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The fast and robust identification of fault elements is essential for the security

and continuous operation of the power grid. The existing methods might be

maloperation for bad data disturbance and require strict and exact

synchronization. To address the challenge, this paper uses the conflict graph

to propose a new sensitivity graph signal model for the power grid fault

diagnosis. Next, a novel graph Fourier transform (GFT)-based method is

proposed to diagnose the fault branch. Firstly, the measurement sensitivity

graph signals are constructed by the conflict graph model, where the data is

from activated recorders and protection devices. Next, the eigenvalue and GFT

coefficient are used to extract the frequency characteristics of the signals. The

fault branches provide the maximum contribution rate to the high-frequency

coefficient of GFT. Then, for each node, the importance degree of the

measurement sensitivity conflict graph signal is defined. The high-frequency

importance degree-basedmethod is proposed to discriminate the fault branch.

Finally, simulations and practical cases verify the correctness and effectiveness

of the proposed method. The proposed method owns fast faults diagnosis and

good practicability. Additionally, the identification accuracy is high and the

method is robust to bad data interference, due to considering measured data

from whole activated fault recorders and protection devices.
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1 Introduction

Power gird requests accurate and robust fault diagnosis methods to guarantee its safe

and stable operation (Sun et al., 2004), (Cui et al., 2016). Fast and clear fault diagnosis

methods can help dispatchers make quick decisions to stop the further development of

outage events. During faults in grids, the electrical signals change firstly, and then relays

will trip the fault lines with changed signals and preset protectionmethods. The outputs of

relays rely on protection methods and switch status (Liu et al., 2019) (Qu et al., 2019). A

complex grid has several operation modes. When operation modes do not match the
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protection methods, the protection devices will refuse operation

or mal-operation, as well as the switches. Thus, the switch status-

and relay outputs-based fault diagnosis method meets a decrease

in accuracy when maloperation or refuse operation occurs (Zhou

et al., 2009). Electrical signals-based fault diagnosis methods are

not influenced by the relay outputs or switch status.

Electrical signals can be obtained by fault recorders, and fault

recorders-based methods attract the attention of researchers. In

(Li et al., 2014), advanced technologies were adopted to integrate

fault recorder data and proposed an exact fault location by the

differential current. The method needs strict and exact

synchronization. In (He et al., 2019), wide-area fault recording

data and fuzzy C-means clustering are combined to propose a

fault diagnosis method. The usage of the wavelet improves the

accuracy of the method. However, a long time is required to

finish the multiresolution wavelet analysis. The methods require

sending complete fault recorder data to the main substation, and

the progress needs a long delay to accomplish. Thus, methods

without the transmission of complete data can have a fast

diagnosis speed.

Reference (Qie et al., 2018) proposes a panoramic wave

recording platform that supports power grid fault perception

and analysis. It provides a platform to support the faster

utilization of start-up measurement information of whole grid

fault recorders. In (Lei et al., 2020), through the D5000 integrated

platform multi-source information, automatic archiving and

manual supplementary recording of power grid fault

information are realized. Among the information, the current

root-mean-square (RMS) value, voltage RMS value, and start-up

value are first sent by message (Asuhaimi et al., 2007) with faster

upload speed. Thus, methods using these values can realize a fast

fault diagnosis. The RMS-based sorting method suffers low

accuracy, due to the influence of bad data.

Fully using redundant data can increase the identification

accuracy of the fault branch, and assess protection devices more

comprehensively. The idea has been applied in event detection.

Authors in (He et al., 2017) first proposed a big data technology-

based analysis method for smart grids. They detect abnormals in

the grid by the mean spectral radius of the random matrix which

is formed by themeasurement data from the whole grid.With the

spectral theory of multidimensional matrix (STMM) (Ma et al.,

2021), proposed a method to detect events in the power system. It

can accurately detect the weak event situation in different scale

systems. References (He et al., 2017) and (Ma et al., 2021) mainly

focused on anomaly detection of power fluctuations and voltage

sags. In (Hu et al., 2021), a trinetworks form-based generative

adversarial network (tnGAN) is used to handle leak detection

problems with incomplete sensor data. It needs many samples to

form the model.

The graph-based method can also fully use redundant data.

The node importance of the graph can be used in the assessment

of node status (Li et al., 2019). However, those methods cannot be

directly applied to the power grid diagnosis. The node

importance in the grid is mainly classified based on the

functions of the nodes in the transmission network, and the

importance of nodes of different types is evaluated with different

indexes (Xu et al., 2014). Manymethods can be used to obtain the

graph node importance. The degree-based node importance

algorithm is a classical algorithm, mainly considering the

influence of node positions. The popular algorithm is the

path-based node importance algorithm that mainly considers

the importance of inter-node paths, as the PageRank algorithm in

web page ranking. The aforementioned methods are not suitable

for the analysis of node importance in the fault network. The fault

network analysis aims to find the branch that suffers from the

most serious impact of faults or the node with the most obvious

fault phenomenon.

Graph signal processing (GSP) has developed rapidly in

recent years, where the GSP is an extended method of digital

signal processing (DSP). GSP can give concepts of classical signal

processing to signals associated with the underlying graph

structure such as filtering, sampling, and modulation (Ricaud

et al., 2019). GSP is widely applied in singularity detection,

locating, clustering, and denoising for graph signals, due to

the accurate extraction of the graph-spectrum frequency of

the graph signal. For the application in power systems, GSP is

mainly used in the detection of non-intrusive load (Zhao et al.,

2018), false data attacks (Xu, 2020), abnormal data of power grid

PMU (Ramakrishna and Scaglione, 2021), etc. However, GSP is

rarely used in fault diagnosis, due to no suitable method to form

graph signals.

According to literature reviews, fast fault diagnosis

methods against disturbance of bad data are necessary to

be further researched. In this paper, the proposed method

directly uses graph signal without sample supervision, and

can more accurately diagnose the fault center through

graph frequency analysis. The main contributions are as

follows:

(1) The sensitivity conflict graph signals are proposed. The

signals include branch current sensitivity and voltage

sensitivity. They can be fast calculated with proposed

methods and do not need strict time synchronization.

(2) With the proposed signals, the graph Fourier transform can

be directly applied to power grid fault diagnosis. The

contribution rate in the high frequency of each branch is

calculated, and the branch that has the highest contribution

is identified as a fault branch. The proposed method is

accurate and it is robust to missing data.

The rest of the paper is as follows. Section II presents the

method to use the conflict graph to construct the measurement

sensitivity graph signal. Section III gives the analysis of Graph

Fourier transform for the measurement sensitivity signal, as well

as Graph Fourier transform-based fault diagnosis method. The

results of the simulation cases and the practical cases are placed
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in Section IV and Section V, respectively. Section VI concludes

the paper.

2 Measurement sensitivity graph
signal based on the conflict graph

The graph is represented as G= (V, E, W), where V = {v1, v2,

..., vN} is the set of N nodes in the graph; E = {e1, e2,..., eM} is the set

of M branches in the graph; the weight matrix of the graph is W

whose element wij represents the weight of the edge between the

node i and node j. The wij = 0 indicates that the node i and j are

not connected. The graph signal is a set of values defined at the

vertex in the graph, represented as the N-dimensional vector f =

[f (1), f (2),...,f (i),. . .,f (N)]T, where f(i) represents the value of the

graph signal for node i (He et al., 2017).

2.1 Overview of the conflict graph

Graph signal processing (GSP) is the analysis of the signals

defined on the graph nodes. The graph signal based on the main

wiring of the grid can analyze the signal change of the bus node

and can be used to discriminate the fault of buses. However, for

grids, most faults occur at lines or a branch of the transformer.

Fault lines can only be discriminated indirectly by the change of

the bus node connected to the line. However, with the conflict

graph model, the fault branch can be directly discriminated by

seeing the branches of the main wiring of the grid as the graph

signal nodes.

In the conflict graph, the nodes are transformed by the edges

of the original graph G, and the edge represents the connection

relationship of each edge in the original graph G. In other words,

the conflict graph describes the mutual relationship between the

edges in the original graph. Conflict graphs whose edges consist

of directly adjacent edges are called 1-hop conflict graphs, line

graphs for short. The 2-hop conflict graph is formed by edges

within the adjacent 2-hop range (Manoj et al., 2018). Figure 1

shows an original graph, and its 1 hop and 2-hop conflict graph.

The 1-hop conflict graph is widely used in graph signal

analysis for flows of the road traffic and communication

channel (Reisch et al., 2021). The 2-hop conflict graph is

mainly used for the interference analysis of the wireless

channel signals (Al-Habob et al., 2020). In this paper, the 1-

hop conflict graph is mainly adopted to process signals.

2.2 Conflict graph for measurement
sensitivity graph signal

The sensitivity of measurement elements includes starting

measurement elements and backup protection measurement

elements. The starting measurement sensitivity can be

obtained easily. Many protection devices can provide

measurement data when they are activated, and these data can

be applied directly. In the paper, the sensitivity of starting

measurement is preferred use in the diagnosis. Backup

protection measurement includes elements, for example, stage

I, stage II, and stage III. The sensitivity of stage I is difficult to be

detected in the non-fault lines, and thus it is rarely adopted. The

sensitivity of the stage II and III can be used in the auxiliary

criterion.

For faults at transmission lines, the protection devices of the

fault line and the adjacent line might be activated by the startling

elements. Usually, the startling elements include the phased

current mutation-based, zero-sequence current-based, negative

sequence current-based, and the bus voltage and its sequence

voltage-based starting elements. The measurement sensitivity

can be obtained by the measurement data at the time of

activation and the threshold of starting elements. The root-

mean-square value (RMS) or maximum value within a cycle

after activation can be used as the measurement data.

The measurement sensitivity of the current starting element

Isen is:

FIGURE 1
Graph of three types.
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Isen � Iq/Iset, (1)

where Iq represents the measurement data of current variation

fault components or zero-sequence current; Iset is the threshold.

The measurement sensitivity of the voltage starting element

Usen is:

Usen � Uq/Uset, (2)

where Uq is the measurement data of voltage variation fault

component or zero-sequence voltage; Uset is the threshold.

2.2.1 Original graph signal-based measurement
sensitivity

In original graph G, the graph node signal is the voltage

starting element measurement sensitivity of the bus node. The

edge weight is depicted by the measurement sensitivity of the

current starting element in each branch. Starting elements are

installed on both sides of the line. To accurately discriminate the

fault branch, the maximum value of starting elements betweenm

and n side of line e(i) is taken as the value of the branch

measurement sensitivity.

Isen.e(i) � max {Isen.m, Isen.n}, (3)

where Isen. m and Isen. n represent the sensitivity of the starting

element at m side and n side, respectively.

In the power system, most transmission lines are double-

circuit or even multi-circuit. The corresponding graph is called

multi-graphs in graph theory, and usually, the multi-graph cannot

be directly processed by the graph signal processing algorithms. In

this paper, multi-circuit lines are seen as a branch whose weight is

the sum of the measurement sensitivity of each circuit. In addition,

for the starting element of the backup protection at each winding

of the transformer, the weight is set as the sensitivity value of the

corresponding current starting element.

2.2.2 Measurement sensitivity conflict graph
signal

In themeasurement sensitivity conflict graph signal, the node

is the set of branches in the original graph G, namely Vt = [Ve1,

Ve2, . . . , Vem]
T. As for the N-dimensional vector f, signal f(i) of

node i is expressed as follows:

f(i) � Isen.e(i), (4)

where Isen. e(i) represents the measurement sensitivity of branch

current in the original graph. Isen. e(i) can be obtained by Eq. 3.

In the conflict graph, the edges represent the connection

relationship between branches in the original graph and the

edge of the adjacent 1 or 2-hop ranges. The weight of the edge

can be set to 1 or the sensitivity between the edges. Additionally,

the node signal in the conflict graph is the branch current. To fully

use the voltage measurement sensitivity in the original graph, the

edge weight of the conflict graph is set to the average of the voltage

measurement sensitivity of the two branches. The fault element

can be accurately discriminated, with the different change

characteristics of voltage and current. For ease of calculation,

the average of the voltage measurement sensitivity of the two

bus nodes connected by the branch in the original graph is used as

the branch voltage measurement sensitivity, as shown in Eq. 5.

Ue(i) � 1
2
(Usen.m + Usen.n), (5)

where Usen. m and Usen. n represent the sensitivity of the bus

voltage starting element at m and n sides in the original graph,

respectively.

In the conflict graph, the edges [e(i)] can be formed by the

two edges within 1 or 2-hop ranges of the original graph [e(m)

and e(n)]. The weight we(i) of edge e(i) is as follows:

we(i) � 1
2
(Ue(m) + Ue(n)), (6)

where Ue(m) and Ue(n) represent the voltage measurement

sensitivity of the edge e(m) and e(n) in the original graph,

respectively.

FIGURE 2
Flow chart of the proposed method.
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Themeasurement sensitivity conflict graph signal constructed by

Eqs. 4, 6 reflects the characteristics of the current and voltage

measurement sensitivity in the fault region. For each branch

measurement sensitivity, compared with directly using the current

or voltage, the proposedmeasurement sensitivity conflict graph signal

depicts the change and the fault severity more accurately during

faults. Thus, with the proposed conflict graph signal, the faulty type

and the fault branch can be detected more accurately.

3 Diagnosis method using graph
Fourier transform

Graph Fourier transform is a tool for transforming graph signals

with nodes as signals and branches as weights. For Graph Fourier

transform on the graph signal, the eigenvector of the Laplace matrix

of the graph is used as the transform basis to decompose the graph

signal into graph signals with different degrees of smoothness. It is

similar to the traditional Fourier transform decomposes the function

into different frequencies function. For the sensitivity network, the

high sensitivity occurs at the fault area and the low sensitivity occurs

at other non-fault areas. Thus, the sensitivity signal in the fault area is

non-smooth and has great changes. Applying graph Fourier

transform to fault area sensitivity signal, a large component in

high graph frequency will be generated. These high-frequency

components are mainly generated by the fault center node. Using

this feature, the fault center can be accurately diagnosed in the grid.

With the proposedmeasurement sensitivity conflict graph signal and

the graph Fourier transform, fault centers have the highest

contribution rate to high-frequency components of the graph

signals. A new fault diagnosismethod is proposedwith this character.

3.1 Graph Laplace matrix and its
eigenvectors

The graph Laplace matrix L is defined as

L � D −W, (7)
where D represents the degree matrix of graph G and it is a

diagonal matrix D = diag [d1, d2, . . . , dN]. The di represents the

degree of the ith node and can be calculated by the sum of the

weights of the edges associated with node i. W represents the

weight matrix of the graph.

The set of eigenvalues of the graph Laplace matrix L is called

the Laplace spectrum of the graph. The graph spectrum of graph

G with N nodes is shown as follows:

λ(g) � {λ0, λ1, . . . , λN−1}, (8)

where λ is the eigenvalue, and 0 = λ0 ≤ λ1 ≤ λ2 ≤ ... ≤ λN-1. The

corresponding eigenvector for each eigenvalue is

U � [u0, u1,/, uN−1]. (9)

For undirected graphs with edge weight with positive values,

eigenvalues and eigenvectors both are real numbers, where the

eigenvectors are complete orthogonal (CHUNG, 1997).

3.2 Graph Fourier transform

The graph Fourier transform uses the eigenvector U in Eq. 9

as the transformation basis. The graph Fourier transform (GFT)

of the graph signal f is defined as

~f(λn)� UTf, (10)

where ~f(λn) is the GFT coefficient of the eigenvalue λn. U is the

eigenvector in Eq. 9 and f represents the graph signal vector.

The graph frequency is the eigenvalue λg (Sandryhaila and

Moura, 2014) of the graph Laplace matrix, and the

corresponding GFT coefficient is the harmonic component

size, similar to the classical signal Fourier transform

harmonic. The small eigenvalue and large eigenvalue

correspond to the low-frequency and high-frequency

components, respectively. λ0 = 0 corresponds to the zero-

frequency component. The values of the zero-frequency

component are the same, equivalent to the DC component

of classical signal processing.

The graph signal changes slowly and is smooth when the

GFT coefficient corresponding to the low-frequency eigenvalue is

large and the GFT coefficient corresponding to the high-

frequency eigenvalue is small. The graph signal changes and

fluctuates greatly when the GFT coefficient corresponding to the

high-frequency eigenvalue is large (Manoj et al., 2018).

3.3 The characteristic of the graph Fourier
transform coefficient of the measurement
sensitivity conflict graph

For asymmetric faults, the change of the current and voltage

in the fault phase is significantly larger than that of the non-fault

phase. Applying the graph Fourier transform on the

measurement sensitivity conflict graph, the maximum

eigenvalue λn of the fault phase is significantly larger than

that of the non-fault phase. The GFT coefficient ~f(λn) of the
fault phase is also larger than that of the non-fault phase.

Therefore, the fault phase can be discriminated by the

maximum eigenvalue λn and the corresponding GFT

coefficient ~f(λn).
To analyze the severity of the grounding fault, the graph

Fourier transform is applied in the zero-sequence measurement

sensitivity conflict graph. For grounding faults, the maximum

eigenvalue and its corresponding GFT coefficient are

significantly larger than that of normal operation. Thus the

value depicts the severity of the grounding fault.
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3.4 Faults diagnosis method based on
graph Fourier transform

For the GFT coefficient corresponding to the highest

frequency eigenvalues, nodes with large signal changes near

the node occupy a large proportion of the coefficient. The

nodes with small changes near the node contribute occupy a

small proportion of the coefficient (Singh et al., 2017). The GFT

coefficient of the largest eigenvalue λN-1 is as follows:

~f(λN−1) � uN−1Tf � ∑
N

i�1
f(i)uN−1(i). (11)

The ratio of GFT coefficient f(i)uN-1(i) to ~f(λN−1) reflects the
importance of the signal change in the corresponding node. The

fault branch contributes to ~f(λN−1) significantly more than all

other non-fault branches, and thus the fault branch can be

discriminated by the ratio.

For each node, the importance degree of the measurement

sensitivity conflict graph signal is defined as follows:

I(i) � f(i)uN−1(i)/~f(λN−1). (12)

The branch node with the largest I(i) is discriminated as the

fault branch.

Based on the above analysis, the flow chart of the proposed

method is shown in Figure 2. Collecting data from all activated

protection devices and fault recorders, the sensitivity Isen and

Usen is calculated by Eqs. 1, 2, respectively. Then, the

measurement sensitivity conflict graph model is

constructed, and the conflict graph signals f and w are

calculated by Eqs. 4, 6, respectively. Next, using GFT

extract the high-frequency information of the graph signal,

and the importance degree I(i) for each node is calculated by

Eq. 12. Finally, I(i) with the largest value is identified as the

fault branch.

4 Simulation examples and analysis

A typical 10-node network is used to test the effectiveness of

the method, and an A-phase ground fault at branch L4 is used to

illustrate. The topology and corresponding measurement

sensitivity original graph signals are shown in Supplementary

Appendix Figure SA1, where the graph signals include signals of

each phase and zero-sequence. The measurement sensitivity of

the 10-node test model is shown in Supplementary Appendix

Table SA1. The 1-hop conflict graph is selected to construct the

measurement sensitivity conflict graph signals.

FIGURE 3
Measurement sensitivity conflict graph signal for each phase and zero-sequence.
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4.1 Simulation results of measurement
sensitivity conflict graph

With the original graph signals shown in Supplementary

Appendix Figure SA1, the conflict graph can be constructed,

where the edge weight we(i) and node signal f(i) of is calculated

by Eqs. 4, 6. Figure 3 shows the conflict graph signals of each phase

and zero-sequence, where the branch sensitivity weight we(i) is

marked in the figure. The thickness of lines and the size of nodes

are proportional to the corresponding sensitivity. From Figure 3,

the number of starting branches for fault phase A is the most, with

eight branches. The number of the starting branches for non-fault

phases B and C is only three branches, respectively, where the

value of sensitivity is low. The fluctuation of signals for non-fault

phases is smooth. For zero-sequence measurement elements, the

number of starting branches is only five branches, due to zero

sequence shunt and some transformers without grounding.

4.2 Simulation results of coefficient of
graph Fourier transform

With Eq. 10, Figure 4 shows the eigenvalue and GFT

coefficient of the 1-hop conflict graph signal in Figure 3.

From Figure 4, the maximum eigenvalues of fault phases

(A-phase) and zero-sequence are 35 and 13, respectively,

while the maximum eigenvalues of non-fault phases do not

exceed 5. The GFT coefficients of the maximum eigenvalues

for the fault phase and zero-sequence are 7.5 and 5,

respectively, indicating that the high-frequency components

and fluctuations of the corresponding graph signal are large.

However, the GFT coefficient of the maximum eigenvalue for

the non-fault phase does not exceed 1, indicating that the

high-frequency component is low and the fluctuation is small.

The A phase is discriminated as a fault by the proposed

method.

FIGURE 4
Eigenvalues and GFT coefficients for each phase and zero-sequence.
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FIGURE 5
Simulation results of each line in the A-phase.

FIGURE 6
Simulation results of zero-sequence.
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FIGURE 7
Simulation results of 2-hop conflict graph.

FIGURE 8
Simulation results of 2-hop conflict graph for the zero-sequence fault element.
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4.3 Discrimination results based on the
conflict graph

With Eq. 12, the importance degree of the faulty phase and

zero-sequence can be obtained for the branch corresponding to

each node in the measurement sensitivity conflict graph. Figure 5

shows the diagnosis results of the proposed method and the

results of the existing graph node importance degree-based

algorithm. For the convenience of comparison, each algorithm

adopts the normalization process compared with its maximum

value.

From Figure 5, the current sensitivity of L3 and L4 is few

different, leading to difficulty to discriminate the fault branch. A

similar circumstance occurs at the voltage sensitivity of L4 and

L2. For the degree-based algorithm and PageRank algorithm, the

largest importance ratio of the non-fault line L3 to the fault line

L4 is around 0.4. For the proposed method based on GFT

coefficient importance, the importance ratio of L3 to L4 is

only 0.16. Compared with the other mentioned algorithms,

the proposed importance degree of the conflict graph signal

has the most significant difference among the fault branch and

non-fault branches. Thus, the selectivity of the proposed method

is better than that of the other typical algorithms.

The simulation results of the zero-sequence are shown in

Figure 6. From Figure 6, the current sensitivity of L3 and L4 is

few different, leading to difficulty to discriminate the fault branch. A

similar circumstance occurs at the voltage sensitivity of L7 and L2.

With the degree-based method and PageRank algorithm, the

importance ratio of L3 to the fault line L4 is 0.36. For the

proposed method based on the importance degree of the conflict

graph signal, the importance ratio of L3 to L4 is 0.25, which has a

more significant difference than that of other typical algorithms.

4.4 Fault diagnosis using the 2-hop
conflict diagram

The accuracy of fault discrimination can be further improved

with the 2-hop conflict graph and Figure 7 shows results with the

2-hop conflict graph. Compared with the ratio of L3 to L4 in the 1-

hop conflict graph, the corresponding importance ratio in Figure 7

reduces from 0.16 to 0.09. The degree-basedmethod and Pagerank

algorithm can not work in the 2-hop conflict graph.

Figure 8 shows results of zero-sequence with the 2-hop

conflict graph. The importance ratio of L3 to L4 reduces from

0.25 of that in the 1-hop conflict graph to 0.18.

To simplify the calculation, the 1-hop conflict graph can

first be used to discriminate the fault branch in practice. For

some special cases, when the difference in the 1-hop conflict

graph is not significant, the 2-hop conflict graph can be

adopted to improve the selectivity and accuracy of fault

discrimination.

FIGURE 9
Conflict graph signal of measurement sensitivity for each phase-separation and zero-sequence.
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5 Simulation results of the actual
power grid

In this section, the actual wave recording data is used to verify the

effectiveness. The data is from an actual 500 kV power grid which

includes a complex ring network and many branches. Operation

modes of the complex grid are variable. In the variable scenario, the

protection devices are possible to refuse operation or maloperation.

Diagnosis methods using the switch and analog signals from

protection devices might not obtain accurate results (Zhou et al.,

2009). The proposed sensitivity graph signals consider each branch’s

sensitivity. The proposed method can obtain an accurate result in the

complex grid when missing a part of the data.

At present, the fault information management system of the grid

has not yet realized the active upload of the action information of the

starting element. Extra settings or improved equipment need to be

done to achieve the function. Firstly, for an actual fault, the fault

recorder information that has been activated at the time of the fault is

called by the management system. Then, the fault starting value is

obtained by the management system and parameters of network

topology are obtained by the dispatching automation system. The

topology of the grid is shown in Supplementary Appendix Figure SA2.

It is a complex grid that includes 16 nodes and 20 branches. Based on

the threshold setting principle of each producer, the original signal

graph of the measurement sensitivity of the starting element is

obtained. The measurement sensitivity of the 500 kV grid is shown

in Supplementary Appendix Table SA2. The B-phase ground faults

occur at branch L1 between N1 and N5, close to the N1 side. The

original fault signal graphs of each phase and zero-sequence are shown

in Supplementary Appendix Figure SA3.

5.1 Construction of measurement
sensitivity conflict graph

Figure 9 shows the 1-hop conflict graph signals of measurement

sensitivity for each phase and zero-sequence. C-phase has only two

non-adjacent starting branches, and thus the 1-hop conflict graph

cannot be formed. From Figure 9, the sensitivity conflict graph of the

B-phase (fault phase) and zero-sequence changes greatly. However,

for the sensitivity conflict graph for the non-fault phase (A-phase),

the change is smooth. The zero-sequence fluctuates greatly, due to

more grounding branches in the 500 kV system.

5.2 Coefficients of graph Fourier
transform

For each phase and zero-sequence, the eigenvalue and its

coefficient (GFT coefficient) of the 1-hop complicit graphs are

FIGURE 10
Eigenvalues and GFT coefficient of each phase and zero-sequence.
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shown in Figure 10. From Figure 10, the maximum eigenvalues of

the fault phase (B-phase) and zero-sequence are 150 and 80,

respectively, while the maximum eigenvalues of the non-fault

phase do not exceed 5. For the fault phase and the zero-sequence,

the GFT coefficient of the maximum eigenvalue exceeds 40, close

to the zero-frequency component. It is much larger than

components of the other frequency range, which indicates

that the high-frequency component of the graph signal is

large and the fluctuation of the graph signal is great.

However, for the non-fault phase, the maximum eigenvalue of

the GFT coefficient does not exceed 1, far below the zero-

frequency component. It indicates that the high-frequency

component is very low and the fluctuation of the graph signal

is very small. Based on the analysis, the fault phase can be

discriminated as B-phase, and the fault is relatively serious.

5.3 Simulation results based on the
conflict graph

The simulation results of fault phase and zero-sequence are

shown in Figure 11. From Figure 11, for the proposed GFT

coefficient importance degree-based method, the largest

importance ratio of the non-fault branch to fault branch L1 is

FIGURE 11
Simulation results of fault phase and zero-sequence.(A)
Results of fault phase.(B) Results of zero components.

FIGURE 12
Simulation results of the fault tolerance test.(A) Results of
fault phase.(B) Results of zero components.
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about 0.05, which is significantly less than the ratio (0.25) of other

typical algorithms. The fault branch can be easily discriminated

by the significant difference.

5.4 Fault tolerance test

The proposed fault diagnosis method is based on the change

characteristics of the whole network graph signal, and the

network changes of measurement sensitivity decrease from the

fault center branch to the surrounding. Thus the fault branch can

be accurately discriminated, even if the current and voltage of the

fault branch are collected incorrectly or cannot be uploaded.

Assuming that the fault branch takes the average level of the

maximum non-fault branches, the proposed method is still

effective. Figure 12 shows the simulation results.

From Figure 12, the current and voltage at the fault branch

L1 are only about 50% of the maximum non-fault branches. The

degree-based method and PageRank importance algorithm

cannot identify the fault branch correctly, and the B-phase of

branch L2 is misidentified, and the corresponding result in the

zero-sequence is branch L3. However, with the proposed GFT

coefficient importance degree-based method, the ratio of the L2 is

0.5 lower than that of fault branch L1, and the branch L1 can be

correctly identified as the fault branch. For performance in fault

tolerance, the proposed method is significantly better than other

typical algorithms. The method is robust to bad data interference.

6 Conclusion

This paper proposes a fault diagnosis method using the graph

Fourier transform (GFT) coefficient of measurement sensitivity

graph signals. The measurement sensitivity graph signals in the

conflict graph are formed by the fault recorders and

measurement data of the protection devices. Next, for the

signals, the eigenvalue of the GFT and GFT coefficient are

used to form the importance degree. The importance degree-

based method is proposed to identify the fault branch and fault

type. Simulations and actual cases have verified the effectiveness

of the method, and the main conclusions are as follows.

(1) With the proposed sensitivity graph signals, the GFT can be

applied in the fault diagnosis, and the proposed method can

accurately discriminate the fault center by GFT.

(2) The proposed method is robust and reliable when bad data

interference or data missing occurs, due to the full use of

measurement data from all activated devices. For a 500 kV

actual complex grid, the proposed method can diagnose

faults accurately.

(3) Compared to the degree-based method and page rank

importance algorithm, the proposed method performs

better in accuracy and reliability.

In the future, the characteristic of the GFT eigenvalue and

GFT coefficient will be studied at different voltage levels, to

improve the practicability of the method in power grids with

different voltage levels. Secondly, with the application of the

time-synchronous online monitoring technology based on

the unified information model (Zheng et al., 2020), graph

signals of waveform change can be constructed to accurately

analyze and identify the dynamic change of the fault. Finally,

data mining and its analysis can be achieved by other

advanced techniques of graph signal process, such as

graph filtering to detect abnormality of measurement

components.
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