
A residential user classification
approach based on the graded
portrait with considering the IDR
adaptability and potential

Yifan Huang, Yang Liu*, Lixiong Xu and Haoran Guo

College of Electrical Engineering, Sichuan University, Chengdu, China

In the current modern power system, extreme load peaks and valleys frequently

occur due to the complicated electricity consumption behaviors. This point

severely impacts the security, stability, and economy of the power system.

Demand response (DR) has been proved to be one of themost effective ways to

shift load to relieve the intensity of the power system. Although DR is mainly

applied on the commercial and industrial loads traditionally, in recent years, the

residential load has gradually attracted attentions of DR researches, especially

incentive demand response (IDR) research because of its remarkable stability

and flexibility in terms of load shifting. However, the difficulty of measuring the

IDR adaptability and potential of a residential user according to the load curve

significantly prevents the IDR from being conveniently implemented. And

further, the power company is tremendously difficult to efficiently and

effectively select the users with high IDR adaptabilities and potentials to

participate in IDR. Therefore, to address the aforementioned issues, this

paper presents a residential user classification approach based on the

graded user portrait with considering the IDR adaptability and potential.

Based on the portrait approach, the residential users with high IDR

adaptabilities can be preliminarily selected. And then, based on the selected

users, the portrait approach to delineate the users with high IDR potentials is

further presented. Afterward, the achieved residential users with high

adaptabilities and potentials are labeled, which are employed to train the

presented variational auto encoder based deep belief network (VAE-DBN)

load classification model. The experimental results show the effectiveness of

the presented user portrait approaches as well as the presented load

classification model. The results suggest that the presented approaches

could be potential tools for power company to identify the suitable

residential users for participating in the IDR tasks.
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1 Introduction

In the recent years, due to the diversified developments of the

electricity demand of residential users, the amount of the

residential power consumption has risen sharply (Siavash

et al., 2018; Li et al., 2019; Yoshida et al., 2020). The

randomness and uncertainty of the power consumption

behaviors of the residential users significantly cause the peak

and valley loads in the power system, which may severely impact

the security, stability, and economy of the system. However, it

can be obviously seen that along with the increasing amount of

the residential power consumption, the proportion of the flexible

residential load is also increasing, which has become a kind of

remarkable regulating resource on the user side (Alrumayh and

Bhattacharya, 2019; Chen et al., 2021). Therefore, to relieve the

pressure of the balance between the power supply and the user

demand, as well as to guarantee the security, stability, and

economy of the power system, the residential user level

demand response (DR) has received more and more

attentions. Among various related studies (Asadinejad et al.,

2017; Sandels et al., 2019; Lee et al., 2020), the DR based

portrait and classification for analyzing the user power

consumption behaviors have been reported as the effective

ways for serving the auxiliary load regulations (Zhu et al.,

2020; Guan et al., 2021). The basic idea of the researches is to

identify if the residential user is suitable for participating in DR

according to the power consumption behavior (represented by

the load curve) revealed by the portrait and classification

algorithms. And then, the suitable users will be selected to

finally join the DR tasks. However, it should be pointed out

that the current existing portrait algorithms and the classification

algorithms lack of considerations for different DR characteristics

among various residential users, which cannot be conveniently

employed in the complicated residential user-level DR scenarios.

As a result, for developing the portrait algorithm and the

classification algorithm specially serving DR applications, DR

scenarios should be regarded as the crucial elements. Therefore,

the residential users with different DR characteristics for serving

different DR scenarios are able to be identified, according to the

customized differentiated DR strategies for different users.

DR is frequently categorized into two types including the

price demand response (PDR) and the incentive demand

response (IDR) (Song et al., 2020; Assad et al., 2022).

Compared to PDR, IDR has increasingly become an effective

way for serving the load shifting in the power system due to its

outstanding quick-response ability and capacity-expansion

ability, which has been widely used in the intraday and real-

time dispatches (Laitsos et al., 2021; Vahedipour-Dahraie et al.,

2022). The economic incentive is able to induce the customer to

sign the IDR contract with the electric power company. Based on

the contract, the user can actively adjust the power consumption

pattern to reduce the electricity consumption when load peaks

emerge in the power system, whilst gaining a proper cost

compensation (Wu et al., 2022). However, because of the

unique features of the IDR contraction for example the strong

timeliness, it puts forward higher requirements for the

characteristics of the power consumption behaviors of the

candidate participating users. According to the previous

researches (Gaba and Chanana, 2021; Wang et al., 2022), the

IDR adaptability of the residential user including historical load

level, power consumption regularity, power consumption

volatility, and responding willingness can be employed to

assess the response reliability. In order to identify the users

with better IDR adaptabilities, research (Ahir and

Chakraborty, 2022) presented an evaluation method based on

the characteristics of the user’s power consumption pattern and

the historical load level. The presented methods are able to fully

consider andmodel the consumers’ power consumption habits in

IDR. However, it cannot clearly distinguish the users’ groups

with respect to the IDR response capacity. Research (Liang and

Ma, 2021) firstly focused on analyzing the differences of IDR

response capacities under different load modes. And then, the

research further employed the indices including the power

consumption regularity and the historical load level to

evaluate the actual response abilities of the users participating

in IDR under different load modes. The authors claimed that the

IDR participators can select the appropriate load modes from the

presented methods according to various practical demands.

However, the willingness of the user is also an important

characteristic which impacts the implementation of identifying

the user’s IDR adaptability. Although the aforementioned

researches have shown the effectiveness of identifying the

user’s IDR adaptability for participating in the IDR, the IDR

invitation initiated by the power company is usually located in a

specific one to 2 h in a day. In this case, the identified suitable

users using the above methods may have quite little response

capacities in the short periods of time. Or it can be summarized

that the IDR potentials of the users are relatively low. Therefore,

to assess the IDR potential of a user, and further to assist the

power company in properly dispatching the demand side

resources, the portrait approach of the user IDR potential

with considering more comprehensive features should be

developed. Research (Qi et al., 2020) evaluated the user IDR

potential based on the adjustable capacity, which is computed

using the load difference before and after the IDR participation of

the user. The authors reported that based on their research, the

user IDR potential can be quantified during the IDR period.

Research (Weitzel and Glock, 2019) firstly computed the desired

level of load reduction based on the load reduction curves of the

beforehand generated IDR invitation period. And then, the

adjustable capacity is further employed to assess the user IDR

potential. The authors also claimed that the adjustable capacity is

able to help to estimate the potential of the user.

The portrait is able to delineate if a user is suitable to

participate in IDR. However, in the practical dispatch, among

an enormous number of users, the power company should also be
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aware of what kind of user is suitable to participate in IDR

efficiently. Therefore, based on the portrait of the user IDR

potential, and further combining the portrait of the IDR

adaptability, the labeling of the residential users can be carried

out. As a result, by employing the deep learning algorithms, the

residential users with high IDR adaptabilities and high IDR

potentials could be efficiently and effectively identified.

Consequently, the power company can explicitly dispatch

these kinds of residential users to serve IDR. At present, the

supervised machine learning algorithms and the deep learning

algorithms are widely used in the user load classification

researches (Zhou et al., 2013; Jiang et al., 2018; Chen et al.,

2021). However, it has been pointed out that although the lower

complexities of the traditional supervised machine learning

algorithms result in higher classification efficiency, because of

lacking of sufficient layer-wise complexity and the nonlinear

mapping process (Agiollo and Omicini, 2021), they cannot

supply satisfied feature transformation and learning abilities

which the deep learning algorithms for example deep belief

network (DBN) can provide contrarily. Researches (Liu et al.,

2020; Phyo and Jeenanunta, 2021; Arvanitidis et al., 2022)

adopted back propagation neural network (BPNN), multilayer

perceptron (MLP), and DBN to classify the load dataset. The

authors indicated that in terms of classification accuracy, DBN

significantly outperforms the traditional machine learning based

supervised classification algorithms. The authors further

admitted that the time sequence load data with high

dimensions frequently encounters the training difficulty using

DBN. This point finally impacts the efficiency of the

classification. To solve the issues caused by the high-

dimensional load data, several researches (Jing and Ying,

2019; Li and Chen, 2020; Yin et al., 2021) aimed at

developing the classifiers especially for serving the time

sequence data. However, other researchers (Paul and Chalup,

2017; Chen et al., 2020) suggested that the dimension reduction is

also an effective way to solve the issue of processing high-

dimensional load data. Currently, the usually used dimension

reduction algorithms include the characteristic index dimension

reduction (CIDR), singular value decomposition (SVD), and

principal component analysis (PCA) (Wan and Yu, 2020;

Huang et al., 2021; Chen et al., 2022). Although these

algorithms are able to provide high efficiency in terms of

dimension reduction, the information loss of the original data

is quite severe (Anowar et al., 2021; Ray et al., 2021). As a result,

the load classification accuracy could be significantly impacted.

Research (Kingma and Welling, 2014; Gunduz, 2021)

innovatively employed variational autoencoder (VAE) to deal

with the dimension reduction task. VAE is able to learn the

distribution characteristics of the high-dimensional data based

on its unique coding and decoding mechanisms. Therefore, the

dimension reduction can be conveniently implemented, whilst

retaining the original data characteristics as far as possible. The

authors claimed that the effectiveness of VAE can be observed

based on their experimental results. Researches (Lin et al., 2020;

Wei et al., 2021) also proved the adaptability of VAE for handling

the dimension reduction operations.

Motivated by the previous researches and the anxiety of the

efficient identification of the users with high IDR adaptabilities

and potentials, this paper presents a residential user classification

approach based on the graded user portrait with considering the

IDR adaptability and potential. The works done by this paper are

mainly as follows:

1. For all the target residential users, the primary user portraits

of delineating the IDR adaptability are firstly generated. Based

on the portraits, the labels of the IDR adaptability can be

achieved. Therefore, the residential users with high IDR

adaptability can be evaluated and initially focused.

2. Based on the residential users with high IDR adaptability, the

precise user portraits of delineating the IDR potentials are

secondly generated. And also, the portraits are employed to

conduct the IDR potential labels. Therefore, the residential

users with high IDR adaptabilities and high IDR potentials

can be finally delineated.

3. As the presented portrait approaches are computationally

intensive and time consuming, deep learning based

classification model is also adopted to improve the

identification of the users with high IDR adaptabilities and

high IDR potentials. According to the labels of the graded user

portraits from 1 to 2, a VAE-DBN residential user load

classification model with data dimension reduction is

presented, which is able to implement the load

classification considering the IDR adaptabilities and

potentials of the users. Finally, the residential users in the

advantageous classified classes can be privileged to participate

in IDR launched by the power company.

The rest of the paper is organized as follows: Section 2

presents the labeling of the graded portraits with considering

the IDR adaptabilities and potentials of the residential users;

Section 3 presents the VAE-DBN based load classification model

with considering the IDR adaptabilities and potentials of the

residential users; Section 4 shows and discusses the experimental

results; Section 5 concludes the paper.

2 Labeling of the graded portraits with
considering the IDR adaptabilities and
IDR potentials of the residential users

2.1 Preliminary selection of the IDR
adaptability of the residential user

In this section, based on the characteristics of the power

consumption regularity, the power consumption volatility, the

historical load level, and the responding willingness of the
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residential users, the portrait of the IDR adaptability can be

preliminarily constructed. This portrait is able to reflect if the

residential users are suitable for participating in IDR, and thus

the users with high IDR adaptabilities can be initially identified.

2.1.1 Feature extraction of power consumption
regularity using pearson correlation coefficient

Firstly, the KANN-DBSCAN (Li et al., 2019) algorithm is

employed to cluster the historical load curves of a residential user.

And then, the centroid of the cluster which contains the greatest

number of samples is selected as the typical daily load curve of the

user. Afterward, Pearson correlation coefficient (PCC) is

employed to measure the similarity between the typical daily

load curve and the other load curves. Therefore, the power

consumption regularity feature Rk can be achieved using Eq. 1:

Rk � 1
N
∑N
i�1

cov(Xk,Xk,i)
σXk

•σXk,i

(1)

Where Xk denotes the typical daily load curve of user k;

Xk,idenotes the daily load curve in the ith day of the user k; N

denotes the total number of the historical days; cov(Xk,Xk,i) is
the covariance of Xk and Xk,i; σXk and σXk,i denote the standard

deviations of Xk and Xk,i.

2.1.2 Feature extraction of power consumption
volatility using improved entropyweightmethod

In order to precisely delineate the power consumption

volatility features of the typical daily load curve of a user,

firstly the indices including the peak-valley difference, the

peak-valley difference ratio, daily load rate, day-night power

consumption ratio, and volatility rate (Xu and Wang, 2017; Lu

et al., 2021) of the typical daily load curve are computed

according to the equations listed in Table 1.Where Vmax ,

Vmin, and Vav represents the maximum, the minimum and the

average value of the load curve, respectively; ECnight and ECday

represents the night and day power consumption indicated by the

load curve, respectively; Vnorm
t and Vnorm

t,mean respectively denotes the

normalized value and themean value of the load curve; t andT are the

number of sampling points and the total number of samples. And

then, the improved entropy weight method (Song et al., 2020) is

employed to assign weights to the above indices. Finally, the scoring is

carried out based on the indices and their corresponding weights of

the typical daily load curve. Consequently, the power consumption

volatility of the user can be measured. The detailed scoring steps are

listed below:

Step 1: The data of the indices should be firstly normalized using

the min-max normalization according to Eq. 2:

Hka
′ � Hka −Ha. min

Ha. max −Ha. min
(2)

where Hka
′ represents the normalized value of the ath index of

user k;Hka represents the real value of the ath index of user k;Ha. max

and Ha. min represent the max and min values of the ath index.

Step 2: This step decides the information entropy IEa for each

index. For the samples with a number of K users and a number of

A indices, the information entropy IEa of the ath index can be

achieved using Eqs 3, 4:

IEa � − 1
lnK

∑K
k�1

hka• ln hka (3)

hkv � Hka
′ /∑K

k�1
Hka

′ (4)

where k � 1, 2,/, K; hka is the contribution degree of the ath

index of user k.

Step 3: Compute the entropy weight Wa for the ath index

according to Eq. 5:

Wa �
exp(∑A

t�1
IEt + 1 − IEa) − exp(IEa)

∑A
b�1
(exp(∑A

t�1
IEt + 1 − IEb) − exp(IEb)) (5)

Step 4: Finally, the score λk of the power consumption volatility

of the user k can be achieved using Eq. 6:

λk �∑A
a�1

Hka
′ •Wa (6)

2.1.3 The labeling based on the IDR adaptability
portrait for the residential user

Firstly, the responding willingness, the historical load level,

the power consumption regularity, and the power consumption

volatility are employed to construct the portrait of the IDR

adaptability of a residential user Fit � {Wr, Lh, R, λ}, where Wr

is a fixed threshold which denotes the responding willingness of

the user; Lhdenotes the historical load level which can be

computed using Lh � 1
N ∑N

n�1
∑T
t�1
Vnt. Vnt is a value on the

historical load curve of the residential user; Ris achieved using

Eq. 1; λ is achieved using Eq. 6. As long as all the portraits of all

the users are generated, the spectral clustering algorithm (Dai

and Zeng, 2022; Srivastava et al., 2022) is employed to cluster the

TABLE 1 The equations for delineating the power consumption
volatility features.

Index Expression

Peak-valley difference f1 � Vmax − Vmin

Peak-valley difference ratio f2 � (Vmax − Vmin)/Vmax

Daily load rate f3 � Vav/Vmax

Day-night power consumption ratio f4 � ECnight/ECday

Volatility rate
f5 �

																								∑T
t�1
(Vnorm

t − Vnorm
t,mean)2/(T − 1)

√
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portraits. The details of the spectral clustering algorithm are

listed in Algorithm 1.

Algorithm 1: User classification method based on the spectral

clustering algorithm

Input: matrix of users’ portrait PF, cluster number nc,

Gaussian kernel function l

Output: the cluster label vector Q

1. Initialize a matrixJ as a zero matrix

2. Construct a similarity matrixJ according to the PF and l:

Ji,j � ∑n
i�1,j�1exp(−‖PFi−PFj‖

2

2l2 ) where PFi represents the

ith column vector of the matrix PF; n is the number of

column vector of the matrix PF.

3. Calculate the degree matrix T based on the similarity

matrix J: Ti,j �
⎧⎨⎩ 0, i ≠ j∑

j
Ji,j, i � j

4. Calculate the Laplace matrix:G � J − T for i = 1 to nc do

compute the eigenvector gi corresponding to the non-0

eigenvalue gi end for

5. Build matrixA based on {g0,/gnc}. Row number is

determined by the dimension of the eigenvector;

column number is determined by the number of

eigenvectors.

6. Cluster matrixAusing K-means algorithm into a

number of ncclusters: Q � K−means(A, nc)

Furthermore, based on the entropy weight FW denoted

by Eq. 5 of each characteristic and the portrait Fit, the score

UFk of the IDR adaptability of the user k can be achieved by

Eq. 7:

UFk � ∑Y
y�1

FWky•UFky
′ (7)

where UFky
′ represents the normalized value of the yth index in

Fit of user k; FWky represents the entropy weight of the yth index

in Fit of user k; Y represents the length of Fit.

All users have classified into a number of c classes according

to the cluster label vector Q. After that, the average score βav.iof

the user IDR adaptabilities of the users in the same cluster can be

calculated by Eq. 8. The IDR adaptability vector of all clusters

βavis constructed by Eq. 9:

βav.i �
1
N
∑N
n�1

UFin (8)

βav � [βav.1,/, βav.i,/, βav.c] (9)

Where N denotes the number of the users in a cluster; UFin

denotes the score of the IDR adaptability of user n.

And then, by sorting the vector βav in descending order, the

rank label vector Qlevel of the user IDR adaptability can be

achieved by Eq. 10:

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
Qk � i, i � 1, 2, 3, ..., c
βavd � descend order(βav)
i′ � rank(βav.i, βavd), i′ � 1, 2, 3, ..., c
Q′

k � i′
Qlevel � {Q1

′,Q2
′, ...Q′

k, ...Q
′
N

∣∣∣∣k ∈ N} (10)

where N represents the total number of the user samples; Qk is

the label of user k; βavd is the vector of βav arranged in descending

order; i′ is the rank of βav.iin βavd, which can update the original

label i of user; Q′
k is the ranked label of user k.

Finally, based on the rank label vector Qlevel, the top ranked

users are able to provide high IDR adaptabilities.

2.2 Precise portrait for the IDR potential of
the residential user

In Section 2.1 the residential users with high IDR

adaptabilities can be preliminarily selected. Based on the

selected users, this section further constructs the precise

portraits in enabling delineate the IDR potentials of the users.

According to the diversity of the load adjustable capacity in the

peak load periods, this section generates the precise portrait for

the IDR potential of the residential user based on the load

adjustable ability.

2.2.1 Imprecise dirichlet model based adjustable
margin estimation

Adjustable margin represents the amount of the flexible

adjustable load of a user to participate in DR in different time

periods. This index is of significance for generating the precise

portrait for the user. In terms of achieving the adjustable margin,

this section firstly constructs the fuzzy set containing all the

possible probability distributions of the user load amount in

different time periods using imprecise Dirichlet model (IDM)

(Zhang et al., 2018). Secondly, based on the range of the fuzzy set,

the amount of the flexible adjustable load participating in IDR in

the peak load periods can be estimated, which finally leads to the

awareness of the adjustable margin.

According to IDM, assume a set Sf �
{HLF1, HLF2,/, HLFnum} which is the collection of the

user’s num days historical load data HLF in the peak load

periods subjects to the polynomial distribution. Sf is divided

in to a number of n possible states. Therefore, its state space

Ξ � {lHLF1, lHLF2,/, lHLFn} and state probability space θ �
{θ1, θ2,/θn} should satisfy Eq. 11:⎧⎪⎪⎨⎪⎪⎩ P(lHLFi) � θi, i � 1, 2/n∑n

i�1
θi � 1, i � 1, 2/n (11)

Based on the number of total observations

M � m1 +m2 +/ +mn, the prior probability density function

set denoted by Eq. 12 subjecting to Dirichlet distribution can be
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achieved. And then, the posterior probability density function set

denoted by Eq. 13 can be further achieved using the Bayesian

updating:

P(θ) � Γ(s)⎡⎣∏n
i�1

Γ(s•ri)⎤⎦−1∏n
i�1

θs•ri−1i (12)

P(θ|M) � Γ(s +M)⎡⎣∏n
i�1

Γ(s•ri +mi)⎤⎦−1∏n
i�1

θmi+s•ri−1
i (13)

where Γ(·) is the gamma function; ri is the priori weight factor for

the ith state, for ∀ri ∈ [0, 1],∑n
i�1ri � 1;miis the number of times

that the ith state is observed; s is the size of the equivalent sample,

of which the value is 1.

Following, based on Bayesian theory, the priori probability

density function set of θ is converted into the posterior

probability density function set, and thus the range of θi
presented by Eq. 14 can be achieved:

θi � [E (θi), �E(θi)] � [ mi

s +M
,
mi + s

s +M
] (14)

Construct the probability intervals with confidence

coefficients, which is presented by Eq. 15:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩
θp � 0, θp � C−1

B2(1 + γ

2
), mi � 0

θp � C−1
B1(1 + γ

2
), θp � C−1

B2(1 + γ

2
), 0≤mi ≤ n

θp � C−1
B1(1 + γ

2
), θp � 1, mi � n

(15)

where γ is the confidence coefficient; CB1 is the cumulative

distribution function of the Beta distribution function

B(mi, s + n −mi); CB2 is the cumulative distribution

function of the Beta distribution function

B(s +mi, n −mi);[θ*, θ*] is the γconfidence bands for θi of

the cumulative distribution function of the true distribution,

and the statistical information extracted from the available

historical data, respectively; θ* and θ* are the upper bound and

lower bound of the confidence bands.

Based on the γconfidence bands [θ*, θ*] and the actual value

range [HLFlow , HLFup], the probability points (1 − γ)/2 and

(1 + γ)/2 are adopted to construct the load adjustable interval

denoted by Eq. 16:[llow , lup] � [HLFlow − γ/2, HLFup + γ/2] (16)

Ultimately, the adjustable margin ψf of the user can be

computed using Eq. 17:

ψf � lup − llow (17)

2.2.2 Labeling based on the precise IDR potential
portrait for the residential user

The user period load amount characteristics δf, load

period coefficient ηf, adjustable margin ψf in the peak

load period f are employed to construct the IDR potential

portrait of the user Pot � {δf, ηf,ψf}, where ηf and δf can be

computed using the equation in Table 2.Where Vnh

represents the values of the load curve during the

sampling point h1 to h2 in peak load period. N denotes

the total number of days for a user in the load dataset. As

long as all the portraits of all the users are generated, the

labeling process is similar to those presented in Section 2.1.3.

Therefore, the labeled users can be employed to execute the

classification in terms of improving the efficiency of

identifying the users with high IDR adaptabilities and IDR

potentials. Figure 1 indicates the entire labeling process for

the residential users.

3 The VAE-DBN based Load
classification model considering the
IDR adaptability and potential of the
residential user

According to the labeling presented by Section 2.1.3 and

Section 2.2.2, a number of samples in the load dataset can be

labeled. Therefore, the labeled samples can be selected as the

training dataset to train the VAE-DBN based classification

model, which is able to implement the user classification for

identifying the users with high IDR adaptabilities and potentials.

As only a part of the samples is processed by the time-consuming

labeling process, the rest samples are handled by the classification

model automatically, thus the efficiency of the identification can

be guaranteed.

3.1 VAE based load data pre-training
model

The load data is normally with the characteristics of high

dimension and long time period, which deteriorate the

classification efficiency. In terms of improving the processing

efficiency of the load data, this paper employs VAE to pre-train

the input load data samples (Gunduz, 2021; Kingma, D.P., and

Welling, M., 2014) to implement dimension reduction. VAE

mainly consists of encoder, latent space, and decoder. The encoder

maps high-dimensional data features to low-dimensional data features

TABLE 2 The equations for delineating the IDR potential of the
residential user.

Index Expression

Period load amount characteristics
δf � 1

N ∑N
n�1
∑h2

h�h1
Vnh

Load period coefficient ηf � δf/Lh
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with specific distribution. The decoder receives the low-dimensional

data features. And then, it carries out the sampling to reconstruct the

high-dimensional data features.

In the training of the VAE model, firstly the encoder extracts

the probability distribution Pϑ(X) of the high-dimensional

spatial features from the original load data X to achieve the

distribution of latent variable Pϑ(Z|X). ϑ is the network

parameter. Using the mean μ and variance σ of a given Z

distribution, the original X can be mapped to an interval

represented by the distribution N(μ, σ). And then, the latent

variable Z (lower-dimensional space) can be achieved based on

the sampling of the interval. Finally, the decoder recovers the

reconstructed X′ which is approximate to the original X.

Therefore, the encoding of the original load data X can be

obtained in the lower-dimensional space. Figure 2 shows the

structure of VAE model. And the brief introduction of VAE is

also listed below.

1) Encoder introduces a posterior distribution Qϖ(Z|X), which
is an approximate inference of the posterior distribution of

the latent variable Z.ϖ is the network parameter. The target of

the approximate inference is a normal distributionN(μ, σ). It
can be deduced that the posterior distribution Qϖ(Z|X)
approximate follows the normal distribution. The encoder

model can be formed by Eq. 18:ϖ

Encoder(X) � Qϖ(Z|X) ~ N(μ, σ) (18)

where μ and σ represent the mean and variance corresponding to

the probability distribution of X in the encoding process.

2) Latent space: The mean μ and variance σ can be generated by

the encoder. From the posterior distribution Qϖ(Z|X), the
latent variable Z is sampled and subsequently sent to the

decoder network by using the reparameterization trick. The

latent variable Z is calculated by Eq. 19:

FIGURE 1
The labeling process of the graded user portrait.

FIGURE 2
The structure of the VAE model.
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Z � μ + ε•σ (19)
where ε is sampled from a standard normal distributionN(0, 1).

3) Decoder estimates a posterior distribution Pϑ(Z|X), which

generates the probability distribution of the reconstructed data

X′ according to the latent variable Z. It can be deduced that the

distribution of reconstructed data X′ follows the posterior

distributionPϑ(Z|X). The decodermodel can be formed byEq. 20.

Decoder(Z) � Pϑ(Z|X) (20)

4) Loss function: In order to minimize the difference of the

distribution between Qϖ(Z|X) and Pϑ(X), and reduce the

reconstruction loss, the loss function can be constructed by

Eq. 21:

LOSS � −KL(Qϖ(Z|X)‖Pϑ(Z)) + EQϖ(Z|X) ln(Pϑ(X|Z)) (21)

Where the first term is to measure the similarity between the

distribution Qϖ(Z|X) and Pϑ(Z) by using the Kullback-Leibler

Divergence; the second term is a likelihood of the original load

data being reconstructed (reconstruction term).

After calculating LOSS according to Eq. 21, the model

parameters are optimized in the back propagation using the

Adam optimizer. When the model converges, the training of the

VAE model is completed. This process can affirm the dimension

of the latent space to guarantee a lower reconstruction loss and

preserve the original data characteristics.

3.2 DBN based Load Classification Model

DBN mainly consists of multiple restricted Boltzmann

machines (RBM) (Lin et al., 2016). It is able to highlight the

characteristic of the data, which is quite suitable for execute the

classification task for the load data. RBM is a probabilistic

modeling method based on the energy function. It consists of

a hidden layer h � (h1, h2, h3,/hnh) and a visible

layerv � (v1, v2, v3,/vnv). The weight matrix Wn×m connects

the layers to implement the bi-directional full connections.

The structure of an RBM is shown in Figure 3.

For a given group of states (v, h), the joint probability energy
function of the hidden layer and visible layer can be represented

by Eq. 22:

EF(v, h) � −∑nv
i�1
aivi −∑nh

j�1
bjhj −∑nv

i�1
∑nh
j�1
hjwjivi (22)

Where wji denotes the weight between the visible unit vi
and the hidden unit hj; ai represents the bias of the ith

neuron in the visible layer; bj represents the bias of the

jth neuron in the hidden layer; nv represents the number

of the visible units; nh represents the number of the

hidden units.

For any group status (v, h), the joint probability distribution
can be represented by Eq. 23:

P(v, h) � e−EF(v,h)/∑
v,h

e−EF(v,h) (23)

If the visible states v is given, the activation probability for the

hidden states h can be represented by Eq. 24:

P(h|v) � S⎛⎝∑nv
j

wT
jihj + ai⎞⎠ (24)

If the hidden states h is given, the activation probability for

the visible states v can be represented by Eq. 25:

P(v|h) � S⎛⎝∑nh
i

wT
jivi + bj⎞⎠ (25)

In Eqs 24, 25, S represents the sigmoid activation function

which is represented by Eq. 26:

S(x) � 1/(1 + e−x) (26)

In terms of training the RBM, the tuning of the parameters is

based on the maximization of the log likelihood of the training

data. The partial derivative of the weight wji can be computed

using Eq. 27:

z ln(P(v))
zwji

� [vihj]D − [vihj]M (27)

Where [vihj]D and [vihj]M represent the expectations of the

practical data distribution and the model distribution,

respectively.

Due to the complexity and computational intensity of

computing [vihj]M, the contrastive divergence is adopted to

estimate the gradient and moreover to update the weight ŵji

using Eq. 28:

ŵji � η([vihj]D − [vihj]re) (28)

Where η is the learning rate; [vihj]re is the distribution

expectation reconstructed by the visible layer. Additionally,

the biases ai and bj can be updated similarly.

FIGURE 3
The structure of RBM.
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During the training of the DBN classification model. The

output of the last RBM is the input of the next RBM using the

feed forward. And then, the supervised learning based back

propagation is executed to adjust the parameters. This paper

employs soft max to tune the parameters of DBN.

3.3 The detailed steps of training and
classifying using VAE-DBN

Step.1: Data normalization. For a load dataset X � {X1,/, XN}
composed ofN samples of users, it is initially normalized to make

the training process converge as soon as possible. The min-max

normalization method is adopted, which is expressed as

Xnorm � (Xactual −Xmin)/(Xmax −Xmin). Xmax, Xmin, Xactual,

and Xnorm represents the maximum, minimum, actual, and

norm value of the load data, respectively.

Step 2: Training VAE model. The normalized dataset Xnorm is

input into the VAE model. And this model can be trained

according to Eqs 18–21. Therefore, based on the VAE model,

the lower-dimensional data Z can be obtained from the encoder

encoding Xnorm by Eq. 19. Subsequently, the decoder can

reconstruct the load data Xnorm
′ according to Eq. 20. Finally,

the loss function LOSS is utilized to optimize the parameter of the

VAE model according to Eq. 21, until the model is converged.

Step 3: Training DBN model. The lower-dimensional data Z and

their labels are input into the DBN model. At the outset of DBN

model training, all parameters of the model are initialized. And

then, each RBMs layer of the DBN model is trained according to

Eqs 22–27 until the training of all RBMs is completed. The weight

wji of the RBMs layer can be updated by Eq. 28. At the end of the

DBN model training, the soft max classifier is employed to

optimize the weights and bias for each RBM of the DBN

network. Up to this point, the VAE-DBN based classification

model is completely trained and can be applied on classification.

Step 4: User classification. The presented user classifying process

includes two classifying stages. In the first classification stage, the

VAE-DBN model is applied to achieve the user classification for

identifying the users with high IDR adaptabilities. The users with

high IDR adaptabilities can be preliminarily selected and then

proceed to the next classification stage. In the second classification

stage, based on the load data of selected users in the peak load periods,

the VAE-DBN model is applied to achieve the user classification for

identifying the users with high IDR potentials.

FIGURE 4
The detailed process of the VAE-DBN classification model.
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The process of the presented residential user portrait based

VAE-DBN classification is shown in Figure 4.

4 Experimental result

The experiments are carried out using the computer with

Inter(R) Core(TM) i5-1135G7 CPU 4.20GHz, RAM 16GB, OS

Windows 11. In terms of highlighting the performance of the

presented approaches, a synthesized load dataset based on the

practical load is generated. The dataset contains 278 residential

users. Each user contributes their daily load data for 91 days. The

sampling interval of each daily load data is 15 min. Therefore,

each sample of the load dataset is 4 × 24 × 91 � 8736

dimensions. In the following experiments, if the experiments

focus on studying the daily load, the sample with

8,736 dimensions will be converted into 91 daily load samples

each of which is 96 dimensions. The experiments are mainly

categorized into three types including the evaluation of the

preliminary portrait of the IDR adaptability, the evaluation of

the precise portrait of the IDR potential, and the evaluations of

the VAE-DBN based load data classification.

4.1 Evaluation of IDR adaptability portrait
and preliminary selection of IDR candidate
users

4.1.1 Generation of typical daily load curve for
user

Before generating the portraits of the residential users, as

presented in Section 2.1.1, the typical daily load curve of each

user should be extracted using the KANN-DBSCAN clustering

algorithm. For each user, after processed by the clustering

algorithm, the load samples are clustered into a number of

clusters. And then, the centroid of the cluster which contains

the greatest number of samples is selected as the typical daily load

curve of the user. Figure 5 indicates the typical daily load curve

for a user. It can be seen that a residential user clearly has various

power consumption behaviors in different time periods, which

potentially indicates that the user has potentials to participate in

IDR. Moreover, the details of the centroid of the cluster selected

for a user are listed in Table 3.

Table 3 indicates the number of samples per cluster for a user

in the load dataset. It is obvious that cluster 3 contains the largest

number of samples. Therefore, the centroid of cluster 3 is

extracted as a typical daily load curve for the user, which can

be observed in Figure 5.

4.1.2 Portrait of the IDR adaptability and
preliminary selection

Firstly, the responding willingness, power consumption

regularity, power consumption volatility, and historical load

level for each of the 278 users are computed according to the

expressions listed in Table 1. Therefore, the portraits of the IDR

FIGURE 5
The typical daily load curve for a user in the load dataset.

TABLE 3 The details of the centroid selected for a user in the load
dataset.

Cluster No. of samples Centroid selection

1 20

2 17

3 38 √

4 16

FIGURE 6
The determination of the optimal cluster number for the
users’ portraits.
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adaptabilities of the 278 residential users can be generated. And

then, the spectral clustering algorithm is applied on the portraits

according to Algorithm 1. Based on Silhouette index (SI) and

Davies Bouldin index (DBI), the optimal number of clusters of

the users’ portraits can be identified (Wang et al., 2022). Figure 6

indicates the determination of the optimal cluster number for the

portraits.

According to the improved entropy weight method presented

in Section 2.1.3, the clusters of the portraits can be scored, and

thus all the users in the corresponding clusters are scored. As the

optimal cluster number is 3, three types of the scored users are

finally identified. A type users are with high IDR adaptabilities; B

type users are with medium IDR adaptabilities; C type users are

with low IDR adaptabilities. The result is shown in Figure 7.

Especially, the values of the responding willingness, power

consumption regularity, power consumption volatility, and

historical load level indicated in the figure are the average

values of those of the users in the clusters.

Figure 7 indicates that the responding willingness, power

consumption regularity, power consumption volatility, and

historical load level of the A type users show satisfied

performance to participate in IDR. Therefore, in the practical

IDR task, this kind of users can be firstly dispatched. B type users

show weaker performance than that of A type users, which

provides medium IDR adaptability. However, the figure

indicates that if the responding willingness can be enhanced,

for example based on the extra economic compensation, B type

users are also valuable to participate in IDR. Although C type

users show higher power consumption regularity, the other three

indices are too low to be suitable for participating in the IDR

tasks.

4.2 Evaluation of portrait of the IDR
potential.

In this section, the peak period 1 (10:00–14:00) and peak period 2

(17:00–21:00) are employed to evaluate the effectiveness of the

portrait of the IDR potential. Based on the preliminary selection

of the users with high IDR adaptability, a number of 144 users

belonged to A type are selected as the candidates. According to the

presented portrait approach in Section 2.2, the portraits of the IDR

potential for 144 users can be generated. And then, the spectral

clustering algorithm and the improved entropy weight method are

also applied to identify the users with different levels of IDR

potentials. As a result, the type of high IDR potential users (Type

III), the type ofmedium IDRpotential users (Type II), and the type of

low IDR potential users (Type I) can be achieved. The average IDR

potential values of different user types in peak period 1 and peak

period 2 are shown in Tables 4, 5. Both tables indicate the potential

differences among different types of users.

In terms of indicating the performance of identifying users

with different IDR potentials using the presented portrait

approaches, the typical daily load curves of the users with

different IDR potentials in peak period 1 are demonstrated in

Figure 8.

Figure 8 indicates that the portrait of the IDR potential is able

to capture the overlapping between the peak period of user power

consumption (dark area in the figure) and the peak load period of

the system. According to three figures, Type III user has great

potential to participate in IDR, which can contribute more to

implement the load shifting.

Figure 9 uses a specific user as the example to show the

portrait of the IDR adaptability and the portrait of the IDR

potential.

FIGURE 7
Three types of the scored users with high, medium, and low
IDR adaptabilities.

TABLE 4 Average values of different type IDR potential users in peak
period 1.

User type ηf 1/kw δf 1/kw ψf 1

Type I user 35.80 16.40 0.146

Type II user 46.78 14.24 0.196

Type III user 67.97 17.07 0.271

TABLE 5 Average values of different type IDR potential users in peak
period 2.

User type ηf 2/kw δf 2/kw ψf 2

Type I user 59.41 12.96 0.254

Type II user 73.89 13.68 0.307

Type III user 78.87 19.95 0.324
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Figure 9 shows the typical daily load curve and the types of

the IDR adaptability and the IDR potential of the specific user.

The portraits can reflect the power consumption preference and

if the user is suitable for participating IDR in certain periods. This

figure indicates that the presented approaches of generating

portraits can be suitable tools for the power company to select

proper users to participate in IDR.

4.3 VAE-DBN based load classification

Based on the presented portraits and labeling approaches, the

samples in the load dataset can be labeled. Therefore, the labeled

samples can be regarded as the training samples to train the

VAE-DBN classification model. And then, based on the trained

classification model, the rest samples in the load dataset can be

automatically and efficiently identified if they are suitable to

participate in IDR. As a result, the efficiency of the identification

can be guaranteed.

4.3.1 The parameters of the employed VAE-DBN
The load samples of the 278 residential users are divided into the

training dataset containing 228 users and the testing dataset containing

50 users. The samples in both datasets are normalized and input into

VAE-DBN to implement the training and testing respectively. The

parameters employed by VAE-DBN are listed in Table 6.

4.3.2 The performance of the dimension
reduction using VAE

The training dataset is employed to train VAE. The encoder of

VAE inputs the training samples with 8,736 dimensions. Latent space

FIGURE 8
Typical load curves of users with different IDR potentials. (A)
Type I user in peak period 1. (B) Type II user in peak period 1. (C)
Type III user in peak period 1.

FIGURE 9
The portrait of the IDR adaptability and the portrait of the IDR
potential for a specific user.
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outputs the dimension-reduced output with 20 dimensions. The

decoder of VAE is to guarantee the dimension-reduced samples can

also well represent the original data. Figure 10 shows the curve of the

VAE reconstruction losses along with the increasing iterations.

The reduced dimension of VAE is based on the signal

reconstruction loss and information retention rate of data

under different data compression ratios (Wang et al., 2022).

The reconstruction loss and the information retention rate can be

computed by Eqs 29, 30:

εe �

											∑m
j�1
(Xj −X′

j)2
m

√√
(29)

πr � 1 −
∑den
j�1

(((((Xj −X′
j

(((((2/den

∑m
j�1

((((Xj

((((2/m (30)

Where X andX′ represents the original data and the

reconstructed data; m, den denotes the dimension of the

original data, the dimension of dimension-reduced output,

respectively.

When the dimension is reduced from 8,736 to 20, the signal

reconstruction loss εe is 0.84 and the information retention rate

πr is 86%. When the dimension is reduced from 8,736 to 10, the

signal reconstruction loss εe is 0.79 and the information retention

rate πr is 79%. The above results suggest that although the high-

dimensional load sample is significantly reduced, the data

information of the original sample doesn’t lose too much.

Benefitting from this point, the efficiency of the VAE

dimension reduction based classification can be improved.

4.3.3 The performance of the classification
using VAE

In terms of demonstrating the effectiveness of VAE-DBN,

this section classifies the users according to their IDR

adaptabilities and IDR potentials in peak period 1. In this

case, the VAE dimension-reduced training samples are firstly

input into DBN to implement the training. As long as the training

phase finishes, the DBN can be employed to carry out the

classification using the VAE dimension-reduced testing data

samples. Additionally, in terms of further demonstrating the

effectiveness of VAE, two widely used dimension reduction

algorithms including PCA and auto encoder (AE) are also

implemented. PCA is a linear transformation algorithm,

which projects a high-dimensional data set into a new

subspace where the orthogonal axes are located. However, the

quality of dimensionality reduction cannot be guaranteed when

the high-dimensional dataset does not present linear correlation.

AE has nonlinear dimensionality reduction capability, which can

TABLE 6 The parameters employed by VAE-DBN.

Parameter DBN VAE

Input layer node 20 8,736

Hidden layer node 70/70/70 —

Dimension of latent variable — 20

Output layer node 3 8,736

optimizer Sgd Adam

Dropout 0.2 —

Learning rate 0.001 0.001

reconstructed_logits — 0.5

FIGURE 10
The curve of the training error of VAE.

FIGURE 11
Comparison of classification using different dimension
reduction algorithms based DBN.
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learn high-dimensional data features to a lower dimension on the

basis of supervised learning. Therefore, in order to evaluate the

dimensionality reduction effect of different algorithms, the

dimensionality of dimensionality reduction is uniformly set

to 20.

The comparisons of the classification accuracy and efficiency

are shown in Figure 11. In the figure, D represents the

classification using the standard DBN without any dimension

reduction; P-D represents the classification using the PCA based

DBN; A-D represents the classification using the AE based DBN;

V-D represents the classification using the presented VAE based

DBN. In this paper, classification accuracy is used for measuring

the correct classification performance of an algorithm, which can

be calculated by dividing the number of correctly classified

samples by the total number of samples.

Figure 11 indicates that VAE-DBN finds a compromise

between the accuracy and efficiency. The algorithm can

provide satisfied classification accuracy with high efficiency.

Contrarily, although PCA based DBN outperforms the other

algorithms in terms of efficiency, it shows the worst classification

accuracy. The reason is that PCA depends on the linear

correlation of the samples. However, the load sample is

frequently nonlinear correlation. The figure also shows that

AE based DBN can also provide similar performances

compared to those of the VAE-DBN. However, the

experiments suggest that VAE-DBN can more effectively learn

the low dimensional representation of the sample data.

Therefore, VAE-DBN still outperforms the AE based DBN.

In terms of comparison the performance of the classifiers,

this paper also implements a number of popular classifiers

including MLP, BPNN, K nearest neighbors (KNN). The

comparison of the classification accuracy is shown in

Figure 12. In the figure, V-M represents the classification

using the VAE based MLP; V-B represents the classification

using the VAE based BPNN; V-K represents the classification

using the VAE based KNN; V-D represents the classification

using the presented VAE based DBN.

Figure 12 shows that compared to the MLP and KNN, the

supervised neural network algorithms perform higher accuracies.

Especially, in both IDR adaptability and IDR potential

classifications, DBN outperforms the other algorithms, which

indicates that deep learning algorithm is able to precisely identify

the hyperplane among classes, and thus it classifies the load data

with satisfied accuracies.

Table 7 illustrates the comparison of the classification

accuracy based on VAE-DBN with different dimensions.

When the dimensionality rises to 20 dimensions, the

classification accuracy has reached a relatively stable state.

Thereafter, the classification accuracy doesn’t vary greatly with

the increasing number of dimensions. This point is also the

reason that why this paper finally employs 20-dimension to carry

out the classification tasks.

For evaluating the training efficiencies of the VAE-DBN and

the standard DBN classification models, the synthetic loaded

dataset is duplicated from 16 to 512 MB. Table 8 demonstrates

that the training times of both models increase when the volume

of training data increases. Obviously, the training time of the

VAE-DBN model does not increase sharply compared to that of

the DBNmodel. The reason is that VAE-DBN converts the high-

dimensional data into low-dimensional data to train the

classification model, which greatly improves the training

efficiency of VAE-DBN in the classification tasks.

FIGURE 12
Comparison of classification using different classifiers
with VAE.

TABLE 7 The comparison of classification accuracy based on VAE-
DBN with different dimensions.

Dimensions The classification accuracy

10 0.742

20 0.896

30 0.903

40 0.891

TABLE 8 Training efficiency comparison of VAE-DBN and DBN.

Data volume (MB) DBN VAE-DBN

16 1.27 × 102s 0.53 × 102s

32 8.91 × 102s 2.52 × 102s

64 1.79 × 103s 7.74 × 102s

128 3.12 × 103s 1.18 × 103s

512 1.09 × 104s 4.98 × 103s
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Figure 13 shows the efficiencies of the portrait of IDR

potential based on the high IDR adaptability users, the

classification using the standard DBN, and the classification

using VAE-DBN. It can be seen from the figure that because

of the overheads for computing multiple indices, the portrait is

quite time consuming. Especially along with the increasing

number of new users, the time of generating portraits

increases sharply. Contrarily, the times of the classification

based on standard DBN and VAE-DBN are relatively low.

And benefiting from the dimension reduction, VAE-DBN

outperforms DBN. This point significantly proves that,

although the portrait is able to delineate the characteristics of

the power consumption of the residential users, its efficiency is

not quite satisfied. However, the portrait based labeling can help

the deep learning algorithm be aware of the features of the users

with high adaptabilities and potentials. As a result, the

classification can significantly improve the efficiency for the

power company to identify the valuable user to participate

in IDR.

5 Conclusion

Currently, the portrait for the power consumption of the

residential users and the load classification algorithms have less

considerations for serving the identification of IDR participation.

Therefore, this paper presents a residential user classification

approach based on the graded user portrait with considering the

IDR adaptability and the IDR potential. Based on the portrait of

the IDR adaptability, the users with high adaptabilities can be

preliminarily selected. And then, based on the portrait of the IDR

potential, the users with high adaptabilities and potentials in

different periods can be finally identified. Further, to solve the

low efficiency issue of the portrait, the labeling based on the

portrait is also presented. The labeling finally leads to the

implementation of the VAE-DBN based user classification.

VAE-DBN not only improves the efficiency of the user

identification for participating in IDR, but also significantly

reduces the dimension of the users’ samples, which also

improves the efficiency of the classification. The experimental

results suggest that the presented approaches can be effective

tools for power company to identify suitable residential users to

participate in IDR.
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