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The Prabhakar fractional derivative model is not studied in the open literature for

the Casson fluid model when the vertical plate exhibits linear and quadratic

translations with constant heating. Therefore, this study deals with the thermal

transport of sodium alginate (C6H9NaO7) over a vertical plate with a constant

temperature. Since the classical PDEs are incapable of analyzing and investigating

the physical impact of flow variables with memory effects, a fractional derivative

model is developed using the Prabhakar fractional derivative approach. Two

different types of plate translations (linear and quadratic) are considered. The

non-dimensional governing equations are transformed into a fractional model

and solved using the Laplace transformation (L.T) technique. The effects and

behavior of significant physical parameters and fractional order parameters are

studied graphically and discussed. As a consequence, it is found that as fractional

limitations are increased, the thermal andmomentumprofiles drop. In addition, the

momentumprofile in the caseof quadratic translation (variable acceleration) shows

ahighermagnitude than the caseof linear translation (constantly acceleratedplate).
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Introduction

When it comes to non-Newtonian fluid flow mechanics, engineers, physicists, and

mathematicians face a unique challenge. Because these fluids are so complex, no

constitutive equation can depict all of their features. Instead, various non-Newtonian fluid

models have been planned as part of the process. Viscoelastic fluids, in particular, have attracted

researchers’ interest. This category includes the great majority of non-Newtonian fluids

discussed in the collected works, such as the power law and grade two or three fluids

(Andersson et al., 1992; Hassanien, 1996; Sadeghy and Sharifi, 2004; Sajid et al., 2007).

These basic fluid models include flaws that cause them to provide findings that do not

correspond to actual fluid flows. Power-law fluids are the most often used model for modeling

non-Newtonian fluid dynamics. The model predicts shear-thinning and shear-thickening

behaviors. However, it is insufficient for demonstrating the typical stress behavior in various

non-Newtonian fluids, such as die swelling and the rod-climbing behavior. The second-grade
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fluid model is the simplest subclass of viscoelastic fluids for which an

analytic solution is likely. Normal stress effects may be depicted in a

second-grade fluid model, which is a subset of Rivlin–Ericksen fluids,

albeit shear thinning/thickening is not supported (Aksoy et al., 2007).

Non-Newtonian fluids are classified into three types: differential, rate,

and integral fluids. The Maxwell model, which can predict stress

relaxation, is the most fundamental subclass of rate-type fluids. As a

result, this rheological model avoids the need for boundary layer

analysis when dealing with the complicated consequences of shear-

dependent viscosity (Hayat et al., 2011). Non-Newtonian fluids

include the Casson fluid. The Casson fluid has a high yield stress.

It is a shear-thinning liquid with an infinite viscosity at zero rates of

shear, a yield stress belowwhich no flow occurs, and a zero viscosity at

an infinite rate of shear, which means that if shear stress is less, then

the yield stress is applied to the fluid; it behaves like a solid, but if shear

stress is greater than the yield stress is applied to the fluid, it begins to

move. Casson fluids include jelly, tomato sauce, honey, soup,

concentrated fruit liquids, and similar goods. Casson fluids may

also be made from human blood. Because of several components

in the aqueous base plasma such as protein, fibrinogen, and globulin,

human red blood cells can form a chainlike structure known as

aggregates or rouleaux. If the rouleaux act like a plastic solid, the yield

stress corresponds to Casson fluids’ constant yield stress (Chuong and

Fung, 1986). The Casson fluid is a shear-thinning liquid with a zero at

the zero shear rate, an infinite viscosity at the zero shear rate, and yield

stress below which no flow occurs (Dash et al., 1996). (Archana et al.

2017) studied the effect of nonlinear thermal radiation, Joule heating,

and magnetic field on a spinning Casson nano liquid stream. When

considering the stream of non-Newtonian micro liquids due to heat

transfer in the presence of a permeable surface, (Nadeem et al. 2014)

explored the stagnation point problem. (Li et al. 2022) investigated the

rotating stream of the Casson nano liquid due to the impacts ofMHD

and the Cattaneo–Christov heat flux in the presence of double

diffusion heat flux using a finite element model. (Haq et al. 1988)

investigated the flow of the Casson nano liquid with the effects of heat

transfer and MHD in the presence of a shrinking sheet while

accounting for the convective boundary. (Alwawi et al. 2009)

examined the flow of the Casson micro liquid with heat transfer

induced by Lorentz force coupled convection using KBMwhile taking

CMC water into account. (Sivaraj et al. 2019) investigated cross-

diffusion effects on the Casson fluid flow using variable fluid

properties. (Durairaj et al. 2017) examined the strong effects of the

heat generating or absorbing and chemically reacting Casson fluid

flow over a vertical cone and flat plate saturated in a non-Darcy

porous medium. (Jasmine Benazir et al. 2016) studied a deep

comparison between the Casson fluid flow when heat and mass

transfer are taken over a vertical cone and a flat plate. (Mythili and

Sivaraj 2016) considered two geometries of the vertical cone and flat

plate and studied the effects of higher-order chemical reactions and

the non-uniform heat source/sink on the non-Newtonian Casson

fluid flow.

Numerous studies have broadly carried out fractional calculus in

recent years because of its capability to explain the reminiscence

effects of different physical processes. Nowadays, fractional calculus

has been efficiently implemented in many science fields, including

rheology, viscoelasticity, biophysics, bioengineering, sign principle,

picture processing, physics, and control ideas(Raza et al., 2022; Wang

et al., 2022). Many theoretical and practical problems described by

mathematical models with fractional differential equations have been

investigated. Among the several functions in the fractional calculus,

the Mittag–Leffler function is considered the important one. In 1971,

Tilak Raj Prabhakar proposed a three-parameter generalization of the

Mittag–Leffler function, also known as the Prabhakar function.

Recently, the Prabhakar fractional derivative along with the non-

singular Mittag–Leffler kernel has influenced many authors (Panchal

et al., 2016; Polito and Tomovski, 2016; Sandev, 2017; Giusti and

Colombaro, 2018; Garrappa and Kaslik, 2020; Asjad et al., 2021; Basit

et al., 2021), working with fractional derivatives due to its applications

in many real-world problems. Fractional differential classifications

through the Prabhakar derivative with a solid discipline were

investigated by (Alidousti and Ghafari 2020). (Derakhshan et al.

2019) described a new numerical technique for solving variable-order

fractional integro-differential equations in (Samraiz et al., 2020)

fractional derivatives of non-Newtonian fluids in the convection

channel with hybrid nanoparticles, which have been mentioned in

(Asjad et al. 2020). A few other interesting studies on fractional

derivatives are given in the literature (Khan et al., 2017; Ali, 2018;

Khan et al., 2020; Saqib et al., 2020). However, (Abdal et al. 2021),

(Bilal et al. 2022), and (Qureshi et al. 2022) investigated different fluid

models and reported very interesting results.

The aforementioned literature shows that the Prabhakar

fractional derivative model, by taking into account linear

translation and quadratic translation, is not studied for the Casson

fluid model. Therefore, in this work, an attempt is made. More

exactly, in this work, the Casson-type fluid flow is considered over a

vertical plate with a constant temperature. Both constant and variable

acceleration cases are discussed. The momentum and temperature

equations are first transformed into a fractional model with an

excellent fractional definition known as the Prabhakar fractional

derivative and then solved via L.T. The results are obtained for

both types of translations (linear and quadratic) and then computed

in tables and plotted in various graphs.

Problem description

Consider an unsteady, incompressible free-convection Casson

fluid’s flow on an infinite vertical plate. It is supposed that at τ ≤ 0, the

system is at rest with constant temperature θ∞. At the time τ > 0,

the stationary plate starts to move with a translation velocity

v(0, τ) � Aτ, and the temperature of the plate raised from

θ∞ to θw. The flow is incompressible, one-dimensional, and one-

directional and depends on time. The initial fluid motion is vertical

and regulated by the partial differential equations (velocity and energy

equations) (Sandev, 2017; Derakhshan et al., 2019; Alidousti and

Ghafari, 2020; Asjad et al., 2020; Garrappa and Kaslik, 2020).
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ρ
zv(η,τ)
zτ

� μ(1 + 1
βo

) z2v(η,τ)
zη2

+ gρβθ(θ(η,τ) − θ∞) (1)

ρCp

zθ(η,τ)
zτ

� −zδ(η,τ)
zη

, (2)

δ(η,τ) � −k zθ(η,τ)
zη

. (3)

The imposed initial and boundary conditions are as follows:

v(η, 0) � 0, θ(η, 0) � θ∞

v(0, τ) � Aτ, θ(0, τ) � θw

v(∞, τ) � 0, θ(∞, τ) � θ∞

⎫⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎭
, (4)

where ρ is the density, v(η, τ) is the x-component of the velocity

vector, μ is the dynamic viscosity, g is the gravitational acceleration,

βθ is the volumetric thermal expansion, θ(η, τ) is the x-component

of the temperature vector, cp is the heat capacitance, and k is the

thermal conductivity of the fluid. It should be noted that the

constitutive equation for an incompressible Casson fluid is given

in Eq. 2 of (Alidousti and Ghafari 2020); therefore, it is not included

in this study to avoid similarity.

To eliminate the units, the dimensionless variables listed as

follows are put into Eqs. 1–4.

v* � v

vA1/3
, η* � ηA1/3

v2/3
, τ* � τA2/3

v1/3
,

θ*(η, τ) � θ − θ∞
θw − θ∞

� θ − θ∞
Δθ

.

δ(η,τ)* � v2/3

kA1/3Δθ
δ(η,τ). (5)

Our dimensionless problem takes the

form (*symbol is dropped for simplicity)

zv(η,τ)
zτ

� (1 + 1
βo

) z2v(η,τ)
zη2

+ Grθ(η,τ), (6)

Pr
zθ(η,τ)
zτ

� −zδ(η,τ)
zη

, (7)

−
zθ(η,τ)
zη

� δ(η,τ), (8)
v(η,0) � 0, v(0,τ) � τ, v(∞,τ) � 0,

θ(η,0) � 0, θ(0,τ) � 1, θ(∞,τ) � 0,

where Pr � μCp/k, Gr � gβθΔθ/A.
We presented an effective fractional mathematical model for

the calculation of momentum and heat equations with the help of

the Prabhakar fractional derivative, which can be expressed

mathematically as (Asjad et al., 2020; Wang et al., 2022)

CD
γ
α,β,αh(t) � E−γ

α,n,−β,αh
n(t) � e−γα,n,−β(α; t)*hn(t),

� ∫t
0

(t − τ)n−β−1E−γ
α,n,−β(α(t − τ)α)hn(τ) dτ,

where CD
γ
α,β,α, h

(n) represents the Prabhakar fractional operatorwith
the nth derivative of h(t) ∈ ACn(0, b), ACn(0, b), respectively, and

Eγ
α,β,αh(t) � ∫t

0

(t − τ)β−1E−γ
α,β(α(t − τ)α)h(τ) dτ

is identified as the Prabhakar integral with

Eγ
α,β(z) � ∑∞

m�0

Γ(γ +m)zm
m! Γ(γ)Γ(αm + β)

which is of the three-parametric Mittag–Leffler function, and

eγα,β(α; t) � tβ−1Eγ
α,β(αtα) is the Prabhakar kernel. The L.T of the

Prabhakar fractional derivative operator CD
γ
α,β,α is

L[CDγ
α,β,α h(t)] � L[hm(t)*e−γα,m−β(α; t)]

� L{hm(t)}L{e−γα,m−β(α; t)}
� L{hm(t)}sβ−m(1 − αs−α)γ. (9)

Then, by taking β � γ � 0, we may derive the traditional

Fourier’s law. Also, because the Prabhakar fractional derivative is

primarily dependent on Fourier’s law of thermal conductivity,

the Fourier law in the form of the Prabhakar fractional

derivative is

δ(η,τ) � −kD−γ
α,β,α

zθ(η,τ)
zη

. (10)

Solution to the problem

a. Solution to the temperature field

FIGURE 1
Temperature plot for α
when β � γ � 0.8,Pr � 11.4, and t � 1.0.
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As the energy equation involves Fourier’s thermal flux

law, by utilizing the L.T scheme to Eqs. 7–10 for the solution

to the temperature profile and its matching conditions, we

obtain

Pr q �θ(η,q) � −z
�δ(η,q)
zη

, (11)

�δ(η,q) � −qβ(1 − αq−α)γz�θ(η,q)
zη

, (12)

�θ(0,q) �
1
q
, �θ(η,s) → 0; η → ∞ . (13)

Inserting Eq. 12 into Eq. 11, for the solution to the

temperature field, we have

z2�θ(η,q)
zζ2

− Pr q

qβ(1 − αq−α)γ�θ(η,q) � 0. (14)

By introducing the aforementioned conditions 13) in Eq.

14, the solution of the thermal profile takes the form as

follows:

�θ(η,q) �
1
q
e
−η

�������
Pr q

qβ(1−αq−α)γ
√

. (15)

The aforementioned exponential equation in the summation

form is as follows:

�θ(η,q) �
1
q
+ ∑∞

i�1
∑∞
J�0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
−iγ
2

J

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ (−η)i(Pr )i/2
i!

q−i(β−1)/2

αJq(1+αJ)
,

with its Laplace inverse as follows:

θ(η,τ) � 1

+ ∑∞
i�1∑∞

J�0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
−iγ
2

J

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ (−η)i(Pr )i/2
i!αJ

τ−1+(1+αJ)+i(β−1)/2

Γ((1 + αJ) + i(β − 1)/2).

b. Classical solution to the temperature field (β � γ � 0)

For the classical thermal profile, take β � γ � 0, so

L[e0α,0(α; t)] � 1 � δ(t).

δ(t) denotes the Dirac’s delta distribution. Using this connection,
generalized Fourier’s law will be turned into classical Fourier’s

law and

�θ(η,q) �
1
q
e−η

���
Pr q

√
, (16)

with its Laplace inverse

θ(η,τ) � Erfc[ ��
Pr

√
η

2
�
t

√ ], ��
Pr

√
η> 0.

c. Solution to the velocity field

First case

The solution to the velocity profile will be determined in this

section using the same approach as the approach to the energy

equation. We obtain this by applying the L.T technique to Eq. 6

and its accompanying conditions.

q �v(η,q) � β1
z2�v(η,q)
zη2

+ Gr�θ(η,q); β1 � 1 + 1
βo
, (17)

�v(0,q) �
1
q2
, �v(η,τ) � 0, η → ∞ . (18)

Using the aforementioned conditions of Eq. 18, the solution

of the momentum equation is as follows:

FIGURE 2
Temperature plot
for β when α � γ � 0.8,Pr � 11.4, and t � 1.0.

FIGURE 3
Temperature plot for γ
when α � β � 0.8,Pr � 11.4, and t � 1.0.
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�v(η,q) �
1
q2
e
−η

��
q
β1

√
+ Gr

β1 q
1

Pr q/qβ(1 − αq−α)γ − q/β1
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝e

−η
��
q
β1

√
q

− e
−η

�������
Pr q

qβ(1−αq−α)γ
√

q

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠.

(19)
Inverting the exponential form into the summation form, the

velocity becomes as follows:

�v(η,q) � ∑∞
n�0

(−y)n(β1)−n/2
n!

qn/2−1

− B1∑∞
n�1

∑∞
m�0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
−nγ
2

m

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ (−y)n(Pr )n/2
n!

qn(β−1)/2

αm q1+αm
, (20)

with its Laplace inverse

v(η,τ) � ∑∞
n�0

(−y)n(β1)−n/2
n!

τ−n/2

Γ(1 − n
2)

− B1∑∞
n�1

∑∞
m�0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
−nγ
2

m

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ (−y)n(Pr )n/2
n!

ταm−n(β−1)/2

Γ(1 + αm − n(β − 1)/2) .

(21)

Second case

In this case, the imposed initial and boundary conditions are

as follows:

v(η, 0) � 0, θ(η, 0) � θ∞

v(0, τ) � Bτ2, θ(0, τ) � θw

v(∞, τ) � 0, θ(∞, τ) � θ∞

⎫⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎭
. (22)

By introducing the following dimensionless variables

v* � v

(v2B)1/5, η* � ηB1/5

v3/5
, τ* � τB2/5

v1/5
,

Gr � gβθΔθ
B1/5v1/5

, δ(η,τ)* � v3/5

kB1/5Δθ
δ(η,τ)

(23)

into the governed Eqs. 1–3 and respective conditions in Eq. 22, in

which the only condition of quadratic translation transforms to

v(0, τ) � τ2, rest of the conditions in Eq. 22 remain the same. After

Laplace transformation, the momentum equation takes the form:

z2�v(η,q)
zη2

− q

β1
�v(η,q) � −Gr

β1
�θ(η,q)

with

�v(0, q) � 2
q3
, �v(∞, q) � 0.

By utilizing these conditions, the solution to the momentum

profile will become

�v(η,q) �
2
q3
e
−η

��
q
β1

√
+ Gr

β1 q
1

Pr q

qβ(1−αq−α)γ −
q
β1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝e
−η

��
q
β1

√
q

− e
−η

�������
Pr q

qβ(1−αq−α)γ
√

q

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠, (24)

with its Laplace inverse

FIGURE 4
Velocity plot for α when β � γ � 0.8, Pr � 11.4,Gr � 8.0, β1 � 1.4, (a): t � 2.0; and (b): t � 4.
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v(η,τ) � 2τ2 + ∑∞
n�0

(−y)n(β1)−n/2
n!

1
Γ(1 − n/2)τn/2+1

− B1∑∞
n�1

∑∞
m�0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
−nγ
2

m

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ (−y)n(Pr )n/2
n!

ταm

Γ(1 + αm − n(β − 1)/2)τn(β−1)/2
.

(25)

Skin friction and Nusselt number

The skin friction for the Casson fluid is given by

Cf � β1
zv(η, τ)

zη

∣∣∣∣∣∣∣∣
η�0

. (26)

Similarly, the Nusselt number, which is the heat transfer rate,

can be written as follows:

Nu � −zθ(η, τ)
zη

∣∣∣∣∣∣∣∣
η�0

. (27)

Discussion of results

This study examines the unsteady, viscous, and

incompressible flow of the Casson fluid over an erected

vertical plate. The plate is given a translation motion,

whereas the temperature is kept constant. The problem is

first converted into the fractional form using an efficient

FIGURE 5
Velocity plot for β with α � γ � 0.8, Pr � 11.4,Gr � 8.0, β1 � 1.4, (a): t � 2.25; and (b): t � 4.

FIGURE 6
Velocity plot for γ with α � β � 0.8, Pr � 11.4,Gr � 8.0, β1 � 1.4, (a): t � 2.0; and (b): t � 4.
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mathematical fractional definition, known as the Prabhakar

fractional derivative, and then solved by the Laplace transform

technique. The results are displayed graphically and in

tabular form for various flow parameters and fractional

order parameters, as shown in Figures 1–8. The impacts of

fractional parameters α, β, and γ for the temperature profile are

explored in Figures 1–3. It is shown that by increasing the

values of fractional parameters α, β, and γ, velocity decreases in
each case. It should be noted that, due to the non-Newtonian

behavior of sodium alginate (C6H9NaO7), the Prandtl number

is chosen as Pr = 11.4. It should be noted that in these Figures

4–8, in the first velocity profile (a), the graph is plotted for the

constantly accelerated plate (linear translation), and in the

second velocity profile (b), the graph is plotted for the variable

accelerated plate (quadratic translation). Figures 4–6 are

plotted to investigate the effects of fractional parameters α,
β, and γ on the momentum profile, and again, it is noted that by

varying the estimations of α, β, and γ, velocity is reduced, an

identical behavior that is observed in the case of the

temperature profile (Figures 1–3). It is further noted that in

the case of linear translation (constantly accelerated plate), the

magnitude of velocity is less than the quadratic translation

(variable accelerated plate). Furthermore, the behavior of both

velocity profiles (a) and (b) is analyzed in Figure 7 for the

FIGURE 8
Velocity plot for β1 with α � β � γ � 0.8, Pr � 11.4,Gr � 8.0, (a): t � 2.0; and (b): t � 4.

FIGURE 7
Velocity plot for Gr with α � β � γ � 0.8, Pr � 11.4, β1 � 1.4, (a): t � 1.97; and (b): t � 4.
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thermal Grashof number. The higher velocity profile due to

larger Gr is seen from the curve. The physical examination for

such influences is due to the buoyancy forces, and an increase

in the Grashof number means a greater buoyancy effect, which

increases the velocity field. In this figure, it is also noted that in

the case of linear translation (constantly accelerated plate), the

magnitude of velocity is less than the quadratic translation

(variable accelerated plate).

The behavior of the non-Newtonian Casson fluid parameter β1
versus η is plotted in Figure 8 for both types of velocity profiles. It is

TABLE 1 Numerical analysis of the temperature field at different times.

η T(η,τ) at τ � 0.5 T(η,τ) at τ � 1.0 T(η,τ) at τ � 1.5 T(η,τ) at τ � 2.0

0.1 0.8906 0.8924 0.8889 0.8825

0.3 0.7035 0.7091 0.7013 0.6866

0.5 0.5536 0.5622 0.5526 0.5338

0.7 0.4345 0.4453 0.4353 0.4148

0.9 0.3404 0.3524 0.3429 0.3225

1.1 0.2664 0.2788 0.2702 0.2508

1.3 0.2081 0.2206 0.2130 0.1952

1.5 0.1624 0.1745 0.1680 0.1521

1.7 0.1266 0.1380 0.1326 0.1186

1.9 0.0985 0.1091 0.1047 0.0926

TABLE 2 Numerical analysis velocity profile at different times.

η v(η,τ) at τ � 0.5 v(η,τ) at τ � 1.0 v(η,τ) at τ � 1.5 v(η,τ) at τ � 2.0

0.1 0.8386 1.4138 1.9434 2.4479

0.3 1.1943 1.9066 2.4920 3.0060

0.5 1.2588 2.0752 2.7079 3.2319

0.7 1.1590 2.0326 2.6982 2.2309

0.9 0.9840 1.8639 2.5432 3.0801

1.1 0.7903 1.6311 2.3042 2.8373

1.3 0.6100 1.3770 2.0239 2.5448

1.5 0.4574 1.1292 1.7333 2.2329

1.7 0.3359 0.9041 1.4529 1.9228

1.9 0.2431 0.7095 1.1953 1.6287

TABLE 3 Numerical analysis of the Nusselt number and skin friction.

α Nu at τ � 0.5 Nu at τ � 1.0 Cf at τ � 0.5 Cf at τ � 1.0

0.1 1.1788 1.0287 4.2342 5.3163

0.2 1.2228 1.0770 4.1764 5.2090

0.3 1.2687 1.1373 4.1275 5.0987

0.4 1.3122 1.2076 4.0897 5.9908

0.5 1.3496 1.2834 4.0635 4.8912

0.6 1.3784 1.3587 4.0484 4.8053

0.7 1.3979 1.3078 4.0430 4.7364

0.8 1.4086 1.3868 4.0453 4.6859

0.9 1.4117 1.3685 4.0533 4.6534
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found that for the fluid velocity for different estimations of the

Casson fluid parameter β1 , the velocity is reduced by raising the

estimations of the Casson fluid parameter β1 . This figure also

indicates that in the case of linear translation (constantly

accelerated plate), in this study also the magnitude of velocity is

less than the quadratic translation (variable accelerated plate).

Finally, Table 1 shows a numerical analysis of the temperature field

at different times for different values of the space variable. It is

found that with increasing time (time from 0.5 to 1.5), the

temperature increases; however, at time equal to 2, temperature

shows a decrease. However, with the increasing space variable,

temperature increases for all times. Table 2 shows simulations of

the velocity profile at different times. It is noticed that initially, for

small values of time, the momentum profile increases with the

increasing time and space variable. The increase here is

continuous. Finally, the numerical investigations of the Nusselt

number and skin friction are presented in Table 3 at different

values of time. It is examined from this table that the rate of heat

transfer decreases with increasing time, whereas skin friction has

the opposite behavior, i.e., increases with increasing time.

Conclusion

The Casson fluid model is not studied in the literature via

the Prabhakar fractional derivative approach when the vertical

plate exhibits linear and quadratic translations with constant

heating. Therefore, in this work, an attempt is made. This

work considers an unsteady incompressible flow over a

vertical plate with a constant temperature. The non-

dimensional fractional equations are solved using the L.T

technique. The impacts of various restrictions on leading

equations are quantitatively investigated. The key points of

this work are the following:

• By increasing the values of the fractional parameters, the

temperature profile drops and asymptotically grows

with time.

• The momentum field diminishes as the fractional

constraint values grow.

• Due to increases in the buoyancy effect, the velocity profile

accelerates by increasing the value of the Grashof

number Gr.

• Velocity and temperature profiles both grow

asymptotically with time.

• The Nusselt number decreases with time, whereas skin

friction presents an increasing behavior with an increase in

time values.

• In the future, this work can be extended to other non-

Newtonian fluid models with various types of plate

motions such as translations and oscillations.
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