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The integrated energy system (IES) is recognized as a promising energy

utilization approach enabled to both improve the energy efficiency and

reduce pollutant emissions. Although the economic-environmental dispatch

(EED) problem of the IES has been widely studied, the fact that the IES is

operated under off-design conditions, having a significant influence on the

efficiency of energy devices, is neglected usually, resulting in the scheduled

operations, for the IES could not be accurate enough in many actual situations.

This study investigates the EED problem of the IES under off-design conditions.

Technically, by integrating an efficiency correction process into the traditional

energy hub (EH) model, a dynamic energy hub (DEH) model is first formulated

for adapting itself to variable energy conversion efficiencies. Then, a deep

neural network (DNN)-based efficiency correction method is proposed to

predict and correct the time-varying efficiency of energy devices based on

three main off-design conditions including the load rate, air temperature, and

pressure. A multi-objective EED model is finally formulated for the IES, with the

framework of the DEH model, aiming at establishing a trade-off between

operational cost and emitted pollutants. Case studies show that the

proposed approach helps in enhancing the accuracy of IES dispatch while

having a good performance in both the operational cost and pollutant emission

reduction.
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1 Introduction

With the increasing problem of environmental pollution and energy scarcity, both

energy transformation and upgrading have received extensive attention worldwide (Jin

et al., 2021). As one of the important energy utilization ways, the integrated energy system

(IES) has been regarded as the development direction of the future energy field, which

promotes the synergy and complementarity among multi-energy carriers (e.g., electricity,
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gas, and heating) (Lin et al., 2021), having the advantages of

enhancing the energy efficiency and reducing dependence on the

fossil fuels. Based on this, aiming to promote effective

coordination among multi-energy carriers, the optimal

dispatch of the IES has become a prevalent research hotspot

in academia and industries (Martínez Ceseña and Mancarella,

2019).

The optimal dispatch for the multi-energy systems has been

studied extensively, and some representative works have also

been reported. Bartnik et al. (2022) investigated the economic

performances of the combined heating and power (CHP)

systems, and an economic-effective dispatch model was

developed. A dispatch model was proposed for the IES to

reduce energy cost (Yu et al., 2019). On the other hand, the

environmental consideration is another important concern of the

multi-energy system dispatch. To this, the economic-

environmental dispatch (EED) problem of the multi-energy

systems has been introduced and is usually formulated as a

multi-objective optimization problem to pursue a trade-off

between the economic and environmental benefits. For

instance, an EED model was proposed by Dougier et al.

(2021), Sarfi and Livani (2018), and Nandimandalam et al.

(2022) for microgrids including certain energy conversion and

storage units, aiming to minimize the operational cost and

pollutant emissions. Guo et al. (2022) studied the optimal

economic operation problem for the IES, and the

environmental consideration was modeled into a constraint.

Msigwa et al. (2022) provided an EED framework that

functioned as accommodating to the high penetration access

of wind power. A multi-objective optimization model was

developed by Xu et al. (2018), aiming to obtain the minimum

fossil fuels and pollutant emissions of the IES, considering

stochastic wind and solar power. Although the EED problem

for multi-energy systems has been studied extensively in the

aforementioned works, they all ignore the impact of the off-

design conditions on the efficiency of energy devices and assume

the latter is constant. In fact, the off-design conditions, such as

the load rate (Zong et al., 2022), air temperature (Akpan and Fuls,

2019), and pressure (Gong et al., 2021), have a significant impact

on the device efficiency and make it variable. As a result, the

scheduled operations based on this constant device efficiency are

essentially deviated from the true ones, and therefore, the

operational results could also be inaccurate (Mu et al., 2022).

In the literature, several methods have been reported to deal

with the impact of variable off-design characteristics on the

efficiency of energy devices. In general, the existing methods

can be classified into the following two streams: 1) the

mathematical model-based method and 2) the data-driven-

based method. In the first stream, the polynomial fitting

method was used by Zheng et al. (2018) to model the energy

device efficiency. However, the presented model was a nonlinear

programming problem, which was easy to fall into the

suboptimal or even infeasible solution. To address this issue,

the nonlinear formulation of the device efficiency was piecewise

linearized via approximate treatment (Almassalkhi and Towle,

2016). The piecewise linear (PWL) approach was also employed

to modify the efficiency of energy devices, and a mixed-integer

linear programming model was formulated by Huang et al.

(2020). However, following Shao et al. (2020), the

mathematical model-based methods are hard in terms of

ensuring the accuracy of the calculated solutions and the

computational efficiency. To this end, in the second stream,

the data-driven-based method is studied further. In particular,

the machine learning (ML) method is one of the most widely

used methods. Based on the collected historical off-design

conditions’ data, many representative ML approaches can be

used to predict the variable device efficiencies, such as

polynomial regression (Li and Yao, 2021), support vector

machines (Liu et al., 2020), and deep neural network (DNN)

(Ghimire et al., 2019). The DNN has remarkable performance in

both the computational accuracy and speed for nonlinear

parameter forecast and has been applied in many machines’

intelligence fields, such as image recognition (Chen S. et al.,

2022), parameter forecast (Browell and Fasiolo, 2021), and

system control (Li et al., 2021).

Based on the aforementioned discussion, this article focuses

on the optimal dispatch of the IES and is intended to study the

EED problem for the IES, considering the off-design conditions.

Compared to the existing works (Sarfi and Livani, 2018; Xu et al.,

2018; Yu et al., 2019; Dougier et al., 2021; Bartnik et al., 2022; Guo

et al., 2022; Msigwa et al., 2022; Nandimandalam et al., 2022), the

main novelty of this study is to take into account the impact of

the off-design conditions on the energy device efficiency. The

primary contribution of this article is to formulate an energy hub

model, which enabled to operate with the time-varying energy

device efficiency, named as the dynamic energy hub (DEH)

model. The key idea of such a formulation is to incorporate

an efficiency correction process into the traditional energy hub

(EH) model. The second contribution of this article is to propose

a DNN-based efficiency correction method, in which three main

off-design conditions (i.e., load rate, air temperature, and

pressure) are considered and taken as the input set of the

designed DNN well, and the corrected energy device efficiency

is the output. Moreover, to validate the benefits of considering

the off-design conditions on the IES’s dispatch, a multi-objective

EED model with multi-scale operation considerations including

operational economic and environmental impacts is developed

for the IES under the framework of the DEH model.

The rest of this article is structured as follows. The overview

of EED for the IES considering off-design conditions is described

in Section 2. The DEH model is established in Section 3, and the

DNN-based device efficiency correction method is developed in
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Section 4. In Section 5, the multi-objective EED model is

introduced. Case studies are applied to verify the proposed

method in Section 6, and the conclusion is drawn in Section 7.

2 Overview of EED for the IES
considering off-design conditions

Figure 1 illustrates a typical structure of an IES. Various

energy devices (e.g., gas boiler (GB), CHP, and battery (BAT))

link the electricity system, gas system, and heating system

together in the IES (Jin et al., 2016). Among them, the

electrical loads are supplied by the electricity system, CHP,

and BAT, and the CHP and GB supply the thermal loads. For

the dispatch application, an IES is usually modeled into an

energy hub framework based on the physical link topology of

the IES.

The ideas of the proposed EED for the IES considering the

off-design conditions are depicted in Figure 2. Taking into

account the impact of off-design conditions on the efficiency

of energy devices, the traditional EH model is remodeled as

a DEH model that can operate with the time-varying device

efficiency by integrating with an efficiency correction

process. In the daily operation of the IES, the energy

device efficiency is predicted and corrected in the

efficiency correction process, based on the proposed

DNN-based efficiency correction method, which is a

data-driven method and will be introduced in detail in

Section 3. Afterward, a multi-objective EED model is

developed based on the obtained DEH model and is

solved to realize a trade-off among multi-scale

operational considerations over a finite operation

horizon, that is, the operational cost and environmental

impact reflected by the emitted pollutants.

3 Modeling of the dynamic
energy hub

Based on this typical IES structure shown in Figure 1, the

diagram of the traditional EH model can be presented in

Figure 3A. With the consideration of variable off-design

conditions, the energy device efficiency varies under their

operation conditions, such as the load rate and other

environmental-related factors (e.g., air temperature and

pressure); thus, it is necessary to reformulate the traditional

EH model to adapt it to the time-varying energy device

efficiency. For this purpose, we plan to incorporate an

FIGURE 1
Typical structure of the IES.
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efficiency correction process into the traditional EH model, as

shown in Figure 3B, to develop the DEH model. With the added

efficiency correction sector, the energy device efficiency can be

adjusted with the variation of the off-design conditions. In this

article, the efficiency correction process is functioned by the

proposed DNN-based efficiency correction method.

FIGURE 2
Framework of the proposed method.

FIGURE 3
Typical topology model: (A) traditional EH model and (B) DEH model with the correction of the energy device efficiency.
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The EHmodel is a linear multiple-input and multiple-output

unit, where various energy sources are generated, converted,

stored, and consumed, strengthening the integration of

multiple energy carriers. The mathematical formulation for

the traditional EH model, for a typical structure, as shown in

Figure 3A, is presented in model (1).

[ Le,t

Lh,t
] � [ 1

0
]tηCHP

]tηCHP,h + (1 − ]t)ηGB ][
Pe,t

Pg,t
] + [ ηC ηD

0 0
][We,t

0
].
(1)

In model (1), Pe,t and Pg,t denote the input electricity and gas

powers, respectively, and Le,t and Lh,t represent the electrical and

thermal loads, respectively. ηCHP, ηCHP,h, and ηGB are the

electrical efficiency of CHP, thermal efficiency of CHP, and

the efficiency of GB, respectively. The dispatch factor is

represented by vt∈[0,1], which defines the proportion of gas

input to CHP and GB. PBAT,t is the charging/discharging power

of BAT at time t.

As the IES is always operated under the off-design

conditions, the device efficiency in the EH model is not

constant but time-varying, which renders the EH model a

multivariable nonlinear system (Chen M. et al., 2022). To

address this challenge, the DEH model is modeled in this

article, as shown in Figure 3B; the efficiency correction

process is embedded in the EH model. ηCHP,t, ηCHP,h,t, and

ηGB,t are the electrical efficiency of CHP, thermal efficiency of

CHP, and the efficiency of GB at time t, respectively. The

coupling matrix of the DEH model is expressed as follows:

[ Le,t

Lh,t
] � [ 1

0
]tηCHP,t

]tηCHP,h,t + (1 − ]t)ηGB,t ][
Pe,t

Pg,t
] + [ ηC ηD

0 0
][We,t

0
].
(2)

The efficiency correction process with execution on the

basis of unit time interval dynamically calculates and corrects

the energy device efficiency in the EH model based on three

time-varying off-designs, including the actual load rate, air

temperature, and pressure. Therefore, the formulated DEH

model is capable of accurately simulating the operational

environment of the IES under the variable off-design

conditions.

4 DNN-based device efficiency
correction

The off-design conditions have a significant impact on the

efficiency of energy devices. Considering three main off-design

conditions, namely, the load rate, air temperature, and pressure,

the efficiency of energy devices can be modeled as a function of

the aforementioned three elements as follows:

ηi,t � f(Ni,t, Ti,t, Fi,t), (3)

where ηi,t denotes the efficiency of the energy device i at time t.

Ni,t denotes the load rate of the energy device i at time t. Ti,t and

Fi,t denote the air temperature and pressure at time t, respectively.

Due to the strong nonlinearity relationship between the

energy device efficiency and the off-design conditions (Mu

et al., 2022), the mathematical model-based method is difficult

to achieve accurate predictions and is prone to overfitting and

dimensionality curse. In this section, the DNNmethod (Ghimire

et al., 2019) is employed to forecast the efficiency of energy

devices.

A DNN framework is designed first in this article, which is

a fully connected neural network with five layers, as presented

in Figure 4. The designed DNN framework exhibits the best

trade-off between the prediction speed and accuracy when it

contains three hidden layers with six, five, and three neurons.

The considered three off-design conditions are set as the

input data set, and the device efficiency is the forecasted

output. More specifically, the DNN model is formulated as

follows:

xi,t � [Ni,t, Ti,t, Fi,t], (4)
hl � g(Wlhl−1 + bl−1),∀l � 1, ..., 4, (5)

yi,t � ηi,t, (6)

where hl is the output vector of the l-th layer. g( ) is the

activation function. Wl and bl-1 denote the connection weight

matrixes. Model (4) represents the input sequence of the

DNN. Model (5) describes the mathematical principles of

forward propagation. Model (6) represents the output

sequence of the DNN.

As shown in Figure 4, each layer is interconnected through

weights (Wl) and biases (bl). The activation function further

introduces nonlinearity into the hidden layers. The sigmoid

FIGURE 4
DNN model for device efficiency forecast.
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function is selected as the activation function, given in Eq. 7,

which can alleviate the gradient disappearance and improve the

convergence rate (Ravnik and Hriberšek, 2019).

sigmoid(x) � 1
1 + e−x

. (7)

After constructing the DNN model, the loss function is

designed to guide the training. The mean square error

between the obtained efficiency of energy devices and the

actual value is defined as the loss function hloss:

hloss � 1
2
∑(ŷi,t − yi,t)2. (8)

The training process is performed by tuning the parameters

of the DNNmodel to minimize the loss of the given training data,

as given in model (9). Moreover, we apply the

Levenberg–Marquardt algorithm (Long et al., 2020) to solve

the problem in model (9), which is effective for the large-scale

data set and makes the probability of falling into a local

minimum much reduced.

min
Wl,bl

1
4
∑4
l�1
floss,l, (9)

where floss,k is the loss of the lth layer in the training.

Moreover, the efficiency of energy storage devices primarily

varies with long-term seasonal factors, and the effects on daily

time-scale dispatch are ignorable (Mu et al., 2022). Thus, the

variable off-design characteristics of energy storage devices are

not taken into account in this article.

5 Multi-objective EED model

In this article, the IES is operated with multi-scale

operational considerations, that is, the operational economic

and environmental impact, under the off-design conditions. A

multi-objective EED model is developed in this section for the

IES, with two mutually exclusive objectives, that is, 1) to

minimize the IES’s operational costs over a finite dispatching

horizon and 2) to minimize the pollutant emissions. The

decision-making variables in the proposed multi-objective

EED model include purchasing electricity Pe,t, purchasing

gas power Pg,t, output power Pi,t of the energy conversion

device i, BAT charging power PC,t, and BAT discharging

power PD,t.

5.1 Objective functions

5.1.1 Objective 1: Minimizing the operational
cost

The first objective is referred to the operational economic

consideration and is formulated to minimize the operational cost

(fope) composed of the electricity purchase cost (Ce) and gas

purchase cost (Cg) as follows:

fope � Ce + Cg, (10)

Ce � ∑T
t

ce,tPe,tΔt, (11)

Cg � ∑T
t

cgPg,tΔt, (12)

where T and Δt are the total dispatching period and unit

dispatching period, respectively. ce,t and cg denote the unit

prices of purchasing electricity and gas, respectively.

5.1.2 Objective 2: Minimizing the emitted
pollutants

The second objective, that is, the environmental

consideration, is to reduce the overall pollutant emissions

(femi) caused by electricity usage (Ee) and gas usage (Eg) and

is expressed as follows:

femi � Ee + Eg, (13)

Ee � ∑T
t

∑NPG

pg�1
χe, pgPe, tΔt, (14)

Eg � ∑T
t

χgPg,tΔt, (15)

where NPG represents the types of pollutant emissions from

electricity usage, including CO2, CO, SO2, and NOx. χe,pg
represents the emission factor of the pg-type pollutant. χg
denotes the emission factor of gas usage. Only CO2 is taken

into consideration in the pollutant emissions from gas usage due

to the clean nature of gas (Lin et al., 2018).

5.2 Constraints

The proposed multi-objective EED model for the IES is

subjected to the following constraints:

5.2.1 Energy balance constraint
The DEH model describes the coupling relationship

between input and output power and adjusts the

efficiency of energy devices dynamically by the DNN-

based efficiency correction method. The energy balance

constraint defined in the DEH model should be satisfied,

as formulated in Eqs 2, 3.

5.2.2 Energy conversion devices’ constraints
The energy conversion devices in this article include CHP

and GB, and constraints are shown as follows.

Pi,t � ηi,tPin,i,t, (16)
0≤Pi,t ≤Pi,cap, (17)
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where Pin,i,t represents the input power of the energy conversion

device i at time t.Pi,cap is the capacity of the energy conversion device i.

5.2.3 Energy storage devices’ constraints

WBAT,t+1 � WBAT,t(1 − σ) + (PC,tηC − PD,t/ηD)Δt, (18)
0≤WBAT,t ≤WBAT,cap, (19)
0≤PC,t ≤PC,max, (20)
0≤PD,t ≤PD,max, (21)
Wstart � Wend, (22)

where WBAT,t and WBAT,t+1 indicate the energy stored in BAT

before and after charging and discharging, respectively. ηC and

ηD are the charging and discharging efficiencies of BAT. σ and

WBAT,cap are the self-discharge rate and capacity of BAT,

respectively. PC,max and PD,max are the maximum charging

and discharging power, respectively. Wstart and Wend are the

initial and final energy stored in BAT during 1 day (24 h),

respectively.

5.2.4 Tie-line power constraint
The purchasing electrical power should not exceed the

maximum tie-line power Pgrid,cap:∣∣∣∣Pe,t

∣∣∣∣≤Pgrid,cap. (23)

The non-dominated sorting genetical algorithm (NSGA-II)

(Deb et al., 2002) is utilized in the MATLAB platform to solve

the formulated multi-objective EED model in Section 5. The

NSGA-II has strong performance in finding the Pareto frontier

well of a multi-objective optimization problem and is one of the

most recognized multi-objective evolutionary algorithms. With

the obtained non-dominated solutions, the fuzzy decision-

making criteria (Sakawa and Yano, 1985), with simplicity

and capability in accounting for IES operators’ preferences,

are then employed to select and output the optimal compromise

solution.

6 Case studies

6.1 System setup

The typical IES presented in Figure 1 is considered as an

example. The electrical and thermal loads, air temperature, and

pressure curves in a typical summer day are depicted in Figures 5,

6. The unit prices of purchasing electricity and gas are shown in

Table 1. The emission factors of CO2, CO, SO2, and NOx from

electricity usage, the emission factors of CO2 from gas usage, and

the maximum tie-line power are shown in Table 2 (Lin et al.,

2018). The technical parameters of devices are presented in

Table 3 (Mu et al., 2022).

6.2 Simulation results and discussion

We set two benchmarks to comparatively validate the

advantages of the proposed EED method as follows:

Case I. The EED method based on the constant efficiency EH model.

Case 2. The EED method based on the DEH model. In addition, different

numbers of training iterations (IT) of DNNs are considered, and accordingly,

multiple sub-cases are set. When IT is quite large enough (e.g., 500), the loss

function values are approximately zero and DNNs converge completely, as

shown in Figure 7. At this point, the dispatch results are considered accurate

enough to serve as a reference for comparison with other cases.

The optimal compromise results in two cases are presented in

Table 4. In case I, the operational cost is 7592.65$ and pollutant

emissions are 12.632 t. The relative error reaches 3.726%. This

demonstrates that the constant efficiency EH model cannot

accurately simulate the off-design operating IES, resulting in a low

precision of the dispatch scheme. In case II (IT = 200–500), the relative

errors are significantly reduced, which indicates that the accuracy of

the model is greatly improved. In addition, the relative errors in case II

(IT= 200–500) are reduced as IT increases due to the increasing forecast

precision of DNNs, as presented in Figure 7. Although the operating cost

FIGURE 5
Electrical and thermal loads.

FIGURE 6
Air temperature and pressure.
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and pollutant emissions in case II (IT = 500) are 293.84$ and 0.854 t,

respectively, which are higher than those in case I, the dispatch scheme in

case II (IT = 500) enjoys the highest precision and is most consistent under

the actual off-design operating conditions of the IES.

The dispatch results of electrical power in case I and case II (IT =

500) are shown in Figure 8, which have great differences.

In case I, since devices are assumed to operate at the rated

efficiency, CHP is more economical and is employed as the primary

power supply. Electricity is purchased from the grid to satisfy the

remainder of electrical loads. BAT is charged during the peak

electricity prices and discharged during the low electricity prices.

In case II (IT = 500), electrical loads are mostly met by the grid.

When the electricity prices are low (e.g., 0–6 h and 23 h), it is more

economical to supply electrical loads from the grid. CHP supplies only

at the peak electricity prices (10 h and 19–20 h). The charging and

discharging states of BAT are mainly affected by electricity prices,

which is similar to the state in case I.

The dispatch results of thermal power in case I and case II (IT = 500)

are quite different, as shown in Figure 9.

In case I, although CHP operates at low load levels, it remains as the

main heating device, and the variable off-design characteristics are

ignored. GB supplies energy only during peak thermal loads to make up

for the unmet thermal loads by CHP.

In case II (IT = 500), the thermal loads aremainly supplied by GB. To

ensure the efficient operation of devices, GB operates alone when

thermal loads are below the GB capacity, while most thermal loads

are supplied by CHP when the thermal loads exceed the GB capacity

(e.g., 4 h, 12 h, and 19–20 h). Moreover, thermal and electrical loads are

simultaneously supplied by CHP during the peak electricity prices (10 h)

to improve the operating economy of the IES.

By comparing the two cases, the conclusions can be drawn that the

traditional constant efficiency EHmodel is difficult to accurately model

the IES under off-design conditions, making the dispatch results

unreasonable. The impact of the off-design conditions on the energy

device’s efficiency is supposed to be taken into consideration in the

pursuit of the precise performance of the EED model.

7 Conclusion and future work

This article has proposed a multi-objective EED method for

the IES, considering the off-design conditions. Technically, the

TABLE 1 Unit prices of purchasing electricity and gas.

Types of energy Time Price ($/kWh)

Electricity 0:00–6:00 and 22:00–24:00 0.059

6:00–9:00; 10:00–18:00; and 20:00–22:00 0.101

9:00–10:00 and 18:00–20:00 0.142

Gas 0:00–24:00 0.065

TABLE 2 Emission factors.

Types of emission Factor (t/MWh)

χe,CO2 0.8647

χe,CO 0.008

χe,SO2 0.039

χe,NOx 0.0309

χg 0.1940

TABLE 3 Rated parameters of devices.

Types of device Parameter Value

CHP Rated capacity 1,600 kW

Rated electrical efficiency 0.34

Rated thermal efficiency 0.51

GB Rated capacity 2050 kW

Rated efficiency 0.94

BAT Rated capacity 200 kWh

Maximum charging/discharging power 60 kW

Rated charging/discharging efficiency 0.9

Self-discharge rate 0.0001

FIGURE 7
Loss vs. iterations.
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traditional EH model is remodeled into the DEH model enabled

to operate with the time-varying energy device efficiency, by

integrating with an efficiency correction process. Here, this

efficiency correction is functioned by the proposed DNN-

based efficiency correction strategy, which is a data-driven

approach and has good performance in terms of nonlinear

data processing. A multi-objective EED model of the IES is

proposed to evaluate the benefits of considering the off-design

conditions on the IES dispatch. Case studies are conducted, and

several key observations are obtained from the numerical

simulation: 1) the load rate of devices exerts a significant

impact on the device efficiency, while the device efficiency in

turn affects its load rate; 2) compared to the traditional EHmodel,

the proposed DEH model is more reasonable and appropriate for

following the actual operational environment of the IES; thus,

more accurate operation schedules can be obtained; and 3) the

TABLE 4 Operational cost and pollutant emissions.

Case Operational cost ($) Pollutant emission (t) Relative error

Case I 7592.65 12.632 3.7259%

Case II (IT = 200) 7825.49 13.448 0.7735%

Case II (IT = 300) 7867.36 13.473 0.0243%

Case II (IT = 400) 7879.85 13.481 0.0084%

Case II (IT = 500) 7886.49 13.486 -

FIGURE 8
Dispatch results of electrical power: (A) case I and (B) case II (IT = 500).

FIGURE 9
Dispatch results of thermal power: (A) case I and (B) case II (IT = 500).
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proposed IES multi-objective EED scheme based on the DEH

model can balance the IES’s multi-scale operational considerations

well after taking into account the off-design conditions.

Currently, the authors are studying the real-time operation of

the IES with the consideration of the off-design conditions, in

which a rolling horizon strategy is utilized for coping with the

realization of variable off-design conditions.
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