
A prior knowledge-embedded
reinforcement learning method
for real-time active power
corrective control in complex
power systems

Peidong Xu1, Jun Zhang1*, Jixiang Lu2, Haoran Zhang1,
Tianlu Gao1 and Siyuan Chen1

1School of Electrical Engineering and Automation, Wuhan University, Wuhan, China, 2Technology
Research Center, State Key Laboratory of Intelligent Power Grid Protection and Operation Control,
NARI Group Corporation, Nanjing, China

With the increasing uncertainty and complexity of modern power grids, the

real-time active power corrective control problem becomes intractable,

bringing significant challenges to the stable operation of future power

systems. To promote effective and efficient active power corrective control,

a prior knowledge-embedded reinforcement learning method is proposed in

this paper, to improve the performance of the deep reinforcement learning

agent whilemaintaining the real-time control manner. The system-level feature

is first established based on prior knowledge and cooperating with the

equipment-level features, to provide a thorough description of the power

network states. A global-local network structure is then constructed to

integrate the two-level information accordingly by introducing the graph

pooling method. Based on the multi-level representation of power system

states, the Deep Q-learning from Demonstrations method is adopted to guide

the deep reinforcement learning agent to learn from the expert policy along

with the interactive improving process. Considering the infrequent corrective

control actions in practice, the double-prioritized training mechanism

combined with the λ-return is further developed to help the agent lay

emphasis on learning from critical control experience. Simulation results

demonstrate that the proposed method prevails over the conventional deep

reinforcement learning methods in training efficiency and control effects, and

has the potential to solve the complex active power corrective control problem

in the future.
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1 Introduction

Security control is a critical method to ensure the safe and

reliable operation of power systems. The blackouts in recent years

show that successive outages of transmission lines are the main

cause of cascading failures and even system crashes. Therefore, it

is of great significance to perform real-time and effective active

power corrective control in the complex power system, to

efficiently eliminate line overloads, prevent cascading failures

and ensure the stable operation of the power grid.

Scholars have conducted extensive research on this topic. In

the early days, generation rescheduling and load shedding are

carried out to mitigate the transmission line congestion based on

the sensitivity matrices (Talukdar et al., 2005). Fuzzy logic

control is also utilized to alleviate the line overloads (Lenoir

et al., 2009). As the power system becomes increasingly complex,

the security-constrained optimal power flow (SCOPF)

approaches considering N-1 contingencies are widely adopted.

Based on linear network compression, a preventive SCOPF

problem is solved to avoid all possible overloads by pre-

schedule (Karbalaei et al., 2018). Considering the large cost to

satisfy all N-1 constraints in the preventive control method,

corrective control is introduced in the SCOPF approach to

mitigate overloads in contingencies. A corrective SCOPF

approach is proposed in (Cao et al., 2015) with the help of

multi-terminal VSC-HVDC. By introducing the unified power

flow controller as the fast corrective control measure, a three-

stage corrective SCOPF approach is proposed in (Yan et al.,

2020a) based on Benders decomposition and sequential cone

programming. A real-time distributed OPF approach is also

proposed to perform robust corrective control (Ding et al.,

2020). Efforts are also made to make full use of the preventive

method and the corrective method. In (Waseem and Manshadi,

2021), contingencies are filtered and divided for preventive

actions and corrective actions, and the SCOPF problem is

solved based on a decomposed convex relaxation algorithm.

The combination of preventive SCOPF and corrective SCOPF

is proposed in (Xu et al., 2013) to promote system security, while

the evolutionary algorithm and the interior-point method are

adopted for optimal solutions. Besides, considering the open-

loop feature of the OPF-based methods, the model-predictive

control method is also developed to alleviate overloads based on

the model-based linear power flow model (Martin and Hiskens,

2016).

The existing methods provide enlightening solutions to

realize the effective corrective control of power systems.

However, with the high penetration of renewable energy and

the wide interconnection of power grids, the power system’s

operation mode and stability characteristics become more

complex (Yan et al., 2019; Yan et al., 2020b; Yan et al., 2021).

The strong complexity and uncertainty of the new-type power

system aggravate the modeling difficulty of the active power

corrective control problem. Correspondingly, the model-based

methods will face great challenges in promoting the effectiveness

and efficiency of the corrective control strategy. Meanwhile, the

swiftly developed deep reinforcement learning (DRL) method

can deal with complicated problems in a model-free manner with

high computational efficiency. These features make the DRL

method suitable for the real-time active power corrective control

problem. In our previous work, by introducing the simulation

assistance, graph neural networks, and the multi-agent

framework, we have proposed basic methods for the

application of deep reinforcement learning in modern power

system corrective control and verified the efficiency, feasibility,

and adaptability of the DRL method (Xu et al., 2020; Chen et al.,

2021; Xu et al., 2021).

However, the active power corrective control in new-type

power systems demands the efficient and accurate alleviation of

line overloads under the highly dynamic and strongly uncertain

network operation states, which is of great complexity. The

interactive learning of the conventional DRL method usually

requires a lot of time, and the performance of the final strategy

explored in the complex power system with massive constraints

can be difficult to guarantee. At the same time, as

aforementioned, there are plenty of model-based methods, as

well as human experience, in the field of active power corrective

control. If we can make full use of the prior knowledge, it will be

of great help to apply the DRL method to active power corrective

control more efficiently and effectively. In recent years,

researchers begin to study the fusion of prior knowledge in

DRL methods. A deep Q-learning from demonstrations

(DQfD) method is proposed in (Hester et al., 2018), where

human experience is collected as demonstration data to pre-

train the DRL agent and further join its interactive learning

process. Based on this idea, some researchers focus on improving

the performance of the DQfD method by introducing soft expert

guidance or behavioral cloning (Gao et al., 2018; Li et al., 2022a).

Most recently, attempts of applying the prior knowledge guided

DRL in power systems have been made, where the emergency

voltage control is conducted (Li et al., 2022b).

Enlightened by the above work, a prior knowledge-embedded

reinforcement learning (PKE-RL) method for active power

corrective control is proposed in this paper, to improve the

exploration efficiency and control performance of DRL

methods in complex corrective control problems. The

contributions of this paper are as follows:

1) According to the multi-level characteristics of the power

system, the differential integration method of the real-time

power grid state based on graph convolution and graph

pooling is proposed, to fully represent and fuse the system

operation indexes and fine-grained equipment features at

global and local levels.

2) Based on the idea of Deep Q-learning from Demonstrations,

the prior experience is introduced to the initial strategy

optimization and whole-process guidance of the agent
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training. Considering the sparsity of the corrective control

action, a double-prioritized DQfD(λ) training mechanism is

further developed to focus the training process on critical

control trajectories.

3) The simulation results in the modified 36-bus system

demonstrate that the proposed method can effectively

utilize the prior knowledge to further improve the DRL

training performance and optimize the operation stability

of power grids.

The remainder of this paper is organized as follows: Section 2

describes the active power corrective problem and formulates it

as a Markov decision process (MDP). Section 3 illustrates the

proposed prior knowledge-embedded reinforcement learning

method. In Section 4, case studies are given to verify the

proposed method. Section 5 summarizes our work and

provides future directions for our research.

2 Problem formulation

2.1 Objective and constraints

The goal of the conventional active power corrective control

is generally described as:

{minf(|ΔPG|,ΔPL,ΔΝ)
s.t.

∣∣∣∣Pij

∣∣∣∣≤ �Pij
(1)

where f(·) denotes the function related to the control cost, ΔPG

and ΔPL represent the amount of generator redispatch and load

shedding, respectively. ΔΝ represents the adjustment of the

topology, such as line switching or bus-bar splitting. Notably,

topological changes are assumed to be cost-free in this paper. Pij

and �Pij denote the current power and capacity of the

transmission line lij.

Along with the traditional constraints, to guide the corrective

control actions to the feasible region and minimize their

disturbance to the power grid, the number of topological

control actions and redispatch amounts of generators are also

restricted.

Xline +Xbus ≤Nlimit (2)

{ |ΔPG|≤min(PGmax − PG, Rup)
|ΔPG|≤min(PG − PGmin,Rdown) (3)

where Xline, Xbus, Nlimit represent the number of line switching

actions, bus-bar switching actions, and the limited topological

actions, respectively. PGmax , PGmin ,Rup ,Rdown denote the upper

and lower bounds of the generator outputs, as well as the

bidirectional ramping rates of the generators.

As the active power corrective control aims to avoid

cascading failures by mitigating overloads, same as (Xu et al.,

2021), the problem is extended to a time-series control problem

as illustrated in Eq. 4. The goal can transform into securing the

system operation while minimizing the overall cost during the

control period, where corrective actions are carried out to

alleviate overloads, preventive actions can also be considered

to promote the system stability in advance:

min∑T

t�0[f(|ΔPG(t)|,ΔPL(t), t) + fnet(t) + Eloss(t) · p(t)] (4)

where T denotes the control duration, fnet(t) represents the

network loss cost, which can reflect the economic influence of

corrective actions. Eloss(t) symbolizes the energy loss at time t

when a blackout strikes and p(t) represents the marginal price of

the generators’ outputs.

Furthermore, considering the practical constraints, the

reaction time and the recovery time of power equipment are

adopted, to reflect the available time for mitigating the overloads

and the time requirements for reactivating the power equipment.

2.2 Problem formulated as MDP

According to the objective function presented in Eq. 4, the

active power corrective control can be modeled as MDP in the

form of a 5-element tuple � {S,A,P,R, γ} . Where γ symbolizes

the discounting factor and P represents the state transition

probability matrix. The details of other elements are

elaborated as follows:

State space S: The state st ∈ S represents the observation

collected by the dispatch center from the power grid. As

topological adjustments and node injections are addressed to

mitigate line overloads, the features of generators, loads, and

transmission lines are considered. Thus, the state is consisted of

the active power status of power equipment and the load ratio of

each line, i.e.,

st � (P, ρ) (5)

where P denote the active power status of the power equipment,

including outputs of generators, consumption of loads, and

power flow at both ends of the lines. ρ represents the load

ratio of each transmission line, i.e., the current flow divided

by the thermal limit of each line.

Action space A: To avoid damaging the interest of

consumers, the action space comprises generator redispatch,

line switching, bus-bar switching, and do-nothing actions.

Notably, the line switching and bus-bar switching actions

change the topology of the power grid in different ways. The

bus-bar switching intervenes in the bus selection of the connected

power equipment in one substation, while the line switching

action alters the operating status of lines.

Reward function R: As the control agent aims to secure the

long-term operation of the power grid under strong

uncertainties, the available transmission capacity (ATC) must

be maintained to promote the flexibility of the power system with
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considering the risks brought by the heavy-loaded lines and

overload lines. Thus, the modified available transmission

capacity is introduced to represent the flexibility of the grid

(Nacional de Colombia, Universidad, 2020):

ot � ∑NL

i�1[max(0, (1 − ρ2i )) − α · max(0, ρi − 1) − β

· max(0, ρi − 0.9)) (6)

where NL denotes the number of lines, α and β

represent the penalty factors of overload and heavy load,

respectively.

Based on MDP, the current system flexibility reflects the

immediate effect of the action at the last time step, then the

reward rt can be defined as:

rt � sign(ot+1)log(1 + |ot+1|) (7)
where sign(·) produces a plus or minus sign according to the

positive elements or the negative elements. Equation 7 can

maintain the reward over a reasonable scale for the DRL

agent to learn (Hester et al., 2018).

3 The prior knowledge-embedded
reinforcement learning method

Although the deep reinforcement learning method can

handle various problems with high computation efficiency,

the effectiveness of the learned policy depends on its

interaction with the environment. For the active power

corrective control in new-type power systems, the existence

of massive constraints, the strong uncertainty of power grid

disturbances, and the selection of the proper measure from

huge candidate strategies should be considered

simultaneously. Thus, it can be challenging for the self-

evolving reinforcement learning method to learn a high-

quality corrective control strategy in such complex power

networks.

To promote the effectiveness of the reinforcement

learning method in active power corrective control

problems, a prior knowledge-embedded reinforcement

learning method is developed in this paper. The

architecture is illustrated in Figure 1. The system-level

power network feature is constructed to merge domain

knowledge into the observation of the DRL agent. Based on

the graph pooling method, a global-local network structure is

established to assist the agent deal with the system-level

information and equipment-level features accordingly.

Then, with the perception ability enhanced, the deep

Q-learning from demonstrations method is introduced to

improve the DRL agent’s capability with the guidance of

expert knowledge. Besides, a double-prioritized DQN(λ)
algorithm is utilized to facilitate the training process by

focusing on the evaluation of key corrective control

trajectories. The dueling deep Q-network is utilized as the

basic DRL framework.

FIGURE 1
The overall architecture of the proposed PKE-RL method.
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3.1 The multi-level differential integration
of environment features

As the power grid is a high-dimensional dynamic system

with strong complexity, a multi-level differential integration

approach for environment features is proposed to aid the

agent to realize a better perception of the status.

In the bulk power system, there are plenty of features

provided for the agent at the moment of decision, and the key

information can be difficult to extract since the features are from

various equipment in a wide area. Hence, the global-level feature

is established on the current modified ATC of the grid to provide

an additional holistic perspective as in Eq. 8:

st,global � ot (8)

According to Eq. 7 and Eq. 8, it can be easily found that the

global-level feature represents rt−1 in another form.

To coordinate with the multi-level features, in our network

architecture, a differential integration strategy for global and

local features is proposed. For the local features, graph attention

networks (GATs) are introduced to perform representation

learning due to the network-structure data format. The power

equipment can be regarded as nodes of a graph. Thus, the

adjacency matrix can be constructed based on the connections

between the power equipment, i.e., the origin and extremity of

lines, generators, and loads. The feature matrix is formed by

combining the common and the unique features of the above

equipment. The details of graph formulation for local features are

shown in (Xu et al., 2021). Thus, the adjacency matrix and feature

matrix in this problem can be elaborated as:

Aij � { 1, if equipment i and j on same bus or same line
0, otherwise

(9)

Xequipment−type

⎧⎪⎪⎪⎨⎪⎪⎪⎩
Origin

Extremity
Load

Generator

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
POR

PEX

PL

PG

ρ
ρ
0
0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ (10)

where POR and PEX denote the active power flow at the origin

and the extremity of the transmission line, respectively. PL

represents the active consumption value of the load, and PG

stands for the active power output of the generator. ρ denotes the

load ratio of the transmission line.

Then, GATs can be utilized to conduct graph convolution.

The graph attention layer with multi-head attention for

transformed features of the ith node hi can be defined in Eq.

11 as (Veličković et al., 2017):

h′i � σ⎛⎝ 1
K
∑K

k�1 ∑j∈N i
αkijW

khj⎞⎠ (11)

Where σ symbolizes the non-linear activation function, N i

denotes the neighboring node set of the ith node, K represents

the number of independent attention mechanisms, αkij

symbolizes the normalized attention coefficients computed by

the kth attentionmechanism (Vaswani et al., 2017), andWk is the

kth weight matrix. Notably, the initial transformed features of

nodes H0 equals the feature matrix X.

After the graph convolution, the transformed node-level

vectors of the local features are obtained to serve as the

concrete representation of the current status. To get a

comprehensive environment perception, a self-learning graph-

level representation is acquired by introducing graph pooling on

the transformed node-level vectors. Specifically, a self-attention

graph pooling method is adopted to efficiently extract important

information from node-level vectors, while nodal features and

graph topology are both considered. In (Lee et al., 2019), the

attention score of each node is obtained by adopting graph

convolution:

V � δ(GAT(H,A)) (12)

where δ represents the activation function and GAT(·) denotes
the graph attention layer with multi-head attention as shown in

Eq. 11.

Then, the most important nodes based on the attention score

will be preserved as in Eq. 13.

id � top − rank(V, |ζN|) (13)

FIGURE 2
The proposed network architecture.
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where id denotes the indexes of the preserved nodes, top − rank

represents the function of obtaining those indexes, ζ controls the

ratio of preserved nodes, and N denotes the number of nodes.

The graph pooling can then be realized according to Eq. 14:

{Hout � Hid ⊙ Vid
Aout � Aid,id

(14)

Thus, the important nodes are preserved to assist the agent

address on fewer nodes with critical information maintained,

which can prevent the distraction from the redundant signals in

the bulk power system. Based on features of the important nodes,

a readout layer is further adopted to aggregate the critical

information and make graph-level representation as shown in

Eq. 15 (Cangea et al., 2018):

G � ∑NC
i�1g i
NC

‖ max
i�1
Nc

gi (15)

where gi represents the features of the ith important node, NC

represents the number of the important nodes, and ‖ is the

concatenation function.

Finally, the self-learning graph-level representation and the

prior-designed global-level feature are concatenated as the global

representation. The global representation is then combined with

the concrete representation via trainable weights and the multi-

level differential integration of environment features is realized.

The overall architecture of the adopted neural network is

illustrated in Figure 2.

3.2 Deep Q-learning from demonstrations
focusing on key corrective control
trajectories

In many decision-making problems, the typical

reinforcement learning method usually converges into a good

policy from scratch after massive interactions with the

environment. However, the diverse scenarios, few feasible

solutions, and the complex electrical relation between power

flow and node injection or topology in the active power corrective

control problem make it challenging for DRL agents to learn an

effective strategy by pure interaction, even with the help of

simulation software. Additional work should be done to

further promote the agent’s performance.

In power system corrective control, there always exists expert

data like dispatcher operation records or model-based control

strategies. This kind of data contains prior knowledge and usually

performs well in alleviating overloads. Thus, in this paper, the

deep Q-learning from demonstrations method is introduced to

make full use of the expert knowledge. The domain knowledge is

first utilized to pre-train the agent and then guide the agent

during the rest of the training process, to improve the

effectiveness of the learned corrective control policy.

In general, the DQfD method realizes merging prior

knowledge into standard deep Q-learning by constructing a

comprehensive loss function with four losses considered

(Hester et al., 2018):

L(θ) � LDQ(θ) + α1Ln(θ) + α2LE(θ) + α3LL2(θ) (16)

where θ denote the Q-network parameters.

LDQ(θ), Ln(θ), LE(θ), LL2(θ) denote the 1-step deep

Q-learning loss, the n-step deep Q-learning loss, the expert

loss, and the L2 regularization loss, respectively. α parameters

represent the weights between different losses.

Among the losses, the deep Q-learning losses ensure the

agent improves itself from temporal-difference (TD) learning,

the expert loss is designed to guide the agent to follow the action

strategy of the demonstrator, while the L2 regularization loss

promotes the generalization ability of the agent by restricting the

network parameters.

Specifically, considering the credit assignment problem, the

n-step deep Q-learning loss is introduced to help better evaluate

the actions’ long-term benefits and promote the entire training

process. The n-step loss is computed based on the n-step return:

Ln(θ) � E(s,a,Rn)~U(D)[(Rn − Q(s, a; θ))2] (17)
Rn
t � rt + γrt+1 +/ + γn max

a′∈A
Q(st+n, a′) (18)

where a is the agent action, D symbolizes the replay buffer, and

Rn denotes the n-step return.

As the most important part of all four losses, the expert loss is

established under the assumption that the expert’s action prevails

over other available actions in each scenario selected from

demonstration data, as shown in Eq. 19. In the corresponding

scenario, a large margin supervised loss is introduced to measure

the equality between the greedy action and expert’s action (Piot

et al., 2014). The supervised loss is 0 while the greedy action is the

same as the expert’s action, and the supervised loss is a positive

constant otherwise. Under this setting, the Q-values of other

actions are at least a margin lower than the Q-value of the

expert’s action, allowing the agent to imitate the expert while

satisfying the Bellman equation and evaluating the unseen

actions reasonably.

LE(θ) � max
a∈A

[Q(s, a) + l(aE, a)] − Q(s, aE) (19)

where l(aE, a) represents the large margin supervised loss, aE
denotes the expert’s action.

Based on the comprehensive loss function, the DQfD

method merges the domain knowledge in the pre-training

stage and formal training stage. During the pre-training phase,

the DRL agent performs batch training by sampling from the

collected demonstration data. Then, the pre-trained agent

starts interacting with the environment and storing the

self-generated data into the replay buffer D. The self-

generated data is updated continuously, while the
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demonstration data keeps unchanged to provide persistent

guidance. And the proportion of demonstration data in

experience replay is controlled to maintain the self-

improving ability of the agent. Notably, when the sampled

transition comes from the self-generated data, the expert loss

doesn’t work and equals 0.

In the DRL-based active power corrective control

architecture, the conducted action, e.g., switching the bus-bar

or modifying the generator’s output, can alleviate the current

heavy loads or overloads, as well as change the future operation

point of the power grid. Thus, the long-term effect of the action

must be precisely evaluated. The n-step return can help reduce

the estimation bias to some extent, but in our problem, the

proper selection of “n” can be challenging since the power system

is highly complex. Meanwhile, despite the strong uncertainties of

system disturbances, the power system can maintain stable

operation at most times without additional actions. Thus, the

proportion of preventive or corrective actions can be relatively

low in the replay buffer, which may lead to the lack of sampling

and training of these important control actions, even with tricks

like the prioritized replay. The above two issues can hamper the

training performance of the agent.

To further enable the DRL-based method in active power

corrective control problems, based on our previous work (Xu

et al., 2022), a double-prioritized DQfD(λ) training mechanism is

introduced and developed in this paper. The critical corrective

control trajectories are particularly analyzed with the ratio of the

demonstration data and self-generated data carefully controlled.

Along with the experience replay, the λ-return is first

introduced to estimate the long-term benefit of agent actions

instead of the n-step return. The λ-return is defined as the

exponential average of every n-step return (Watkins, 1989) as

in Eq. 20, so the accurate evaluation of the actions can be realized

without the selection of “n”.

Rλ
t � (1 − λ)∑T−t−1

n�1 λn−1Rn
t + λT−t−1RT−t

t (20)

where λ ∈ [0, 1] controls the decay rate of future returns.

In this way, the deep Q-learning losses can be replaced by

the λ-discounted deep Q-learning loss as the

λ-return considers every n-step return, n � 1, 2,/, T − t.

The comprehensive loss function can be expressed as in

Eq. 21.

{L(θ) � Lλ(θ) + α2LE(θ) + α3LL2(θ)
Lλ(θ) � E(s,a,Rλ)~U(D)[(Rλ − Q(s, a; θ))2] (21)

Practically, the λ-return can be computed recursively based on

the trajectory of transitions as in (Daley and Amato, 2019), as

illustrated in Eq. 22. The λ-returns of transitions from trajectories are

stored into the replay bufferD and serve as the target network. The

batch training based on experience replay can then be realized

according to the new comprehensive loss function.

Rλ
t � R1

t + γλ[Rλ
t+1 −max

a′∈A
Q(st+1, a′)] (22)

As the calculation of the λ-return can be resource-

consuming, when integrating the λ-return with the experience

replay, a dynamic small cacheH is constructed by sampling short

trajectories of transitions from the repay buffer D, to refresh and

store the corresponding λ-returns. Specifically, during the entire
training process, periodically, C/B blocks, i.e., short trajectories

containing neighboring transitions, are sampled to form the

small cache H. Different from the random sampling policy in

(Daley and Amato, 2019), a demonstration-ratio-constraint

attention-prioritized cache construction method is developed

to improve the number of effective control transitions in the

cache, with the ratio of the expert experience and the interaction

experience restricted.

In the DQfD method, the repay buffer D is composed of two

parts: the demonstration buffer Ddemo and the interaction buffer

Dself . To restrict the ratio of the expert experience within a

certain range from the cache construction stage, the number of

sampled blocks from the demonstration buffer Ddemo is

defined as:

Ndemo � C

B
εd (23)

where εd denotes the expected demonstration ratio in the batch

training.

Therefore, Ndemo and Nself � (C/B) · (1 − εd) blocks are

sampled from the demonstration buffer Ddemo and the

interaction buffer Dself, respectively. For the demonstration

buffer Ddemo with size Udemo, the number of candidate blocks

is Udemo − B + 1. We define the attention degree of each block as

the diversity of the effective control actions within it, as

illustrated in Eq. 24.

φi �
‖set(ai)‖ − 1

B
(24)

where ai represents the agent’s action trajectory in the ith block,

where the “do nothing” action is included. set(·) denotes the

function that selects non-repeatable elements to form a set. ‖ · ‖
calculates the number of elements. Thus, the blocks containing

more kinds of effective control actions will have higher attention

degrees.

Then, theNdemo blocks are sampled from the demonstration

buffer Ddemo according to their attention degrees, the sampling

probability of the ith block is illustrated as:

P(i) � φi∑Udemo−B+1
k�1 φk

(25)

The methodology of sampling blocks from the interaction

buffer Dself is the same as the demonstration method. Based on

the proposed attention-prioritized blocks sampling strategy, we

can promote a better evaluation of the action set as the

Frontiers in Energy Research frontiersin.org07

Xu et al. 10.3389/fenrg.2022.1009545

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2022.1009545


established cache always contains various effective control

experience, while the expert-imitation ability and the self-

learning ability is controlled from the source.

Based on the cache, the computation of the λ-return is

performed in each block. A directly prioritized replay policy is

adopted to improve the transition sampling and batch training

process. The transitions are sampled from the cache with the TD

error-based probabilities:

p(ej) �
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

(1 + μ)
C

, if
∣∣∣∣δj∣∣∣∣> δmedian

1
C
, if

∣∣∣∣δj∣∣∣∣ � δmedian

(1 − μ)
C

, if
∣∣∣∣δj∣∣∣∣< δmedian

(26)

where ej and δj denote the jth transition and its TD error,

respectively. μ ∈ [0, 1] controls the prioritized degree of

sampling. δmedian represents the median TD error value of the

cache.

Based on the double-prioritized DQfD(λ) training

mechanism, the important corrective control experience can

be emphasized during the entire training process.

Meanwhile, considering the massive restrictions presented in

the dynamic operation, during the training and deployment

process, a masked action regulation method is developed to

prevent the DRL agent from taking actions violating the

constraints. The greedy action can be selected as in Eq. 27:

agreedy � argmaxamaskQ(st,∀a) (27)

where amask is a 0–1 action mask vector with the size of action

space, while the ith action violates the constraints according to

the simple prior knowledge based on the observation, the action

is masked with amask set to 0, otherwise set to 1.

4 Case study

4.1 Experiment setup

Same as our previous work (Xu et al., 2021), a modified 36-

bus system originated from the IEEE 118-bus system is selected

to verify the proposed method. The power grid consists of

59 transmission lines, 22 generators, and 37 loads, all the

elements are connected to the bus-bars of the 36 substations,

as illustrated in Figure 3. Among the generators, there are four

wind farms and eight photovoltaic power plants, which will cause

power fluctuations due to the uncertainties of their outputs.

Besides, there can be at most two random “N-1” events occurring

in the system within 1 day to reflect the strong system

disturbance in future power networks.

The corresponding strategies are deployed on the open-

source platform Grid2Op (RTE-France, 2021) to perform

active power corrective control every 5 min a day. The

topological actions are considered in our action set with the

number of simultaneous actions restricted to 1, avoiding too

many changes to the network topology. Considering the reality of

power grids, the cooldown time of each topological action is set to

15 min 245 effective topological control actions and 1 “do

nothing” action compose the action set by pre-selection with

the help of simulation (L2RPN, 2020).

In the following experiments, all the DRL-based agents are

trained on a Linux server with 4 11 GB GPUs.

FIGURE 3
The modified 36-bus system.
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4.2 Performance of the proposed method

In this section, the performance of the proposed prior

knowledge-embedded reinforcement learning method is

evaluated by various operation scenarios. A dueling DQN

structure as shown in Figure 2 is utilized to represent our

agent, i.e., the PKE-RL agent. The details of the agent are

illustrated in Table 1. 12,288-timestep active power corrective

control trajectories are selected from the expert policy’s

demonstrations (L2RPN, 2020) to serve as prior knowledge.

The lambda value λ, replay buffer size U, cache size C, block

size B, expected demonstration ratio εd, and refresh frequency are

set to 0.5, 32,768, 8,192, 128, 0.2, and 2048, respectively.

The PKE-RL agent is pre-trained with expert knowledge for

500 steps and then trained in the modified 36-bus system for

1,500 episodes. The averaged cumulative rewards curve and the

averaged operation steps curve are shown in Figure 4.

As shown in Figure 4, despite the complexity of the scenarios,

our agent keeps swiftly improving itself during the first

500 episodes and maintains a slow uptrend till the end of the

training process, indicating the good learning ability of the

proposed method.

To further evaluate the effectiveness of the proposed PKE-RL

method, 100 random unseen scenarios containing renewable

energy fluctuation and system disturbance are generated to

serve as the test set. The aforementioned expert policy is

adopted as the baseline method, where a simulation-based

action enumeration strategy and a predefined empirical action

selection strategy are combined to provide a thorough corrective

control strategy. The trained PKE-RL model is deployed in a

simulation-assisted manner: the top-3 actions with the largest

Q-values are verified by the simulation software, and the action

with the best estimated overload alleviating effect is chosen to

execute. The related metrics of the two methods deployed on the

test set are illustrated in Table 2.

According to Table 2, we can observe that the expert policy

prevails over the proposed PKE-RL method in the operation-

related metrics. As the expert policy is the combination of an

empirical strategy and a simulation-based strategy, the

projection from the power state to the control action can

be complex for the proposed method to handle in a relatively

short time. Besides, with only 12 trajectories sampled from the

expert policy, the proposed method can achieve around 70%

of the performance of the complicated demonstration policy,

with only 18.5% of the time consumption to make corrective

control decisions. More representative demonstration data

may help the proposed method perform better. Specifically,

the expert policy often demands over 200 DC power flow

based-simulations to generate the decision, which will be

more time-consuming when adopting accurate AC power

flow or more actions are taken into consideration. The

results indicate that the proposed method has the potential

to effectively perform real-time active power corrective

control in highly dynamic power systems with strong

complexity.

Two evaluation scenarios are selected to investigate the

corrective control process of two methods in detail, namely

Scenario I and Scenario II. The “N-1” contingencies, the max

line load ratio in the grid, and the agents’ control actions in

Scenario I are illustrated in Figure 5.

In Scenario I, both two methods maintain the daylong

operation with 2 “N-1” events strike. One overload and three

overloads occur during the control of the expert policy and the

PKE-RL method, respectively. Particularly, it can be seen from

Figure 5 that an overload occurs after the second “N-1” event

strike at time step 66, both two methods perform the

corresponding corrective control action immediately, and the

overload is eliminated in both scenarios. Notably, the expert

policy yields the decision based on 209 simulations, while the

PKE-RL method only needs a nearly computation-free deep

network inference and three simulations. The above results

indicate that the PKE-RL method can learn an efficient

corrective control strategy with fair performance in

maintaining the power girds stable operation.

The system operation status in Scenario II is illustrated in

Figure 6.

TABLE 1 The details of the pke-rl agent.

Parameters Value

1st GAT layer dimension 8

2nd GAT layer dimension 8

Number of attention heads 4

Dense layers dimension [128, 128, 512, 246, 1]

Graph pooling ratio 0.5

Readout layer output dimension 32

FIGURE 4
The training performance of the PKE-RL agent.
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In Figure 6, it is clear that the proposed method realizes a

successful daylong control with 2 “N-1” events attacks, while the

expert policy fails to survive the first “N-1” event. It can be seen

from Figure 6 that a severe overload occurs after the first “N-1”

event strikes at time step 154, the expert policy cannot produce

an effective strategy based on the initial preventive action, while

the PKE-RL method performs the corresponding corrective

control actions, alleviating the load ratio effectively to prevent

the system collapse. Although two normal overloads occur in the

following time steps due to power fluctuation, both overloads are

eliminated swiftly under the proposed method. The conclusion

may be drawn that the PKE-RL method has the capability of

converging into a corrective control strategy exceeding the expert

policy by combining the imitation ability and the self-learning

ability.

4.3 Efficacy of the proposed double-
prioritized DQfD (λ) training mechanism

As merging the demonstration data into deep Q-learning

plays a critical role in prior knowledge enhancement, the DQN-

based model, the standard DQfD-based model, and the double-

prioritized DQfD(λ)-based model are evaluated to demonstrate

the proposed method. The three models share the same

parameters apart from training hyperparameters, i.e., the

TABLE 2 performance comparison between the pke-rl method and expert policy.

Method Average operating steps Completed episodes Overloads elimination rate
(%)

Average control action
time(s)

PKE-RL method 209.11 53 60.14 0.079

Expert policy 242.48 73 86.90 0.426

FIGURE 5
System operation status comparison between two methods
in Scenario I. (A) Expert policy; (B) PKE-RL method.

FIGURE 6
System operation status comparison between two methods
in Scenario II. (A) Expert policy; (B) PKE-RL method.
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weights between different losses. The DQfD(λ)-based model

originates from Section 4.2, the standard DQfD-based model

is pre-trained with the same demonstration data for 500 steps

and is also trained for 1,500 episodes with the DQN-basedmodel.

The averaged cumulative rewards curves of the above three

models are shown in Figure 7.

As illustrated in Figure 7, the performance of demonstration data

enhanced models prevails over the DQN-based model at the initial

learning phase at both speed and range. Besides, the demonstration

data enhanced models show better operation promoting ability most

time during the training. The results indicate that the introduction of

expert knowledge can accelerate the learning process and improve

the capability of the DRL agent in complex corrective control

problems. Furthermore, the performance of the standard DQfD-

based model suffers fluctuations after the middle of training, while

the DQfD(λ)-based model keeps improving persistently. The

conclusion can be drawn that the proposed double-prioritized

DQfD(λ) training mechanism can better guide the agent to learn

from the demonstration and interaction.

To further evaluate the effectiveness of the proposed training

mechanism, The 100 random unseen scenarios mentioned in

Section 4.2 are also utilized to demonstrate the feasibility of the

proposed training mechanism. All the models are deployed in the

same simulation-assisted manner as in Section 4.2. The models of

the early training process, i.e., after 250 episodes of training, are also

evaluated with the well-trained models. The related metrics of the

three methods deployed on the test set are summarized in Table 3.

According to Table 3, one can observe that the DQfD

class models exhibit fair performance after the short-term

training, indicating the merging of expert data can assist the

DRL agent in efficiently gaining adequate corrective control

knowledge without too much exploration within complex

power systems. Meanwhile, the DQfD class models can still

make progress and prevail over the DQN-based model at the

end of the training, showing the ability of the DQfD class

method to guide the agent to optimize its policy persistently.

Specifically, the DQfD(λ)-based model performs satisfying

from the start to the end, the related agent can alleviate the

overloads with fewer control actions and maintain the long-

term operation of the grids. Thus, we can infer that the

proposed double-prioritized DQfD(λ) training mechanism

can improve the DRL agent’s training efficiency and

effectiveness in active power corrective control.

Similar to Section 4.2, two scenarios are selected to inspect the

effectiveness of three well-trained DRL models in detail. Firstly,

scenario II is selected again to evaluate the performance of theDQN-

based model and the DQfD-based model in handling the severe

post-contingency overload, the results are illustrated in Figure 8.

According to Figure 8, although the two models manage to

alleviate the load ratio to some extent, specifically the DQfD-

based model conducts more powerful corrective actions and

realizes a larger reduction in the load ratio, they all fail to

survive the first “N-1” event. The results demonstrate the

feasibility of the proposed training mechanism.

A new scenario, namely scenario III, is chosen to evaluate the

performance of the three models in handling the simpler situation.

The system operation status in Scenario III is illustrated in Figure 9.

In Scenario III, all three models maintain the daylong

operation with 1 “N-1” event strikes. However, there are six

overloads, six overloads, and three overloads that occur

during the control of the DQN-based model, the DQfD-

based model, and the DQfD(λ)-based model, respectively.

Besides, we can easily find that multiple severe overloads

happen between time step 100 to time step 200 under the two

basic DRL models’ control, while the overload situation is

FIGURE 7
The training performance of the DRL agents.

TABLE 3 performance comparison between the DRL models.

Model Average operating
steps

Completed episodes Overloads elimination
rate (%)

Average overload
time steps

Average control
actions

DQN early 185.06 39 46.10 4.06 4.43

DQfD early 200.33 47 52.59 3.98 4.37

DQfD(λ) early 200.14 47 54.86 3.96 4.29

DQN final 205.39 50 58.09 4.5 4.96

DQfD final 209.48 50 55.7 3.89 4.2

DQfD(λ) final 209.11 53 60.14 3.5 3.91
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much better under the control of the enhanced DRL model.

Meanwhile, to alleviate the overloads, 17 and 14 corrective

control actions are conducted by the DQN-based model and

the DQfD-based model, respectively. The DQfD(λ)-based
model only conducts five actions to deal with overloads. The

results further demonstrate the effectiveness of the proposed

double-prioritized DQfD(λ) training mechanism, where the

trained model can promote the long-term stable operation of

power grids by learning a simple but powerful corrective

control strategy.

4.4 Performance comparison of different
expected demonstration ratios

The expected demonstration ratio controls the agent’s

imitation preference to the expert policy by altering the

number of demonstration data in the cache. Thus, to

evaluate the impact of this hyperparameter, three models

with the expected demonstration ratios set to 0.1, 0.2, and

0.3 are trained by the proposed PKE-RL method with other

parameters same as those in IV.2. The averaged cumulative

rewards curves of the above three models are shown in

Figure 10.

As illustrated in Figure 10, in this problem, the agent with the

highest expected demonstration ratio (simplified as “demo-

ratio”) improves itself faster than other agents but maintains a

stable but relatively poor performance for the rest of the training

process, indicating that strong expert policy intervention can

FIGURE 8
System operation status comparison between two basic DRL
models in Scenario II. (A) DQN-based model; (B) DQfD-based
model.

FIGURE 9
System operation status comparison between three DRL
models in Scenario III. (A) DQN-based model; (B) DQfD-based
model; (C) DQfD(λ)-based model.
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limit the further improvement of the agent. In contrast, the agent

with the lowest demo-ratio learns a better policy first but suffers

from frequent large fluctuations like the DQN agent in Figure 7,

showing the unstableness brought by the weighted self-

exploration process. Finally, the agent with the middle demo-

ratio performs best during the entire training process. Based on

the above results, the assumption can be made that a best demo-

ratio point may exist to balance the imitation process and the

self-exploration process.

5 Conclusion

In this paper, a prior knowledge-embedded reinforcement

learning method is proposed to provide a solution to solve the

complex active power corrective control problem with

effectiveness and efficiency. Specifically, the differential

integration method of the real-time power grid state based on

graph convolution and graph pooling, as well as the double-

prioritized DQfD(λ) training mechanism, are proposed to

enhance the perception and the training efficiency of the DRL

agent in complex power grids. Results show that the proposed

method can learn from the complicated expert policy with fair

performance without excessive demonstration data and deployed

in a real-time manner. Besides, embedding the prior knowledge

can promote a good initial control ability of the agent and

alleviate the overall overloads with fewer actions than

conventional DRL methods.

As we mainly verify the basic feasibility of the proposed

method, the effectiveness of our method should be further

improved. In our future works, the accurate selection of

representative demonstration data, the delicate fusion of

various expert policies, and the efficient utilization of the

imperfect demonstration data are going to be studied to make

our method applicable for the real-world active power corrective

control problem.
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Nomenclature

ΔPG, ΔPL Amount of generator redispatch and load shedding

ΔΝ Adjustment of the topology

Pij, �Pij Current power and capacity of the transmission line lij.

Xline, Xbus, Nlimit Number of line switching actions, bus-bar

switching actions, and the limited topological actions,

respectively

PGmax , PGmin Upper and lower bounds of the generator outputs

Rup , Rdown Bidirectional ramping rates of the generators

T Control duration

fnet(t) Network loss cost

Eloss(t) Energy loss at time t when a blackout strikes

p(t) Marginal price of the generators’ outputs

P Active power status of the power equipment

ρ Load ratio of each transmission line

NL Number of lines

α , β Penalty factors of overload and heavy load

POR , PEX Active power flow at the origin and the extremity of the

transmission line, respectively.

PL Active consumption value of the load

PG Active power output of the generator

K Number of independent attention mechanisms

N i Neighboring node set of the ith node

αkij Normalized attention coefficients computed by the kth

attention mechanism

Wk kth weight matrix

gi Features of the ith important node

NC Number of the important nodes

LDQ(θ), Ln(θ), LE(θ), LL2(θ) 1-step deep Q-learning loss,

n-step deep Q-learning loss, expert loss, and

L2 regularization loss

Rn n-step return

εd Expected demonstration ratio in the batch training.
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