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It can be seen that the corrosion failure of transmission and transformation

equipment has increasingly restricted the safe operation of the Zhejiang power

grid bottleneck problem. If effective anticorrosion measures are not taken

promptly, transmission and transformation equipment serving in various

sophisticated atmospheric environments will suffer serious corrosion

damage in a relatively short period, which endangers the safe usage of

transmission and transformation equipment and the security of grid

operation. In this article, through the establishment of transmission and

transformation steel components corrosion fracture mechanics model, a

standard corrosion spectrum grading software based on DeepLabV3+ image

segmentation technology is developed to determine the quantitative

assessment method of corrosion damage and assess the corrosion status

with safety degree of transmission and transformation equipment. According

to the assessment results, the operation and maintenance units are guided to

adopt differentiated corrosion maintenance and replacement strategies, so as

to reduce corrosion safety hazards and reduce safety accidents and economic

losses caused by corrosion, which is of great significance for the safe operation

of power grids.
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1 Introduction

Due to the huge area of China and the different climates in the regions (Shahbaz et al.,

2020; Sun et al., 2020), the atmospheric corrosion environment is complicated and

changeable, which causes failure and damage to the transmission towers serving in the

natural environment, thus seriously affecting the normal operation of the power grid. The

length of transmission line circuits at 220 kV and above totaled 840,000 km, with an
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increase of 3.8% year-on-year. However, according to recent

statistics, the value of metal failures caused by corrosion in

mainland China in 2014 was approximately 3.34% of the

annual gross domestic product (GDP), while the cost of

corrosion exceeded RMB two trillion (Xia et al., 2019).

Among these, corrosion losses from metal components in-

service exposed to the natural atmospheric environment

(approximately 80% of the total equipment) accounted for

about 50% (Wang et al., 2021). At present, the corrosion of

transmission and transformation equipment has become one of

the most common and significant disasters affecting the safety of

the power grid. Corrosion has three typical characteristics of

concealment (Matos et al., 2021), suddenness, and universality,

which involve metal materials science, atmospheric environment

science, chemical chemistry, corrosion electrochemistry, and

other disciplines and technologies.

Material corrosion behavior in different atmospheric

environments varies greatly (Cedeño-Vente et al., 2021),

and serious corrosion of materials in local environments

can easily cause the failure of transmission and substation

equipment materials and components leading to grid safety

accidents (Latosov et al., 2018), resulting in large economic

losses and maintenance costs. For the corrosion condition of

the pole tower, scholars have carried out a lot of research

work. For example, Fan et al. (2016) conducted a study on the

corrosion status of towers in some corrosive environments.

The results indicate that transmission towers have

experienced serious corrosion in coastal, industrial

pollution, and acid rain concentrated areas, where rust is

put into operation for 3–4 years and then transformed into

overall rust in 1–2 years, while towers have fallen over in large

areas due to corrosion failure. In addition, He et al. (2006)

studied the atmospheric corrosion behavior of Q235 steel at

25 and 95 m from the shore and on marine platforms. It was

found that there were large differences in the corrosion

morphology of the samples on the sunrise and back Sun

surfaces, where the corrosion products were mainly γ-
FeOOH and Fe3O4. In terms of the corrosion resistance of

the surface protective layer of the tower, Zhang et al. (2016)

explored new technologies for the corrosion protection of steel

components of transmission line towers. The study

demonstrates that the addition of Al, Mg, Si, Re, and other

elements to the pure zinc coating can obviously improve the

corrosion resistance of the coating and reduce the whole life

cycle cost.

The topography of Zhejiang Province slopes from

southwest to northeast, with complicated terrain (Tao,

2022). The mountains are in three roughly parallel

branches from southwest to northeast. Zhejiang is located

in the central subtropical zone, with a monsoonal humid

climate, moderate temperature, four distinct seasons,

abundant light, and abundant rainfall. Due to the influence

of oceanic and Southeast Asian monsoons (Zhang et al.,

2019), Zhejiang has significant changes in the prevailing

winds in winter and summer, significant seasonal changes

in precipitation, and diverse configurations of climate

resources (Wang et al., 2020). At the same time, under the

dual influence of the westerly and easterly weather systems,

there are many meteorological disasters, which are affected

by typhoons, rainstorms, droughts, cold waves, high winds,

hailstorms, frost damage, tornadoes, and other disasters.

State grid Zhejiang electric power company is in a region

with a different climate, a complicated and variable

atmospheric corrosion environment. Long-term service in

this natural environment transmission and transformation

equipment will encounter serious corrosion damage. As

shown in Figure 1, after a provincial power company of

the state grid conducted a field survey of the province’s

power transmission and transformation equipment in

2017, it was found that the number of pole/tower

corrosion accounted for the largest proportion of

transmission corrosion, accounting for 47%, while the

metal framework accounted for the largest proportion of

substation corrosion, accounting for 21%.

Conventional corrosion detection techniques

(Hernandez-Valle et al., 2014; Zhu et al., 2016; Patil et al.,

2017) include manual detection, thickness measurement, and

heavy measurement, but they are influenced by human

experience. With the gradual development of modern

detection methods, electrochemical detection, resistance

detection, ultrasonic detection, and other methods are

gradually being promoted and applied. However, these

methods are expensive, cumbersome, poor field testability

and other disadvantages, and are unsuitable for field

application. In atmospheric environments, increased

corrosion is always accompanied by changes in the

corrosion morphology and structure of metal surfaces.

Corrosion images can record information on the

morphology of corroded metals and machine vision

technology based on digital image processing is gradually

being promoted as a fast and non-destructive inspection

technique.

Machine vision (Melvyn et al., 2021) is part of artificial

intelligence and utilizes imaging equipment to photograph

and record inspection objects, which are processed and

analyzed at the terminal (Tian et al., 2021). In practice, it

has a huge impact on the detection of product merit and

damage to parts. Generally, through image pre-processing,

the noise or redundant information in the original image is

removed (Irino et al., 2020), then through texture analysis or

feature engineering processing of the image, different feature

vectors are obtained; and finally, through machine learning

methods such as random forest, decision tree, k-nearest

neighbor (KNN), and neural network, different corrosion

level results are classified. In addition, deep learning

techniques are beginning to be applied to corrosion
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detection, which enables end-to-end recognition and

detection from image to result, thus enabling a more

accurate prediction of corrosion classification.

• The main novelties/contributions of the proposed method

are stated as follows:

• Machine vision and deep learning technology are applied to

study the corrosion morphology and distribution characteristics

of pole towers.

• The corrosion strength t-P-S-N curve equation of the

member with corrosion time at reliability P is calculated

according to the mechanical model, which calculates the

failure time of the strength at different corrosion degrees

respectively.

• By developing the standard corrosion spectrum grading

software for transmission and transformation steel components

to photograph and identify in-service poles and towers, which

enables quantification and corrosion grading.

The rest of this article is presented as follows: the

atmospheric corrosion of metals is provided in Section 2. In

addition, Section 3 describes the image segmentation based on

DeepLabv3+ in detail. Section 4 illustrates modeling and analysis

of corrosive working conditions in power transmission and

transformation. The results and discussion of standard

corrosion spectrum classification software in cases are

illustrated in Section 5. Last, Section 6 summarizes various

conclusions.

FIGURE 1
Proportion of corrosion cases of transmission and transformation equipment. (A) Transformation equipment and (B) transmission line.
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2 Atmospheric corrosion of metals

2.1 Key corrosion factors for metals in the
atmosphere

Atmospheric pollutants (Prikazchikov et al., 2021) are

transported to metal surfaces in two main forms, namely, dry

deposition and wet deposition forms. According to the difference

in the annual average humidity of the metal surface, the

atmospheric environment is divided into three categories: dry

environment (RH <60%), ordinary environment (RH =

60–75%), and humid environment (RH>75%). The relative

humidity of the atmosphere is one of the most influential

factors in atmospheric corrosion. The greater the relative

humidity in the atmosphere, the air contains gaseous water to

reach saturation and condensed into liquid water attached to the

metal surface dew more easily, which produces more obvious

condensation, and the corrosion rate also increased accordingly.

In addition, atmospheric corrosion is basically electrochemical

corrosion based on the interaction between the material and the

atmospheric environment, which usually occurs by the formation

of a thin liquid film on the surface of the object by moisture.When

the film reaches a thickness of 20–30 molecules, it becomes the

electrolyte film required for electrochemical corrosion. At the same

time, oxygen in the air, corrosive substances, and surface deposits

dissolved in the metal surface liquid film will accelerate the

corrosion of metals. Therefore, the elements of corrosion of

metal materials in the atmosphere mainly include moisture,

oxygen content, corrosive substances, and surface deposits.

Among all the elements of corrosion, the key factors affecting

the atmospheric corrosion of metals are the time of forming a

film with moisture on the metal surface and the amount of

corrosive substances in the atmosphere. It is generally agreed that

the main environmental factors affecting atmospheric corrosion

are three: first, the temperature is above 0°C when the humidity

exceeds the critical humidity time; second, the content of sulfur

dioxide; and third, the content of salt particles. Therefore, the

division of atmospheric corrosion environment is mainly based

on humidity and pollutants atmospheric pollution components,

which are the main factors that accelerate atmospheric corrosion.

2.2 Thermodynamic laws of atmospheric
metal corrosion

Atmospheric pollution plays a serious destructive role on

materials, while thermodynamics has an essential influence on the

corrosion of metals in the environment. In the atmospheric

environment, the main gases on the object erosion are SO2, H2S,

CO2, etc. When there are SO2, carbon steel, and stainless steel

corrosion resistance significantly decreased, along with SO2

content increases the amount of corrosion, which is particularly

significant in the atmosphere when there is both H2O and SO2. SO2

corrosion of Fe is mainly due to the formation of SO2 in the water

film on the surface of themetal sulfuric acid, while themetal in the air

and the role of this film to produce oxygen depolarization.

2.2.1 Corrosion reactions in contaminated
environments

The energy structure of the Zhejiang region is mainly coal-fired,

and thus soot pollution is relatively serious. Analysis using scanning

electron microscopy and X-ray energy spectroscopy knows that

paraffin and soot contain large amounts of metal elements, which

are catalysts for the oxidation process (Zhang et al., 2021) when

formed with high humidity or precipitation in the air, as follows:

SO2 + 1
2
O2 +H2O→Fe3+•Mn2+H2SO4 (1)

In the case of corrosion under a thin film of the sulfuric acid

solution, oxygen depolarization is 100 times greater than

hydrogen depolarization. It follows that metals in a polluted

atmospheric environment undergo corrosion reactions mainly

according to the following calculations

Fe3+ +H2SO4 + 1
2
O2 → FeSO4 +H2O (2)

The increased corrosion effect of the following reactions can

be ignored.

Fe3+ +H2SO4 → FeSO4 +H2 (3)

The aforementioned equations can be expressed collectively as

Fe3+ + SO2 +O2 → FeSO4 (4)

2.2.2 Thermodynamic calculations of metal
corrosion reactions in atmospheric
environments

The chemical reaction can be expressed as follows:

aA + bB + ... � gG + hH (5)

According to the thermodynamic principle, the free energy of

the reaction at constant temperature and pressure changes as

follows:

ΔZT•P � ΔZ。 + RT lnQ (6)
ΔZ。 � −RT lnK. (7)

where Kmeans the equilibrium constant and Q denotes the ratio

of the product to the reactant for a given activity (i.e., when the

concentration is expressed in terms of partial pressure).

The activity is expressed in terms of the partial pressure of the

gas, which is calculated by

Qp � Pg
G•Ph

H

Pa
A•Pb

B

. (8)
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The free energy change at atmospheric temperature and

pressure can be expressed as

ΔZT•P � ΔZ。 + 1.36lgQ. (9)

Based on the data in Table 3, the standard free energy change

for the corrosion reaction can be found as

ΔZ。
Re � ∑ΔZGe −∑ΔZ � ΔZ。

FeSO4
− (ΔZS2 + ΔZFe + ΔZO2)

� −122.81.
(10)

Furthermore, due to the following equation

ΔZ。 � −RT lnK � −RT(2.303lgK). (11)

So, the following can be obtained

lgK � ΔZ。

−2.303RT. (12)

Substituting the data, the equilibrium constant for the

corrosion reaction can be solved as follows:

K � 2 × 1090. (13)

Following the theory of calculation of Eq. 6, for the reaction

of Eq. 4, the limiting equilibrium partial pressure can be

calculated by

Q � PFeSO4

PO2•PSO2•PFe
� 1
PO2•PSO2•1

. (14)

Taking the logarithm on both sides, this can be calculated as

lgQ � −lgPO2 − lgPSO2 (15)

Substituting the values obtained from the previous

calculation and Eq. 15 into Eq. 9, which can be shown as follows:

ΔZT•P � −122.81 + 1.36 × ( − lgPO2 − lgPSO2). (16)

Under equilibrium conditions and at natural local conditions

the partial pressure is 0.20946 atm, thus changing Eq. (16) to Eq.

(17), as follows:

lgPSO2 � −90.3 − lg0.20946 (17)

The resulting solution (i.e., equilibrium partial pressure) can

be expressed as

PSO2 � 2.4 × 10−90atm. (18)

It is known from the basic theory of thermodynamics that

the magnitude of Kp determines the extent to which a

chemical reaction proceeds, where the larger is the Kp, the

greater is the extent to which the reaction proceeds. From the

calculated data, it is known that the equilibrium constant for

the corrosion reaction of Fe in an SO2 polluted atmosphere is

2×1090, which is quite a large value. Therefore, it can be said

that the corrosion reaction proceeds very completely. That is

when the reaction reaches equilibrium, Fe, SO2, and O2 are

almost completely converted to FeSO4.

3 Image segmentation based on
DeepLabv3+

3.1 Image segmentation technique

Image segmentation is another fundamental task in

computer vision besides classification and detection, which

implies segmenting the image into different blocks based on

the content. Compared to image classification and detection,

segmentation is a more delicate task because each pixel point

needs to be classified, as in the case of the street view

segmentation below, where the outline of the object is

precisely outlined due to the classification of each pixel

point, while the bounding box is not given as in the case of

detection.

The two parts of the split network are called the encoder and

decoder; in short, the first part “encodes” the information as a

compressed vector to represent the input. The role of the second

part (decoder) is to reconstruct this signal into the desired output.

There are many neural network implementations based on the

encoder–decoder architecture. Among them, fully convolutional

networks (FCNs), SegNet, and UNet are some of the most

popular ones in recent years.

3.2 DeepLabv3+ algorithm

Based on DeepLabV3+ to implement image

segmentation, the overall architecture flow of the

algorithm model is demonstrated in Figure 2. There is no

doubt that the algorithm also consists of two parts, encoder

and decoder (Chen et al., 2018). The first module connected

in encoder is the dynamic convolution neural network

(DCNN), which represents the backbone network used to

extract the image features (Yang et al., 2022). The right side of

DCNN is an atrous spatial pyramid pooling (ASPP) network,

which uses a 1×1 convolution, three 3×3 null convolutions,

and a global pooling to process the output of the backbone

network. The results are then concatenated and a

1×1 convolution is used to reduce the number of channels.

The decoder is much simpler, which has two input parts. One

part is the output of the DCNN, while the other part is the

result of the parallel null convolution of the DCNN output.

These two results are concat together after some processing.

In addition, in DeeplabV3+ (Wang et al., 2022), upsample is

bilinearly interpolated in the way.

In other words, the main body of encoder of DeepLabV3+ is

DCNN with null convolution, which can be adopted from

common classification networks such as ResNet, followed by
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ASPP module with null convolution, thus introducing multi-

scale information. The underlying features are further fused with

the higher-level features to improve the segmentation boundary

accuracy.

4 Modeling and analysis of corrosive
working conditions in power
transmission and transformation

4.1 Mechanical model analysis of steel
components for power transmission and
transformation

4.1.1 Strength and deformation calculation
The finite element equations for the strength and

deformation analysis of the cowling based on the finite

element method is expressed as

[K]{X} � {P}, (19)

where [K] means the cowling stiffness matrix; {X} �
{X1, X2, . . .XN}T is the node displacement vector; {P} �
{P1, P2, . . .PN}T is the node load vector; N is the total

number of degrees of freedom.

The displacement solution of Eq. 19 can be calculated by

{X} � [K]−1{P} (20)

The stress solution of Eq. 19 can be calculated by

σ ij(x1, x2, x3) � Eij(x1, x2, x3)ϵij(x1, x2, x3)
� Eij(x1, x2, x3)(Xi,j +Xj,i), (21)

where i, j � x, y, z, {x1, x2, x3} � {x, y, z}T.(i, j � 1, 2, 3).

4.1.2 Transmission line tower model
establishment

The transmission line tower is basically established by the

beam unit, while the completed tower is established as shown in

Table 1.

1) The model is a truss structure, which is basically modeled by

using beam units;

2) The bottom support of the model is fully restrained;

3) The model lifting wire pedestal adopts T-section and the rest

adopts L-section;

4) Non-structural accessories such as lifting wires and top

fixtures are ignored.

4.2 Modeling of corrosion conditions of
steel components in power transmission
and transformation

The transmission line tower leg corrosion problem has

now seriously affected the safe and stable operation of

transmission lines. In order to compare the maximum

structural load change of the transmission tower under

FIGURE 2
Algorithm flow of image segmentation based on DeepLabV3+.
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TABLE 1 Grid model.

TABLE 2 Cutting thickness of rusted sections under different working conditions.

Working conditions Original dangerous section
size

Light corrosion Moderate corrosion Heavy corrosion

Self-weight condition (Section No.3) w1 = 0.045 w1 = 0.045 w1 = 0.045 w1 = 0.045

w2 = 0.045 w2 = 0.045 w2 = 0.045 w2 = 0.045

t1 = 0.003 t1 = 0.0025 t1 = 0.002 t1 = 0.0015

t2 = 0.003 t2 = 0.0025 t2 = 0.002 t2 = 0.0015

TABLE 3 Results of finite element stress analysis of corrosion tower under self-weight condition.

Id Operation condition Rust
thickness ratio (%)

Maximum stress/MPa Increase in maximum
stress (%)

1 F1.1 16.7 16.5 5.8

2 F1.2 33.4 17.8 14.1

3 F1.3 50 19.4 24.3
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FIGURE 3
Corrosion recognition algorithm process for transmission and transformation steel components.

FIGURE 4
Example diagram and result diagram. (A) Example images in each major standard and (B) standard corrosion spectrum recognition results.
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different corrosion conditions and analyze the overall impact

of the corrosion of the iron frame on the tower, this section

establishes a schematic diagram of the corrosion tower model

to analyze the self-weight condition.

For the purpose of an accurate analysis of the load-bearing

situation of the transmission tower under different corrosion

conditions. In addition, section cutting is now carried out on the

rod unit where the maximum stress point of the self-weight

condition is located, which simulates the force situation of the

maximum danger point of the tower under different degrees of

corrosion, the detailed corrosion simulation section size cutting

is shown in Table 2.

4.3 Transmission and transformation steel
components corrosion conditions self-
weight load analysis

Under the self-weight condition, the maximum stress of the

transmission tower plus occurs on the crossbar at the lower end

of the tower with a height of about 4.5 m. The maximum stress is

15.6MPa, and the cross-section of the beam where occurs in

section 3. The beams of the cross-section where the maximum

stress is located are established separately as light, medium, and

heavy cross-sectional rust thickness percentages for finite

element force analysis, which is calculated as presented in

Table 3.

From the calculation results, it can be seen that under the

self-weight condition with the increase of corrosion thickness,

the maximum stress of the tower gradually increases, while the

increase in general has less impact on the structural safety of the

tower.

It is notable that the stress clouds under each working

condition are detailed in Supplementary Appendix SA, while

the local beam stress–strain clouds under each working condition

are detailed in Supplementary Appendix SB and Supplementary

Appendix SC.

5 Case study

5.1 Transmission and transformation steel
components standard corrosion spectrum
classification software

Based on the existing real image and standard spectrogram

data set, the transmission and transformation tower

corrosion detection software were developed. The

inspection software mainly consists of the following parts:

1) transmission tower image display area; 2) tower basic

information display area; 3) corrosion area calculation

setting area; and 4) identification calculation results display

area. By reading the local image and setting the basic

configuration, it can run the inspection program. At the

same time, the software supports the filling of

geographic location information within China, which

corresponds to the location information of the tower

images, voltage lines, and other information one-by-one, so

that precise positioning of the tower corrosion detection can

be realized, which is convenient for workers to locate and

repair.

5.2 Introduction of corrosion classification
scheme for transmission and
transformation steel components

The quantitative analysis of corrosion images is a difficult

problem to be solved. Transmission and transformation tower

images can only be obtained outdoors, where there are

interference factors such as complex background and

variable shooting environment, which bring great trouble to

the algorithm modeling. Considering the above factors, this

paper proposes a corrosion classification method for

transmission and transformation steel components based

on image semantic segmentation, as shown in Figure 3,

which can be divided into the following steps: 1) image

acquisition; 2) corrosion location and recognition of long-

range image; 3) quantitative recognition of corrosion in close

range images; 4) steel member matching; and 5) graded

evaluation.

In the tower segmentation detection application, it is obvious

that the algorithm has high recognition accuracy. After passing

the dataset production and pre-processing steps, the algorithm is

input into the DeepLabV3+ network, while image post-

processing and user interface (UI) display are performed to

obtain satisfactory recognition results.

5.3 Quantitative analysis and evaluation of
corrosion by standard spectrograms

Modeling of standard corrosion spectra to complete the

quantitative analysis of the degree of corrosion. Standard

corrosion spectra, that is, the corrosion degree standard

images used in major standards, including “DLT

2055–2019 Transmission Line Steel Corrosion Safety

Assessment Guidelines,” “GB T6461-2002 Salt Spray Test

National Standard Specimen and Specimen Rating,” “ASTM-

D610-08 Standard Test Methods for Evaluating the

Corrosion Degree of Painted Steel Surfaces,” of which the

example images are shown in Figure 4A.

Based on the threshold method and contour extraction

algorithm, this article has completed the aforementioned three

corrosion standard example images of corrosion recognition

modeling and corrosion simple category recognition (uniform

Frontiers in Energy Research frontiersin.org09

Liu et al. 10.3389/fenrg.2022.1014603

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2022.1014603


corrosion or local corrosion), the recognition results are

displayed in Figure 4B.

6 Conclusion

This article carries out the calculation of the corrosion

fracture mechanics model of transmission and transformation

steel components and the development of standard corrosion

spectrum grading software, which contains the following three

contributions/novelties:

1) The analysis of the mechanical properties of corrosion fracture

of transmission and transformation steel components revealed

that, under the load of corrosion and self-weight, if the

structure is subjected to a small load, the impact of

corrosion on the structure is relatively small. If the structure

is subjected to larger loads, the impact of corrosion on the

structure increases sharply and threatens the safety of the

tower, which may produce the phenomenon of tower collapse;

2) Classification of corrosion images according to the

established tower mechanical properties model, which is

mainly based on the tower structure and corrosion fracture

mechanical properties;

3) Inspection of steel corrosion using machine vision

technology, that is, DeepLab-based semantic segmentation;

4) Through the multi-angle shooting scheme, the corrosion

images of individual towers are obtained, and the

corrosion classification results are obtained by image

processing and classification, eventually a tower corrosion

quantification scheme is formulated. The corrosion

classification results of multi-directional tower images are

evaluated comprehensively to obtain the final satisfactory

corrosion rating of the tower.
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