≥Ek, exp,∀k ∈ ΩEV3(i),∀t ∈ ΩW (46)

where P+
k,t,EV3, P−

k,t,EV3, Pk,t,EV3 are the charging power,

discharging power, actual charging power of the kth type-3

EV; ΩEV3(i) is the set of all type-3 EVs in the EVS located at

DC bus i; Pd,k,rate is the rated discharging power of the k-th EV; ηk
is the charge/discharge efficiency of the k-th EV.

4.2 Rolling scheduling via adaptive model
predictive control

In the adaptive MPC-based rolling scheduling, at the starting

time of any period tcur, a multi-period problem is formulated using

the ultra-short-term forecasted DG and load value in a horizon,

i.e., the scheduling window. However, this scheduling window is

not constant but determined based on the maximum departure

time of all currently charging EVs at tcur. Once the multi-period

problem is solved, only the decision of the first period is delivered

to the control devices, i.e., VSCs, ESSs, type-2 and type-3 EVs,

while the decisions of other periods are discarded. Then at the

starting time of period tcur+1, the scheduling window is moved

forward by one and a newmulti-period problem is formulated and

solved using newly updated DG and load forecasts of the current

scheduling window. Note that the scheduling window is

dynamically updated with EV arrivals and departures, therefore

the periods of each multi-period problem can be very different.

This process is repeatedly executed in a rolling and time-receding

manner. When the length of the remaining periods of the day is

less than the presetMPC step size, the schedulingwindow becomes

all remaining periods of the day. The MPC scheduling window is

shown in Figure 3.

As can be seen from Figure 3, the scheduling window ΩW at

tcur is no longer constant but depends on the latest departure time

of all currently charging EVs:

ΩW � [tcur,/, tout,max]1×NW
(47)

where tout,max is the maximum expected departure time of all

currently charging EVs at tcur; NW is the length of the rolling

window at tcur.

Using the intra-day ultra-short-term forecasted DG and load

values, the adaptive MPC-based rolling optimization model is as

follows:

min ∑
t∈ΩW

⎛⎝ ∑
i∈ΩACbus∪ΩDCbus

Pi,t + ∑
i∈ΩVSC

Ploss
i,t

⎞⎠Δt

s.t (2) ~ (3), (5) ~ (7), (8) ~ (9), (14), (21) ~ (31), (36) ~(48)
(48)

where (36)~(48) are the EV charging preference models for three

types of EVs, respectively. The charging load Pi,t,EVS in (14) is no

longer a fixed constant but is calculated by:

FIGURE 3
The scheduling window of the adaptive MPC.
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Pi,t,EVS � ∑
k∈ΩEV1(i)

Pk,t,EV1 + ∑
k∈ΩEV2(i)

Pk,t,EV2

+ ∑
k∈ΩEV3(i)

Pk,t,EV3,∀t ∈ ΩW (49)

5 Simulation results

5.1 Simulation settings

The proposed method is tested with a realistic AC/DC LVDN

in Tianjin, China, as shown in Figure 4. The rated capacity of the

1# and 2# transformer is 1500 kVA. The secondary sides of the

two transformers supply the AC residential load at AC buses

3 and 5, respectively. In addition, they are interconnected

through a DC line and two VSCs. The VSC between AC bus

3 and DC bus 1 is the master VSC working in VdcQ control mode

and the VSC between AC bus 5 and DC bus 2 is the slave VSC

working in PQ control mode. The maximum apparent power

transmitted by the master and slave VSCs is 1 MVA. The

configuration of DC loads, PV, wind generation (WG), ESS

and EVS in the DC system is shown in Figure 4, where the

installed capacities of the PV, WG, ESS are 1 MW, 1.5 MW,

1 MW/2 MWh respectively and the rated capacity of the EVS is

1.8 MW with 30 DC chargers in it. The maximum charging

power of each DC charger is 60 kW. The allowable voltage

magnitude of each bus is 0.95–1.05 p.u. The AMPL (Kou

et al., 2019) modeling language is used for programming and

the CPLEX 12.7 solver (Zhao et al., 2020) is called to solve the

problem. All the simulations are tested on a desktop computer

with an i7-9700 CPU, 2.40 GHz working frequency and

16 GB RAM.

The field daily load, PV, WG and EV charging data are used

to generate the shape curves of normal load, PV and WG and

EV charging load. The sampling periods of all kinds of data are

15 min. Multiplying the shape curves by the peak normal load,

installed capacity of PV, WG and EVS capacity results in their

true value curves. ±10%, ±20%, ±30%, and ±30% Gaussian

errors are added to the true values of load, PV, WG and

charging load to generate the day-ahead forecasted values,

respectively. ±5%, ±10%, ±15%, and ±15% Gaussian errors

are added to the true values of load, PV, WG and charging

load to generate the intra-day forecasted values, respectively, as

shown in Figures 5–8 The EVS is assumed to be uncontrolled in

history and all EVs are charged at the rated power once

connected, i.e., all EVs are type-1 EVs. The number of three

types of EVs throughout the day are 69, 68 and 29, respectively.

FIGURE 4
Configuration of the tested flexible LVDN.
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FIGURE 7
Day-ahead and intro-day forecasting curves of wind generation.

FIGURE 5
Day-ahead and intro-day forecasting curves of normal load.

FIGURE 6
Day-ahead and intro-day forecasting curves of PV generation.
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FIGURE 8
Day-ahead and intro-day forecasting curves of charging load.

FIGURE 9
Energy loss of the LVDN under different scheduling strategies. (A) Energy loss of the whole day. (B) Energy loss of each period.
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FIGURE 10
Charging power and SOC curves of the ESS under different scheduling strategies. (A) Charging power. (B) SOC.

FIGURE 11
Charging power curves of the EVS under different scheduling strategies.
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5.2 Simulation results

Four scheduling strategies are tested for comparison:

(1) MPC scheduling strategy: Intraday rolling scheduling is

performed with a fixed-length scheduling window, i.e., the

MPC step size is fixed. The electric vehicle charging station

participates in the optimal scheduling as a whole. The intraday

ultra-short-term forecasted values of load, PV, WG and EVS

load are used for all periods in the scheduling window.

(2) Adaptive MPC scheduling strategy: Intraday rolling

scheduling is performed and the scheduling window is

determined according to the maximum departure time of

the currently charging EVs. The intraday ultra-short-term

forecasted values of load, PV andWG are used for all periods

in the scheduling window.

(3) Global optimization strategy: The EVS participates in the

optimal scheduling as a whole. The 96-period optimal

scheduling is carried out using true values of load, PV,

WG and EVS load.

(4) Day-ahead scheduling strategy: The EVS participates in the

optimal scheduling as a whole. The day-ahead 96-period

scheduling is carried out using day-ahead forecasted values

of load, PV, WG and EVS load.

Among the four strategies, the EVS is regarded as a single DC

load in the MPC scheduling strategy, global optimal strategy and

the day-ahead scheduling strategy. Therefore, the true value

curve of the EVS load in these three strategies is equivalent to

the EVS load curve in the adaptive scheduling strategy with only

type-1 EVs throughout the day.

The detailed results of the four scheduling strategies are

analyzed as follows.

The energy loss of the whole day and each period are shown in

Figure 9. It can be seen that the daily energy loss of the day-ahead

scheduling strategy is relatively low but its actual value is 152.5 kWh

FIGURE 12
Power curves of the VSCs under different scheduling strategies. (A) Real power. (B) Reactive power.
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FIGURE 13
Average voltage curves under different scheduling strategies. (A) Voltage curves of AC buses. (B) Voltage curves of DC buses.

FIGURE 14
Loading rate curves of the transformers under different scheduling strategies.
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which is much higher. This is because the decisions made by the day-

ahead scheduling are based on the day-ahead forecasted values of

DGs and loads, which may differ much from the actual values in the

second day due to forecast errors. The daily energy loss of the MPC

scheduling strategy decreases from 137 kWh to 132 kWh with the

MPC step size N increasing from 1 to 34. This is because more

accurate intra-day forecasted DG and load of multiple periods in the

future are used, resulting inmore reasonable scheduling plans for the

ESS and VSCs. As N continues increasing, the reduction of daily

energy loss slows down and the final energy loss is close to the global

scheduling strategy. Therefore, N is fixed to 34 for the MPC

scheduling strategy in the following tests. On the other side, the

daily energy loss of the adaptive MPC scheduling strategy is only

112.5 kWh, which ismuch lower than other strategies even the global

optimization strategy. This because the EVS load in the other three

strategies are uncontrollable while all type-2 and type3 EVs in the

adaptiveMPC scheduling strategy are dispatchable flexible resources,

resulting inmuch lower energy loss by control of EV charging power.

From the energy loss curves of each period in Figure 9B, it can be seen

that the energy loss curve of theMPC scheduling strategy is very close

to the global optimization strategy while the energy loss curve of the

adaptive MPC scheduling strategy is reshaped to be gentler.

The charging power and SOC curves of the ESS under different

scheduling strategies are shown in Figure 10. It can be seen that the

ESS discharges in period 1–40 and charges in periods 41–70 for all

scheduling strategies. This is because PV and WG outputs are low

during period 1–40 and the ESS discharges to fulfill energy

requirement of normal load and charging load. While during

period 41–70, the PV andWG generation increases and the ESS is

charged to consume extra DG power.

The charging power curves of the EVS under different

scheduling strategies are shown in Figure 11. It can be seen

that the adaptive MPC scheduling strategy shifts much charging

power to periods with high PV and WG generation to improve

DG consumption. For example, during period 50–60, the

charging load of the adaptive MPC scheduling strategy is

relatively high due to high PV generation. On the other side,

the increasing of the ESS’s SOC curve slows down in Figure 10 as

part of PV generation are consumed by EV charging.

The power curves of the VSCs under different scheduling

strategies are shown in Figure 12. It can be seen that the actual

power of the master VSC under the day-ahead scheduling

strategy shows violate fluctuation. This is because the actual

values of DG and loads deviate from their day-ahead forecasted

values and the extra beyond-the-plan power will be balanced by

the master VSC, i.e., 1#VSC, which acts as a reference bus in the

master-slave control-based DC distribution network. At the same

time, it can be clearly seen that the real and reactive power curves

under the adaptive MPC scheduling strategy is much flatter than

other strategies. For example, during period 70–80, the charging

load is large while the PV generation is still small and cannot fully

supply the charging load. In this situation, the adaptive MPC

scheduling strategy shifts the charging load to the subsequent

period 80–90 when WG generation is large while other EV-

uncontrolled strategies should extract power from the main

AC grid.

The average voltage curves under different scheduling strategies

are shown in Figure 13. It can be seen that the AC voltage fluctuates

heavily during period 30–40 and 70–80 under the three EV-

uncontrolled strategies due to high real power extraction of the

DC grid from themain AC grid.While the voltage fluctuation of the

adaptive MPC scheduling strategy is much smaller due to making

full use of dispatchability of type-2 and type-3 EVs and reduced

power transmission from the AC grid. On the other side, the DC

voltage curves are high during period 30–65 for all the four strategies

due to high PV generation in this period. However, the minimum

DC voltage is raised in period 88–96 under the adaptive MPC

scheduling strategy compared with other strategies, resulting better

FIGURE 15
PCC power curves under different scheduling strategies.
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voltage stability. The actual AC and DC voltage curves of the day-

ahead scheduling strategy fluctuate heavily as the real-time control is

missing in response of real-time DG and load varying.

The loading rate curves of the transformers under different

scheduling strategies are shown in Figure 14. It can be seen that the

maximum loading rate curve during period 1–15, 25–40 and

70–80 under the adaptive MPC scheduling strategy is reduced

to about 55%, 65%, 60% from about 65%, 75%, 70% compared

with other strategies. The power fluctuation is also reduced,

resulting a much smaller peak-valley ratio. The PCC power

FIGURE 16
Energy curves of the EVs under the adaptive MPC scheduling strategy. (A) Type-1 EVs. (B) Type-2 EVs. (C) Type-3 EVs.
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curves under different scheduling strategies are shown in

Figure 15, where similar conclusion can be observed. The three

EV-uncontrolled should extract much power from the main AC

grid due to lack of flexibility, leading to higher power fluctuation.

While the adaptive MPC scheduling strategy shifts power in these

periods to other periods with much higher flexibility.

The energy curves of the EVs under the adaptive MPC

scheduling strategy are shown in Figure 16. It can be seen that

the energy of all three types of EVs reach the expectation

values at their departure time. The difference lies in that the

charging power of the type-1 EVs are straight lines with much

faster charging speed, while the energy curves of the type-2

EVs are flatter. The energy curves of the type-3 EVs can

decrease in some periods due to discharging and participation

of scheduling but will finally reach their expected values.

Therefore, it is concluded that the DG, EV hosting capacity of

the LVDN could be improved using the proposed adaptive

MPC scheduling strategy.

6 Conclusion

This paper proposes an adaptive model predictive

scheduling method for flexible interconnected LVDNs

considering charging preferences of EVs. An MPC-based

rolling optimization model is formulated aiming to

minimize the daily energy loss considering uncertainties of

DG, load and each charging station as a whole. To further

explore the flexibility and dispatchability of each charging

station, an adaptive MPC-based rolling optimization model is

built considering three types of EVs with different charging

preferences, i.e., uncontrollable EVs, charging-only EVs and

vehicle-to-grid EVs. The scheduling window of the adaptive

MPC-based scheduling is dynamically updated according to

the maximum departure time of currently charging EVs to

fulfill expected energy requirements of all EV users.

Simulation results on a typical flexible LVDN show that the

daily energy loss and total load fluctuation can be further

reduced through real-time scheduling of controllable EVs in

addition to existing flexible resources.

Futureworkwill be focused on designing distributed algorithm

for multi-terminal LVDNs to reduce communication burden. The

hosting capacity evaluation of LVDNs using the proposed adaptive

MPC scheduling strategy is also a promising research direction.
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