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The implementation of a precise and low-computational state-of-health (SOH)

estimation algorithm for lithium-ion batteries represents a critical challenge in

the practical application of electric vehicles (EVs). The complicated

physicochemical property and the forceful dynamic nonlinearity of the

degradation mechanism require data-driven methods to substitute

mechanistic modeling approaches to evaluate the lithium-ion battery SOH.

In this study, an incremental capacity analysis (ICA) and improved broad learning

system (BLS) network-based SOH estimation technology for lithium-ion

batteries are developed. First, the IC curves are drawn based on the voltage

data of the constant current charging phase and denoised by the smoothing

spline filter. Then, the Pearson correlation coefficient method is used to select

the critical health indicators from the features extracted from the IC curves.

Finally, the lithium-ion battery SOH is assessed by the SOH estimation model

established by an optimized BLS network, where the BLS network is formed

through its L2 regularization parameter and the enhancement nodes’ shrinkage

scale filtrated by a particle swarm optimization algorithm. The experimental

results demonstrate that the proposedmethod can effectively evaluate the SOH

with strong robustness as well as stability to the degradation and disturbance of

in-service and retired lithium-ion batteries.
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1 Introduction

Accompanied by the intensification of ambient pollution and the electrical power

crisis, the worldwide automotive market is undergoing an electrification revolution of

unprecedented magnitude (Lipu et al., 2021; Qin et al., 2021; Tang et al., 2021; Wang et al.,

2021; Wei et al., 2021). Electric vehicles (EVs) represent a crucial technology for

significantly mitigating the emission of greenhouse gases, reducing air pollution in
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densely populated areas, and promoting operation efficiency

(How et al., 2020; Tian et al., 2020; Xiong et al., 2020; Hecht

et al., 2021; Yin et al., 2021).

Thanks to the extended cycle life, high-quality power density,

and reduced self-discharge rate, lithium-ion batteries, as the

power source, are extensively implemented in smart grids,

portable devices, and EVs (Liu et al., 2021; Zhang et al.,

2022a; Jiang et al., 2022). However, the discharging capacity

of lithium-ion batteries progressively depreciates with repeated

cycling operations owing to the loss of lithium-ion inventory,

decomposition of the active material, and drop in conductivity.

Moreover, lithium-ion batteries are mandated to be retired for

EVs when the discharging capacity drops to about 80% with no

damaged batteries, owing to the disadvantages of mileage anxiety,

battery security, and other factors (Li and Wang, 2018; Li et al.,

2021). Even though retired batteries are not appropriate for

continued application in sophisticated EV running

environments, they are feasible in stable charging and

discharging situations (Yu et al., 2021; Lai et al., 2022).

Precise state-of-health (SOH) estimation will deliver a

degradation trend for lithium-ion batteries, which will

facilitate the monitoring of the degradation for in-service

batteries, as well as the reselection and reorganization of

retired lithium-ion batteries in the process of cascade

utilization. Accordingly, the SOH of lithium-ion batteries, as

the critical indicator of the battery output capability, requires

detailed investigation and accuracy estimation (Lipu et al., 2018;

Sui et al., 2021).

A myriad of research has been focused on SOH estimation

and has utilized many methodologies in this domain, which

generally belong to direct measurement methods, model-based

approaches, and data-based techniques (Sarmah et al., 2019).

Open circuit voltage (OCV) and ohmic resistance measurement

are commonly implemented for direct measurement of battery

SOH in-vehicle battery management systems (BMSs) for the

reasons of simplicity and low computational complexity. In order

to obtain the intrinsic relationship between SOH and OCV, it is

necessary to perform numerous measurements (Wang et al.,

2018a). The ohmic internal resistance measurement method

calculates the current battery SOH using the definition of the

SOH internal resistance (Wang et al., 2018b; Chen et al., 2018).

However, the operation temperature, accumulation of error, and

sensor noise in the estimation process will introduce substantial

deformations of the aging curve. Thus, it is not surprising that

there is a large difference between the estimated SOH and

practical SOH (Ahn and Lee, 2018; Cui et al., 2018).

Regarding the model-based approaches, degradation models

have been developed by profiling the interior mechanisms and

characteristics of outside electricity. The most popular models

involve the electrochemical model (EM) and equivalent circuit

model (ECM) (Ma et al., 2018). For example, Zheng et al. (2016)

estimated the capacity using proportional-integral observers

based on pseudo-two-dimensional (P2D) EM. However, the

P2D model is greatly limited by the low charge-discharge rate.

Xiong et al. (2018) utilized the finite analysis method and the

genetic algorithm to simplify the P2D model. This model

presents the fundamental interpretation for the battery aging

caused by electrochemical reactions inside the batteries.

Nevertheless, these electrochemical-based aging modeling

approaches are not appropriate for practical application owing

to the complicated computational process. ECM frequently

transforms the problem of SOH estimation into parameter

estimation with the combination of extended Kalman filtering

(EKF) or particle filtering (PF) and their derivatives. For instance,

Guha and Patra (2018) introduced the electrochemical

impedance spectrum (EIS) as the key indicator to monitor the

capacity and SOH for lithium-ion batteries based on the

fractional-order ECM. Shi et al. (2019) established a second-

order resistance-capacitance (RC) ECM, and the SOH was

estimated using the improved unscented particle filter (UPF).

Unfortunately, the identification of all the hidden and intricate

non-linear degradation features is challenging, which prevents

the construction of an accurate degradation model.

Owing to advancements in machine learning in recent years,

there have been widespread applications of data-driven methods

in SOH estimation for lithium-ion batteries (Li et al., 2019; Oji

et al., 2021; Samanta et al., 2021). The data-driven approach does

not demand insight into sophisticated electrochemical reactions

in the modeling and SOH estimation processes but converts the

SOH estimation problem into a regression prediction program by

building a mapping relationship between health indicators (HIs)

and discharging capacity or SOH, which offers simple flexibility

and excellent nonlinear learning capability (Xu and Xu, 2020).

The long short-term memory neural network (LSTM NN)

(Zhang et al., 2022b), support vector regression (SVR) (Cai

et al., 2020), relevance vector machine (RVM) (Chen et al.,

2021), and extreme learning machine (ELM) (Zhao et al.,

2022) are frequently utilized data-driven methods to reflect

captured HIs for the battery SOH. To achieve higher SOH

estimation accuracy, the availability of datasets covering all

operating states of the battery is required, which is the

principal limitation of data-driven approaches. In addition, it

can be observed that the primary problem of data-driven

approaches concerns how to obtain reliable and high-quality

HIs (Pan et al., 2018).

Currently, HI analysis methods commonly incorporate

incremental capacity analysis (ICA), differential pressure

analysis (DVA), and so on (Schaltz and Schaltz, 2020; Zhang

et al., 2020). The size, location, and distribution of the IC/DV

curve peaks fluctuate with battery degradation and represent

distinct states of battery health. The ICA method offers a more

widespread application than the DVA technique because the

latter employs the capacity obtained by integrating current with

time as the abscissa, which always generates cumulative errors.

The broad learning system (BLS) network is a stochastic vector

single-layer neural network learning system proposed by Chen
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et al. (2019) with the advantages of not having to iteratively

update the parameters of certain neural networks, good

generalization performance, learning fast, and not producing

local optimal solutions. However, the initial parameters of the

BLS network affect the performance of this network significantly.

The particle swarm optimization (PSO) approach is an advanced

parameter optimization algorithm, which has been widely

applied to find the global optimal value of network

parameters due to its high precision, fast convergence speed,

and few parameters (Song et al., 2021).

Based on the above analysis of the research actuality and

relevant technical obstacles, an SOH estimation methodology

based on the ICA technique and the improved BLS network for

in-service and retired batteries is proposed in this work. First,

voltage data of the constant current charging stage are utilized to

graph the IC curve by smoothing spline filter denoising. HIs of

high correlation with battery SOH degradation are generated by

IC peaks according to the Pearson correlation analysis method,

and then the battery SOH estimation model is constructed using

the introduced PSO-BLS network. The PSO-BLS approach refers

to the L2 regularization parameter and the shrinkage scale of the

enhancement nodes of the BLS network modified by the PSO

algorithm in this work. Finally, experiments for SOH estimation

are undertaken to verify the feasibility and robustness of the

proposed method based on the aging data of in-service and

retired batteries measured in the Anqing Normal University

(AQNU) laboratory with different charging multipliers. The

experimental results demonstrate that the developed PSO-BLS

network technique not only guarantees the accuracy of battery

SOH estimation but also exhibits excellent robustness and

stability. Specifically, several key contributions are presented

below.

1) An ICA and improved BLS network-based SOH estimation

technology for lithium-ion batteries is developed in this work.

2) An optimized BLS network is constructed through the PSO

algorithm using the L2 regularization parameter and the

enhancement nodes shrinkage scale of the BLS network.

3) The incremental capacity curves are denoised by the

smoothing spline filter based on the voltage data of the

constant current charging phase.

The remainder of this study is divided into the following

sections. First, the feature extraction and HIs selection will be

discussed in detail in Section 2. Then, Section 3 illustrates the

monotonic PSO algorithm and BLS network. The procedures and

framework of the proposed SOH estimation method are also

documented in this section. Section 4 verifies the feasibility,

stability, and robustness of the proposed algorithm based on

battery aging data with different charging multipliers and

different degradation states. Finally, conclusions are discussed

in Section 5.

2 Battery aging experiment and
feature extraction

2.1 Battery aging experiment

As shown in Figure 1, the high-performance battery

measurement system was constructed in the laboratory to

execute the charging and discharging aging experiment on the

battery with different charging multipliers. The devices mainly

included a host, the battery testing device (Neware, CT-4008-

5V20A, Shenzhen, China), and the thermostat (Neware, MHW-

200, Shenzhen, China).

Regarding the robustness and effectiveness of the proposed

methodology, the experimental objects consist of in-service

batteries named N1 and N2, and retired batteries noted as

R1 at a constant temperature of 25°C. The current maximum

discharging capacity of the batteries N1 and N2 is 2.4 Ah, but for

R1 it is only 1.4 Ah. The tested batteries use 18,650 cylindrical

ternary lithium-ion batteries, and the specifications of the tested

batteries are summarized in Table 1. Batteries N1 and R1 were

charged at a constant current of 0.1 C (C is the charge and

discharge current measured against the rated capacity) in the

designed aging experiments until the terminal voltage achieved

4.2 V, and then controlled at a constant voltage of 4.2 V until the

charging current dropped below 48 mA. However, the constant

charging current rate of N2 is 0.2 C. In addition, all the tested

batteries were discharged under a constant current of 1 C before

the battery voltage dropped to 3 V. The SOH of the lithium-ion

battery can be defined from the capacity and internal resistance,

but the capacity definition method is more accurate and the

parameters are easier to obtain. Therefore, the lithium-ion

battery SOH is defined from the perspective of capacity in

this work, which is defined as:

SOH � Cpresented capacity

Cinitial capacity
× 100%, (1)

where Cpresented capacity and Cinitial capacity are the discharging

capacity of the present and the initial times, respectively.

2.2 Incremental capacity curve analysis

IC refers to the charged or discharged capacity within a unit

voltage when charging or discharging the battery at a certain

current, which is calculated according to the following definition

in this work:

dQ/dV ≜ ΔQ/ΔV, (2)
Q � I × t, (3)

where dQ/dV denotes the IC value, Q indicates the charging

capacity, V is the terminal voltage, I is the charging current, and t

represents the charging time for the battery. The IC curve
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provides insight into the external characteristics of the battery

and the sophisticated internal electrochemical mechanism (Jiang

et al., 2020). The evolution process of the captured characteristics

from the IC curve can be adapted to distinguish the degradation

behavior and determine the loss of active material inside the

battery (Guo et al., 2021).

In practice, the discharging condition of EVs presents

uncertainty and irregularity, while the charging condition

usually remains steady with a standard constant current/

constant voltage protocol. Therefore, the voltage data of the

constant current charging stage are selected to create the IC curve

in this work. However, the reported data are frequently

contaminated by spurious noise owing to instrument errors,

interference factors in the measurement, and other unknown

factors. It is extremely challenging to distinguish the significant

features based on the original data. To represent the

transformation procedure and illustrate the performance of

the IC curve better, data denoising using the smoothing spline

approach is carried out. Figure 2 shows the comparison before

and after denoising the IC curve for one cycle of charging and

discharging.

The spline function, comprising a polynomial spline and a

smoothing spline, is a segmented and reduced-order polynomial

approximation function, which can be applied to various

functions with diverse degrees of nonlinearity (Lin et al.,

2020). However, it has been shown that solving polynomial

spline coefficients directly by the least-squares method is

susceptible to overfitting in theory and practice. Therefore, a

smoothing spline adds a penalty value to the residual sum of

squares (RSS).

FIGURE 1
Experimental instruments.

TABLE 1 Specifications of the experimented battery.

Rated capacity 2.4 Ah

Normal voltage 3.6 V

Allowed voltage range 3 V–4.2 V

End-of-charge current 48 mA

Max charge/discharge current 2,400 mA/7,200 mA
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Assume the dataset (xi, yi) to fit the model f (x), i = 1, 2, . . ., n.

The general fitting error without adding the smoothing

parameter is defined as:

RSS � ∑N
i−1

{yi − f(xi)}2. (4)

Then incorporate the smoothing parameter λ:

RSS(f, λ) � ∑N
i−1

{yi − f(xi)}2 + λ∫{f″(t)}2dt. (5)

The natural spline f (x) can be described as:

f(x) � ∑N
j−1
Nj(x)θj, (6)

where the Nj(x) represents the family of natural splines.

Accordingly, Eq. 5 reduces to:

RSS(θ, λ) � (y � Nθ)T(y � Nθ) + λθTΩNθ, (7)
{N}ij � Nj(xi), (8)

{ΩN}jk � N″
j(t)N″

k(t)dt. (9)
Therefore, the parameter θ̂ and fitted smoothing spline are

simply calculated by:

θ̂ � (NTN + λΩN)−1NTy, (10)

f̂(x) � ∑N
j−1
Nj(x)θ̂j. (11)

In addition, the different charging or discharging rates

influence the visibility of the IC curve, for which the higher

FIGURE 2
Comparison before and after denoising the IC curve for one
cycle of charging and discharging.

FIGURE 3
The IC curves of batteries N1, N2, and R1.
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charging rate would make it hard to observe the IC peaks.

Consequently, the robustness of the proposed method is

examined through different charging current rates of 0.1 C

and 0.2 C, separately. The IC curves of batteries N1, N2, and

R1 are displayed in Figure 3.

2.3 Features extraction and the selection
of health indicators

It can be clearly observed in Figure 3 that the IC curve shifts

downward with the charging and discharging cycles because of

the battery deterioration phenomenon. The IC peaks

continuously decrease with the maximum discharging capacity

reduction of the battery, which exhibits an intense correlation.

Generally, the IC curves of lithium-ion batteries comprise several

IC peaks. It is, therefore, intuitively seen that the convenient

extracted features include the location, height, area, discharging

time, and the slope of the left and right sides of each peak based

on the battery IC curves.

Consider there is an IC peak (vpeak, yvpeak) between the points

of A (vA, yvA) and B (vB, yvB); the area, discharging time, and left

and right gradients of each peak are then, separately,

formulated by:

S � ∫B
A

dQ
dV

dV � QB − QA, (12)

tpeak � tvB � tvA, (13)
klef t �

yvpeak + yvA

vpeak + vA
, (14)

kright �
yvpeak + yvB

vpeak + vB
, (15)

where S denotes the integration area of the peak, tvB and tvA
indicate the discharging time of points B and A, respectively,Kleft

represents the left gradient of the peak, and kright is right gradient.

TABLE 2 The correlation coefficient between preselected features and the battery SOH.

Label vpeak1 yvpeak1 vpeak2 yvpeak2 vpeak3 yvpeak3 vpeak4 yvpeak4

N1 −0.96 0.91 −0.80 0.96 −0.79 0.94 −0.52 0.98

N2 −0.85 0.93 −0.91 0.99 0.048 0.98 0.27 0.99

R1 −0.96 0.97

FIGURE 4
The architecture of RVFLNN.
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However, besides the strong correlation between the HIs and

the discharging capacity, convenience, reasonableness, and

practicality should also be under consideration in the selection

of HIs. Accordingly, the location of the peak in the IC curve, as

well as the height, is utilized as the battery features in this work.

Since there may be more than one peak in the IC curve of the

battery, as shown in Figure 3, the estimation results may no

longer achieve the optimal performance if all the extracted

features are applied to the input datasets of the SOH

estimation model. It is therefore worthwhile evaluating the

correlation between the features and SOH using the Pearson

correlation coefficient to choose the most effective and

convenient HIs, which is defined as:

p � E(XY) − E(X)E(Y)��������������������������
E(X2) − E2(X) ������������

E(Y2) − E2(Y)√√ (16)

where X and Y are the sample population. The results are shown

in Table 2.

The greater the absolute value of p, the higher the

correlation degree between X and Y, while a “–” means

that there is a negative correlation between the variable

and SOH in Table 2. According to the correlation analysis

results of the three different batteries in Table 2, vpeak1, yvpeak2,

and yvpeak4 are selected as the input HIs of the SOH estimation

model for battery N1 since the correlation between them and

SOH exceeds 0.95. Similarly, the SOH estimation model

based on battery N2 is established using yvpeak2, yvpeak3, and

yvpeak4, while for battery R1 it is established using vpeak1 and

yvpeak1.

3 State-of-health estimation
methodology

The proposed PSO-BLS algorithm is described in detail in

this section. First, a brief introduction to the PSO algorithm and

the BLS network is provided. The procedures for optimizing the

hyperparameters of the BLS network by the PSO algorithm are

subsequently presented.

3.1 Broad learning system network

A BLS network is a broad learning network constructed

based on the random vector functional-link neural network

(RVFLNN) (Zhang et al., 2021). Figure 4 presents the

architecture of RVFLNN. A traditional RVFLNN directly

accepts information from the input data to establish

enhancement nodes:

FIGURE 5
The framework of the BLS network.
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Y � W · [X����ξ(XWh + βh)], (17)

where Y denotes the output of the RVFLNN, X is the input data,

Wh andW are the input and output weights, respectively, and βh
represents the network bias.

The BLS first extracts the feature nodes Fi �
[F1, F2, . . . , Fi] from the input data based on the least

absolute shrinkage and selection operator (LASSO) sparse

feature learning method, which can efficiently characterize

the dataset with high computational performance (Ma et al.,

2020). The enhancement features Ei � [E1, E2, . . . , Ei] are

then captured through the nonlinear expansion for the

enhancement nodes.

Suppose the input dataset X and output matrix Y belong to

RN×C. For the n feature mapping and m enhancement mapping,

the ith feature node can be represented by (Zhang et al., 2021):

Fi � ϕi(XWei + βei), i � 1, 2, . . . , n, (18)

whereWei is the random weights, βei indicates the bias value, and

ϕi(·) indicates the activation function of discretionary selection.

The sparse autoencoder strategy is applied in the BLS network to

optimize the input weights to overcome the unpredictability

caused by random initialization:

argmin
Ŵe

: ‖FŴe −X‖2 + λ1‖Ŵe‖1, s.t. XWe � F, (19)

where W
�

is the sparse autoencoder solution, F denotes the

desired output, and λ1 is the regular factor of the L1 norm.

The alternating direction method of multipliers (ADMM) is

adopted to address this optimization problem for the BLS

network, which can be expressed as:

{ argmin: f(w) + g(o)
w − o � 0

, (20)

f(w) � ‖Fw − x‖2, (21)
g(w) � λ‖w‖1. (22)

The augmented Lagrangian function of this optimization task is:

L(w, o,∧) � f(w) + g(o) + ∧T(w − o), (23)
where ∧ indicates the Lagrangian multiplier.

The proximal problem can be solved by alternately updating

W, o, and ∧ through:

wk+1: � (FTF + ρI)−1(FTx + ρ(ok � uk)), ρ> 0, (24)
ok+1: � Sλ/ρ(wk+1 + uk), (25)
uk+1: � uk + (wk − ok+1), (26)

FIGURE 6
The framework of the proposed SOH estimation method based on the PSO-BLS algorithm.
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where S is the soft thresholding operator and is expressed by:

Sk(a) �
⎧⎪⎨⎪⎩ a � k, a> k

0, |a|≤ k
a + k, a< − k

. (27)

Therefore, the feature nodes are achieved through continuous

iteration of Eqs 24–26, and the jth enhancement node is

calculated by:

Ej � ζ(FiWhj + βhj), j � 1, 2, . . . , m, (28)

where Whj is the random weights, βhj indicates the bias value,

and ζ(%) represents the activation function, which is defined as:

ζ(x) 1 − e−2x

1 + e−2x
. (29)

Combine the feature node and enhancement node to form the

input pattern matrix, and then the broad model can be calculated

according to:

Y � [F1, . . . , Fi

∣∣∣∣ζ(FiWh1 − βh1), . . . , ζ(FiWhj − βhj)]W
� [F1, . . . , Fi

∣∣∣∣E1, . . . , Ej]W
� [Fi

∣∣∣∣Ej]W
� HW

(30)

whereH � [Fi|Ej], and the output coefficients matrixW � H+Y
is calculated using the ridge regression learning algorithm. The

normal L2 regularization can be represented as:

arg ŵmin:
����HŴ − Y

����2 + λ2
����Ŵ����2, (31)

where λ2 is the regular factor of the L2 regularization.

Set the gradient to zero, and W is approximated as:

W � (λ2I +HHT)−1HTY. (32)
Specifically,

H+ � lim
λ2 �������������→0 (λ2I +HHT)−1HT, (33)

where I denotes the identity matrix. Without a gradient descent-

based learning algorithm, it can be concluded that the training of the

BLS algorithm provides faster processing and does not produce local

optimum solutions. The BLS framework is displayed in Figure 5.

It can be seen that the L2 regularization parameter and the

shrinkage scale of the enhancement nodes are important

parameters for the BLS network with the preceding analysis.

Because the BLS model does not apply backpropagation to

parameter learning but obtains the output weights by pseudo-

inversion, this results in the initial parameters of the BLS playing

a significant role in the output weights of the network. The PSO

algorithm, which is an efficient parameter optimization

algorithm, tracks the local optimal solution by searching for

the global optimal solution due to the advantages of high

precision, prompt convergence, and few parameters.

Therefore, the L2 regularization parameter and the shrinkage

FIGURE 7
The procedures for optimizing the initial parameters of the
BLS network using the PSO algorithm.
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scale of the enhancement nodes of the BLS network are

optimized using the PSO algorithm to augment the precision

of the constructed battery SOH estimation model, which enables

the BLS network to steadily and reliably yield predicted values.

3.2 Particle swarm optimization algorithm

The PSO algorithm is a global optimization method based on

swarm search with inspiration from birds’ flocking or fish

schooling, which has been employed in many fields of science

and engineering to address nonlinear, nonconvex, and

combinatorial optimization projects (Ghorbani et al., 2018).

The global optimal solution can be calculated by defining the

fitness function and updating the velocity and position of the

particles. For aD-dimensional search space, the ith particle of the

swarm at time t is represented by a D-dimensional vector

xt
i � (xt

i1, x
t
i2, . . . , x

t
iD)T., while the velocity of this particle is vti �

(vti1, vti2, . . . , vtiD)T. pt
i � (pt

i1, p
t
i2, . . . , p

t
iD)T denotes the previous

best-visited position of the ith particle at time t, and g is the index

of the best particle in the swarm. The basic procedures of the PSO

algorithm are described as follows (Ren et al., 2021).

For t = 1 to the maximum bound on the number of iterations.

Step 1: Create and initialize a D-dimensional swarm S and the

corresponding velocity and position vectors.

vti � (vti1, vti2, . . . , vtiD)T, (34)
xt
i � (xt

i1, x
t
i2, . . . , x

t
iD)T. (35)

Step 2: Compute the fitness Fi of the particle i by the fitness

function.

Step 3: Renew the local optimum and global optimum

assumptions, Eqs 19, 20, respectively.

pt+1
i � {Ft+1

i , if Ft+1
i >pt

i

pt
i else

, (36)

g � {Ft+1
i , if Ft+1

i >g
g, else

. (37)

Step 4: Update the velocity and position of particles as follows.

vt+1id � vtid + c1r1(pt
id − xt

id) + c2r2(pt
gd − xt

id), (38)

xt+1
id � xt

id + vt+1id , (39)

where d = 1, 2, . . ., D denotes the dimension, i = 1, 2, . . ., S

represents the particle index, where S is the size of the swarm,

c1 and c2 are cognitive and social scaling parameters,

respectively, and r1 and r2 indicate random numbers in the

range [0, 1].

Step 5. Loop steps (2)–(4) until g meets the problem

requirements, and then output the optimal solution.

3.3 The framework of the proposed state-
of-health estimation method based on the
PSO-BLS algorithm

The framework of the proposed model for lithium-ion battery

SOH estimation is shown in Figure 6, and the detailed processes of

the proposed PSO-BLS network are summarized as follows.

(1) Generate training and testing sets.

Suppose the measured historical SOH degradation data and

the reported voltage variation data during the constant current

charging phase of a lithium-ion battery are described as:

SOH � [SOH1, SOH2, . . . , SOHm]T, (40)

V �
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
V1

1 V2
2 / V1

n

V2
1 V2

2 / V2
n

..

. ..
.

1 ..
.

Vm
1 Vm

2 / Vm
n

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦, (41)

where SOHm indicates the quantified health state of the battery

after m charging and discharging cycles, and Vm
n means the nth

sampled voltage value in the mth cycle.

Extract HIs using the ICA method based on the recorded

voltage variation data for each constant current charging phase,

and then constitute the feature matrix P:

P �
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
P1
1 P2

2 / P1
n

P2
1 P2

2 / P2
n

..

. ..
.

1 ..
.

Pm
1 Pm

2 / Pm
n

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦, (42)

where Pm
q is the captured qth features of the mth cycle using the

ICA method, and 0< q< n.

TABLE 3 The optimized parameters of the BLS network by PSO algorithm.

Battery label L2 regularization parameter Shrinkage scale

N1 0.1 0.031

N2 0.005 0.163

R1 1e-08 0.673
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FIGURE 8
The results and absolute error of estimation experiment for batteries N1, N2, and R1.
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Based on the HIs and SOH datasets, and according to the

proportion of 1:1, the training set and testing set are constructed

according to:

Training set �
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

P1
1 P1

2 / P1
q SOH1

P2
1 P2

2 / P2
q SOH2

..

. ..
.

/ ..
. ..

.

Pm/2
1 Pm/2

2 / Pm/2
q SOHm/2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦, (43)

Training set �
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
P(m/2)+1
1 P(m/2)+1

2 / P(m/2)+1
q SOH(m/2)+1

P(m/2)+2
1 P(m/2)+2

2 / P(m/2)+2
q SOH(m/2)+2

..

. ..
.

/ ..
. ..

.

P2
1 P2

2 / P2
q SOHm

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦,
(44)

where P �
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

P1
1 P2

2 / P1
q

P2
1 P2

2 / P2
q

..

. ..
.

1 ..
.

Pm/2
1 Pm/2

2 / Pm/2
q

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ is the training sample and

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
SOH1

SOH2

..

.

SOHm/2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ is the training target when training the SOH

estimation model. For testing the model, P �
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
P(m/2)+1
1 P(m/2)+1

2 / P(m/2)+1
q

P(m/2)+2
1 P(m/2)+2

2 / P(m/2)+2
q

..

. ..
.

1 ..
.

Pm
1 Pm

2 / Pm
q

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ represents the testing sample

and
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
SOH(m/2)+1

SOH(m/2)+1

..

.

SOHm

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ is the testing target.

(2) Parameter identification processes.

Optimize the L2 regularization parameter and the shrinkage

scale of the enhancement nodes of the BLS network using the

PSO algorithm with the fitness function below based on the

training set:

Fitness funtion:
1

m/2
∑m/2

i�1
(SOHi − ŜOHi)2

, (45)

where the ŜOH is the estimated battery health state. The last

column is taken for the training target and the rest for the

training samples. Output the improved L2 regularization

parameter and the shrinkage scale.

(3) Generate the estimated state of health with the established

SOH estimation model using the particle swarm optimization-

broad learning system approach.

Develop the SOH estimation model for lithium-ion batteries

based on the optimized initial parameters of the BLS network and

the testing set, and then generate the estimated battery ŜOH:

ŜOH � ⎡⎢⎣ ̂
SOH

(m
2+1)

,

̂
SOH

(m
2+2)

, . . . , ̂SOH(m)⎤⎥⎦T. (46)

It can be detected by theoretical analysis that the proposed

PSO-BLS improves the learning ability and generalization

capacity of the BLS network, which has the advantages of

fewer parameters, fast training speed, strong generalization

capacity, and excellent estimation performance.

4 Results and discussion

In this work, the mean square error (MSE), mean

absolute percent error (MAPE), root mean square error

(RMSE), and correlation coefficient R2 are introduced as

evaluation factors to demonstrate and discuss the

effectiveness of the proposed method more intuitively, and

they are respectively defined as:

MSE � 1
2
∑n
i�1

(yi − ŷi)2 × 100%, (47)

MAPE � 1
n
∑n
i�1

∣∣∣∣∣∣∣∣∣yi − ŷi

yi

∣∣∣∣∣∣∣∣∣ ×100%, (48)

RMSE �
������������������
1
n
∑n
i�1

(yi − ŷi)2 × 100%

√
, (49)

R2 � 1 − ∑n
i�1(yi − ŷi)2∑n
i�1(yi − �yi)2, (50)

where yi and y
�
i represent the reality and estimated values

of lithium-ion battery SOH, respectively, n is the number of

charging and discharging cycles experienced by the lithium-ion

battery at the end of the experiment, and y
�
i indicates the average

TABLE 4 The statistical errors of SOH estimation results.

Battery label MSE (%) MAPE (%) RMSE (%) R2 Time (s)

N1 0.33 0.1574 0.49 0.9562 1.07

N2 0.32 0.1241 0.37 0.9830 1.15

R1 0.48 0.4165 0.56 0.9824 1.26
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value of the lithium-ion battery SOH. The computational cost is

also used as the metric to quantify the performance of the

proposed SOH estimation model. The experiment was

performed based on MATLAB 2017b.

The initial L2 regularization factor and the enhancement

nodes shrinkage scale of the BLS network are mapped as the

positions of particles based on the training set of lithium-ion

batteries N1, N2, and R1, separately. Then, the optimized

parameters are searched for with Eq. 45 as the PSO fitness

function. The optimization processes are shown in Figure 7,

and the optimized L2 regularization factor and the enhancement

nodes shrinkage scale of the BLS network are documented in

Table 3.

As evidenced in Figure 7, the PSO algorithm can converge

nicely on the optimal value in the search process. The SOH

estimation models for lithium-ion batteries N1, N2, and R1 are

respectively developed using the optimized BLS network, after

which one estimates the SOH based on the testing set in order to

validate the robustness, stability, and effectiveness of the

proposed method. The experimental results are shown in

Figure 8.

It can be seen that the proposed method accurately captures

the global degradation tendency and estimates the current

battery SOH well for the in-service batteries N1 and N2 in

Figure 8. However, the sharp effects resulting from instrument

noise, measurement errors, and other uncertainties exhibit

powerful jitter in the battery discharging capacity curve,

which means a great number of unexpected change points.

For this category of battery aging state, the proposed method

cannot completely track SOH instantaneously, but it is still able

to perform a faster and better estimation of the battery SOH

while maintaining the estimation error within an acceptable

limit. Similarly, the battery R1 undergoes continual lithium-ion

deposition and electrolyte loss and forms heavy solid electrolyte

interphase (SEI) film, which contributes to the declining

discharging capacity and thus becomes unsuitable for

powering new EVs. The aging phenomenon is more

dramatic for the R1 battery, as seen in Figure 8C, with

plenty of mutation and capacity regeneration phenomena.

However, an accurate estimation result of the battery SOH is

still better with the proposed method. The same conclusion can

be obtained from Table 4, where the SOH is calculated utilizing

the capacity definition of lithium-ion battery SOH in Eq. 1. The

proposed method provides remarkable estimation performance

both for in-service and retired batteries. Meanwhile, the

excellent experimental results for batteries N1 and N2 with

different charging multipliers for the same aging state, and for

different aging state batteries R1 and N1 with the same charging

multiplier, demonstrate the superior robustness and stability of

the introduced method.

Furthermore, to authenticate the effectiveness of the

proposed method, the compared experiment is conducted in

FIGURE 9
The compared experiment results for batteries N1, N2,
and R1.
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this work to compare the proposed PSO-BLS network with the

conventional BLS network. In addition, SVR transposes complex

input samples into a high-dimensional space using the nonlinear

transformation, which has a good generalization capability and

thus is widely applied in nonlinear regression problems. Instead

of considering the Mercer condition when selecting the kernel

function, RVM is a supervised learning method similar to SVR,

which is more appropriate for nonlinear regression problems

with high accuracy. ELM is also a commonly used regression

algorithm with strong ability. Therefore, the SVR, ELM, and

RVM algorithms are also considered as contrast samples in this

study to compete with the proposed PSO-BLS network in the

compared experiment. The results are shown in Figure 9; Table 5

records the errors.

Through comparing the unoptimized BLS network and the

commonly utilized SVR and RVM algorithms, it is clear that

the estimation performance of the proposed PSO-BLS

algorithm is better than other methods both for in-service

and retired batteries. In addition, the estimation performance

of the individual BLS network is significantly stronger than

that of SVR and RVM, based on comparing the experimental

results, because of its capability to extract deep information of

the battery HIs data. However, the initial parameters of the

conventional BLS network are preferentially selected using

PSO in this work, which further enhances the nonlinear

regression processing capability of the BLS network. A

comprehensive evaluation of the proposed method based on

error metrics from different perspectives further reveals that

the proposed algorithm offers excellent estimation capability

of SOH for in-service and retired lithium-ion batteries with

high robustness, stability, and self-tuning properties.

Consequently, it will facilitate the monitoring of the

degradation for in-service cells, and the reselection and

reorganization of retired lithium-ion batteries in the process

of cascade utilization.

5 Conclusion

A strategy for the SOH estimation of in-service and retired

lithium-ion batteries has been presented in this study. First, the

IC curves were generated by applying the smoothing spline filter

to eliminate the documented data noise based on the voltage data

in the constant current charging phase. The HIs, which are highly

correlated with the battery SOH, were then identified through

screening with the Pearson correlation coefficient method

according to the height and position of each IC peak. Finally,

the L2 regularization parameter and the enhancement node

shrinkage scale of the PSO-optimized BLS network were

utilized to estimate the battery SOH for in-service and retired

lithium-ion batteries based on the extracted kernel HIs.

The verification experiments were designed to quantify the

estimation capability of the proposed method for the nonlinear

degradation process of lithium-ion batteries using indicators of

different scales based on the aging datasets, which consist of in-

service batteries with different charging multipliers and the aging

data of retired batteries measured in the laboratory. Furthermore,

the proposed PSO-BLS method was investigated and compared

with the separate BLS network as well as SVR and RVMmethods.

The results show that the suggested methodology can effectively

estimate the SOH both of in-service and retired batteries with

strong robustness and stability to battery degradation and

disturbance. It is of great significance to monitor the

nonlinear degradation of lithium-ion batteries when

employing them, as well as in the recombination of retired

lithium-ion batteries during cascade utilization.
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TABLE 5 The statistical errors of the compared experiment.

Battery label Algorithm MSE (%) MAPE (%) RMSE (%) R2 Time (s)

N1 ELM 8.98 0.9692 2.56 0.1013 2.05
SVR 5.29 0.8482 1.96 0.3475 2.13
RVM 3.73 0.6758 1.65 0.5413 1.78
BLS 2.06 0.4993 1.26 0.7461 0.51
PSO-BLS 0.33 0.1574 0.49 0.9562 1.07

N2 ELM 19.03 0.9332 2.82 0.2346 2.14
SVR 11.03 0.8784 2.14 0.4194 2.53
RVM 7.05 0.7342 1.71 0.6288 1.45
BLS 5.85 0.6387 1.56 0.6921 0.59
PSO-BLS 0.32 0.1241 0.37 0.9830 1.15

R1 ELM 21.84 3.1029 3.80 0.1937 2.23
SVR 10.14 2.2017 2.59 0.6256 2.16
RVM 4.31 1.3391 1.69 0.8409 1.76
BLS 4.35 1.2860 1.70 0.8393 0.62
PSO-BLS 0.48 0.4165 0.56 0.9824 1.26
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