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In this research, a theoretical investigation into the heat transport characteristics

of an Eyring–Powell nanomaterial boundary layer flow on a wedge surface with

passively controlled nanoparticles is carried out. In this model, thermal

convective boundary conditions, thermal radiation, heat production, and

absorption are also studied. The non-Newtonian Eyring–Powell fluid’s

features are predicted using the model under consideration. The

Buongiorno model is used to study how a temperature gradient affects

thermophoresis and how nanoparticles affect the Brownian motion. The

prevailing nonlinear boundary layer equations are derived and then renewed

in an ordinary differential boundary value problem (ODBVP) by substituting apt

similarity transformations. The acquired nonlinear ODBVP is then resolved using

the bvp4c method to explore the fields of nanofluid velocity, nanofluid

temperature, and nanoparticle concentration. A mathematical examination

of the surface drag force coefficients and Nusselt number is carried out

using various physical parameters. The Eyring–Powell fluid parameter (K1)
reduces the thickness of the momentum boundary layer thickness. The

thermophoresis aspect (Nt) enhances the thermal field and solutal field. The

Nusselt number (NuRe−0.5x ) reduces the need for a stronger internal heat source

mechanism.
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1 Introduction

The physical characteristics of carrier liquids and those of nanoparticles have recently

generated an exciting and never-ending research activity. Nanomaterials offer a wide

range of uses in manufacturing as well as in other fields like heat exchangers, combustion,

microelectronics, solar thermal exchanges, transportation, and energy conservation. All of
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these applications have the common challenge of heat

transformation problems. For example, the cooling of

electronic instruments is the most serious industrial concern

because of the high amount of heat generated and the surface

temperature of the devices. Previously, motor oil, water,

kerosene, and ethylene glycol having low heat transport rates

have been recognized as coolants in these applications. Studies

involving nanoparticles have shown that adding these particles to

base fluids enhances the thermal conductivity of liquids. The

nanomaterial makes it easier for refrigerants to transfer heat, cuts

down on process time, and makes machinery work better.

Choi and Eastman, (1995) developed the idea of nanofluids

and demonstrated the superior thermal characteristics of

nanomaterials. A two-component inhomogeneous nanoliquid

model was proposed by Buongiorno (2006) to study the heat

transfer of nanomaterials. This model suggests employing

thermophoresis by the thermal gradient and Brownian motion

by nanoparticles’ arbitrary movement mechanisms. Khan and

Pop, (2010) used the Buongiorno model to address the boundary

layer heat transfer of a nanofluid caused by the elongation of the

plate. They found that both Brownian motion and

thermophoresis are mechanisms that increase the energy of

the system. Khan and Pop, (2010) extended to nonlinear

elongation of the plate by Rana and Bhargava, (2012) and

reconfirmed the results of Khan and Pop, (2010). Nield and

Kuznetsov, (2009) conducted a theoretical study of the

Cheng–Minkowycz problem by employing the nanofluid

model proposed by Buongiorno. Tayebi et al. (2021)

performed a numerical investigation of the thermo-natural

convection and entropy generation of an Al2O3-H2O

nanofluid confined by two circular cylinders in the presence

of magnetic fields. A Sattar Dogonchi et al. (2021) analyzed the

natural convection heat transfer of Al2O3-H2O nanoliquid

within a crown cavity with a circular cylinder inside it. The

natural convection of the CuO − water nanoliquid in a

rectangular chamber with fins attached to the insulated wall

and porous medium was investigated in the work of Sadegh

Sadeghi et al. (2021). Subsequently, Kuznetsov and Nield, (2013)

revised the model proposed by Buongiorno by considering the

passive control of nanoparticles. The revised model of Kuznetsov

and Nield was appreciated and used by several researchers, to

name a few, Hayat et al. (2017), Halim et al. (2017), Tripathi et al.

(2017), Macha et al. (2017), Srinivas Reddy and Naikoti, (2016),

Vijaya Bhasker Reddy et al. (2019), Rauf et al. (2019), Giri et al.

(2017), Kalaivanan et al. (2020), Weera et al. (2022), Abbasi et al.

(2021), and Acharya (2021). They concluded that the revised

Buongiorno model (RBM) is relevant for studying the heat

transport of nano liquids. Furthermore, studies related to heat

transport on a wedge surface using RBM are limited. Therefore,

we incorporated the revised Buongiorno model into the analysis

in this study.

The abundant materials used in applications and everyday

life, including polymers, dyes, low shear blood, lubricants, and

molten plastics, have non-Newtonian behavior. The heat

transport of non-Newtonian materials has a central purpose

in the processing of composites, in the production of

devolatilization of polymers, in the processing of plastic foam,

fermentation, boiling, and absorption of bubbles. Therefore,

great devotion has been devoted to the study of several non-

Newtonian fluidmodels as a single constitutive expression, which

is not suitable for representing the relationship between stress

and shear rates of different fluids. Researchers are currently very

interested in non-Newtonian fluid models and have been

examined in a variety of contexts (Ali et al., 2020; Azam,

2022a; Ali et al., 2022; Azam et al., 2022; Azam, 2022b). The

Eyring–Powell material model has several advantages: 1) it is a

model based on the kinetic theory; 2) it describes the

characteristics of shear-thinning fluids; and 3) the

characteristics of Newtonian materials can be recovered for

high shear rates.

Therefore, Gireesha et al. (2015) used the Eyring–Powell fluid

model to investigate the three-dimensional flow with thermal

convective boundary surface and thermal radiation. The

stretching surface-driven flow of non-Newtonian material

subjected to the magnetic field was analyzed by Akbar et al.

(2015) using the Eyring–Powell fluid model. Patel and Timol,

(2009) explored the features of Eyring–Powell fluid dynamics by

incorporating the asymptotic boundary constraints. Ramana

et al. (2021) investigated a hydromagnetic transverse flow of

an Oldroyd-B-type liquid using a Cattaneo–Christov model heat

flux with varying thicknesses. The effects of hall and ion slip on

an unstable laminar MHD convective rotating flow of heat-

generating or -absorbing second-grade fluid across a semi-

infinite vertical-moving permeable surface have been studied

theoretically by Veera Krishna et al. (2021).

The radiation-supported dynamics and heat transfer of the

Eyring–Powell material over an elongated plate were analyzed by

Araa et al. (2014). Khan et al. (2018) explored the

homogenous–heterogeneous chemical reactions on

Eyring–Powell fluid conveying nanoparticles. Recently, several

FIGURE 1
Physical diagram of the problem.
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researchers, such as Jalil et al. (2013), Hayat et al. (2015), Hayat

et al. (2016), Rehman et al. (2016), Khan et al. (2017a),

Muhammad et al. (2021), Riaz et al. (2021) Chu et al. (2021),

Sreenivasulu et al. (2021)), and Haldar et al. (2021), studied the

features of the Eyring–Powell fluid subjected to diverse physical

aspects. However, the convective conditions, magnetic field, and

active control of nanoparticles on the Eyring–Powell fluid flow

on a wedge surface are yet to be explored.

To the best of our knowledge, the fluid flow of Eyring–Powell

nanomaterials over a wedge-shaped surface with convective and

zero mass flux boundary conditions are yet to be investigated.

The Eyring–Powell fluid model has more applications than

FIGURE 4
Variations of ϕ via M.

FIGURE 5
Variations of f′ via λ.

FIGURE 3
Variations θ via M.

FIGURE 2
Variations f′ via M.
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Oldroyd-B, Maxwell, and other fluid models. The main objective

of the present study is to analyze the flow characteristics of

Eyring–Powell nanomaterials and heat transport involving the

convective thermal condition and the thermal radiation process.

The characteristics of the thermal gradient caused by

thermophoresis and Brownian motion are determined using

the Buongiorno model. The bvp4c approach is used to

construct the solutions of the resulting nonlinear differential

equations. The impact on velocity, temperature, volume fraction

of the nanoparticles, friction factors, andNusselt number fields of

the associated physical parameters are accessible through graphs

and tables.

FIGURE 6
Variations of θ via λ.

FIGURE 7
Variations of ϕ via λ.

FIGURE 8
Variations of f′ via β.

FIGURE 9
Variations of θ via β.
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2 Formulation of the problem

We examine the steady two-dimensional Falkner–Skan

flow of a non-Newtonian Eyring–Powell fluid. Brownian

motion and thermophoresis effects are used to investigate

the properties of heat and mass transfer. A stretching

wedge with a stretching velocity Uw � cxm induces fluid

flow. Uw>0 denotes a stretching wedge surface velocity,

while Uw < 0 denotes a contracting wedge surface velocity

(see Figure 1). The problem-free stream velocity is

Ue � axm, and the constants a, c, and m are all positive.

The wedge angle parameter is β � 2m
m+1. Thermal radiation is

also considered. A convective heating analysis referred to as

the heat transfer coefficient regulates the temperature at the

FIGURE 10
Variations of ϕ via β.

FIGURE 11
Variations of f′ via K2.

FIGURE 12
Variations of f′ via K1.

FIGURE 13
Variations of θ via K1.
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wedge’s surface. The surface flux of the nanoparticle volume

fraction is zero.

The expression for stress tensor in the Eyring–Powell

model is

ρij � μ
zui

zxj
+ 1
d
sinh−1(1

E

zui

zxj
), (1)

where μ is the dynamic viscosity of the fluid,

sinh−1(1
E

zui

zxj
) � 1

E

zui

zxj
− 1
6
(1
E

zui

zxj
)3

,

∣∣∣∣∣∣∣∣1E zui

zxj

∣∣∣∣∣∣∣∣≪ 1, (2)

and d and Ε are Eyring–Powell and rheological fluid parameters.

Using the boundary layer approximation for Eyring–Powell, the

FIGURE 14
Variations of ϕ via K1.

FIGURE 15
Variations of θ via γ.

FIGURE 16
Variations of θ via Q.

FIGURE 17
Variations of θ via Rd.
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governing equations can be rendered as (Kuznetsov and Nield,

2013; Macha et al., 2017; Vijaya Bhaskar Reddy et al., 2019)

zu

zx
+ zv

zy
� 0, (3)

u
zu

zx
+ v

zv

zy
� (v + 1

ρdE
) z2u

zy2
− 1
2ρdE3

(zu
zy

)2
z2u

zy2
+ Ue

zUe

zx

+σB
2

ρ
(Ue − u), (4)

FIGURE 18
Variations of θ via Nt.

FIGURE 19
Variations of ϕ via Nt.

FIGURE 20
Variations of ϕ via Sc.

FIGURE 21
Variations of ϕ via Nb.
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FIGURE 22
Variations of Cfx Re

1/2
x via M and λ.

FIGURE 24
Variations of Cfx Re

1/2
x via K1,K2, and β.

FIGURE 23
Variations of Nux Re

−1/2
x via M and λ.

FIGURE 25
Variations of Nux Re

−1/2
x via K1,K2, and β.
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u
zT

zx
+ v

zT

zy
� α

z2T

zy2
+ τ[DB

zC

zy

zT

zy
+ (DT

T∞
)(zT

zy
)2]

− 1(ρc)f zqr
zy

+ Q0(T − T∞)(ρc)f , (5)

u
zC

zx
+ v

zC

zy
� DB

z2C

zy2
+ DT

T∞
(z2T
zy2

). (6)

The relative boundary conditions are (Kuznetsov and Nield,

2013; Macha et al., 2017),

u � Uw, v � 0,−k zT
zy

� hf(Tf − T), DB
zC

zy
+ DT

T∞

zT

zy
� 0 aty

� 0, u � Ue, T → T∞, C → C∞ at y → ∞ .

(7)
By using the similarity transformation,

η � y

���������
(m + 1)Ue

2vx

√
, ψ(x, y) � �������

2vxUe

(m + 1)

√
f(η), θ(η)

� T − T∞
Tf − T∞

, ϕ(η) � C − C∞
C∞

. (8)

From (8), Eq. 4–Eq. 6 are being converted to

(1 + K1 −K1K2f″2)f‴ + β(1 − (f′)2) + ff″

+M(2 − β)(1 − f′)
� 0, (9)

(1 + Rd)θ″ +Nbθ′ϕ′Pr + Prfθ′ + PrNt(θ′)2 + QPrθ � 0,

(10)

ϕ″ + Scfϕ′ + θ″Nt

Nb
� 0. (11)

The converted boundary conditions are

f(η) � 0, f′(η) � λ, θ′ � −γ
������(2 − β)√ (1 − θ(η)), Nbθ ′(η)

� 0 at η � 0,

(12a)
f′(η) → 1, θ(η) → 0,ϕ(η) → 0 as η → ∞, (12b)

where primes point out the differential with respect to η. The

dimensionless constants Pr, Nb, Nt,Sc, γ, λ,

K1,M,Q, andK2 represent the Prandtl number, the Brownian

motion parameter, the thermophoresis parameter, the Schmidt

number, the convective parameter, stretching parameter, fluid

parameters, magnetic parameter heat generation/absorption, and

local Eyring fluid parameter, which are defined as

Pr � v

α
, Nb � τDBC∞

v
, Nt � τDT(Tw − T∞)

T∞v
, λ � c

a
, Sc � v

DB
,

γ � hf
k

��
v

a

√
, K2 � U3

e

2xvE2

m + 1
2

, K1 � 1
μEd

, M � σB2
0

ρa
, Q

� Q0

ρCpa
.

3 Quantities of physical interest

The significant physical quantities are described as

FIGURE 26
Variations of NUx Re

1/2
x via Nt and Q.

FIGURE 27
Variations of Nux Re

−1/2
x via Nb and Rd.
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Cf � τ″w
ρU2

e

, Nux � xq″w
k(Tf − T∞). (13)

Here, τ″w is the shear stress and q″w is the heat flux and are

written as

τ″w � (μ + 1
Ed

) zu

zy
− 1
6d

(1
E

zu

zy
)3

, q″w � ( − k
zT

zy
+ qr)

y�0
.

(14)
Then, 13) and 14) have been converted to

CfRex
1
2 � (1 +K1)f″(0) − K1K2

3
f′′3(0),

������(2 − β)√
NuxRe

−1
2

x

� −(1 + Rd)θ′(0), (15)
where Rex is the Reynolds number.

4 Numerical procedure

The MATLAB solver “bvp4c” is used to solve the non-

dimensional Eq. (9)–Eq. (12b). It has been applied by several

experts to tackle boundary layer flow problems. The

numerical solution is found using this package by fixing

the convergence criteria to 0.000001. We used the

following substitutions to convert Eq. 9 to Eq. 11 into a

collection of first-order ODEs.

y1 � f, y2 � f′, y3 � f″, θ � y4, θ′ � y5, ϕ � y6, ϕ′ � y7.

The system of first-order ODEs is represented in the

following matrix form:

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

y1

y2

y3

y4

y5

y6

y7

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
′

�

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

y2

y3

−β(1 − y2
2) + y1y3 +M(2 − β)(1 − y2)(1 + K1 −K1K2y

2
3)

y5

−NbPry5y7 + Pry1y5 + PrNty2
5 + QPry4

(1 + Rd)

y7

−Scy1y7 − Nt

Nb
y5
′

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Subjected to the following boundary conditions

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

y1(0)
y2(0)
y3(0)
y4(0)
y5(0)
y6(0)
y7(0)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ �

0

λ

S1

S2

−γ �����
2 − β

√ (1 − S2)

S3

Nt

Nb
{γ �����

2 − β
√

(1 − S2)}

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

where S1, S2 , S3 are guesses until the desired outcome is achieved.

Other boundary conditions are y2(∞) � 1, y4(∞) �
0, andy6(∞) � 0. The accuracy of the implemented numerical

method has been validated by comparing the limiting case of the

FIGURE 28
Streamline patterns for different values of λ (A) λ � 0 (B) λ � 0.2.
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present problem (see Table 1) with the previously published

results by Khan et al. (2017b). An excellent achievement has been

found with previously published result.

5 Results and discussion

In this section, we will illustrate the solutions obtained with

the influence of various influence parameters, such as magnetic

field parameter (M), stretching ratio parameter (λ), pressure

gradient parameter (β), Eyring–Powell fluid parameters (K1 and

K2), Biot number (γ), internal heat source parameter (Q),

radiation parameter (Rd), Brownian motion parameter (Nb),

and thermophoresis parameter (Nt) on the dimensionless

nanoliquid velocity f′(η), temperature θ(η), nanoparticle

concentration ϕ(η), skin friction coefficient (CfxRe0.5x ), and

Nusselt number (NuRe−0.5x ) and presented in graphs (2)–(28).

We set the default values for physical parameters to K1 � 0.6,

K2 � 0.3, M � 1.5, β � 0.2, Rd � 0.3, λ � 0.2, Nt � 0.5, Nb �
0.5, γ � 0.6, andQ � 0.2 during our simulations.

The impact of the Lorentz force, that is, in terms of magnetic

field parameter (M) on the fields of velocity f′(η), temperature

θ(η), and nanoparticle concentration ϕ(η) fields is depicted in

Figures 2–4, respectively. We perceive that the velocity f′(η) and
the associated boundary layer thickness show positive behaviors

for M. This unexpected result may be due to the impact of the

wedge surface and the pressure gradient parameter in the flow

domain. However, the thermal field θ(η) is maximum in the

absence of a magnetic field. Furthermore, the nanoparticle

concentration ϕ(η) profile increases near the surface of the

wedge but reduces away from the surface of the wedge.

The influence of the stretching ratio (λ) on dimensionless

velocity f′(η), temperature θ(η), and nanoparticle

concentration ϕ(η) profiles is illustrated in Figures 5–7,

respectively. In Figure 5, for increasing the values of λ, the

velocity field and the thickness of the boundary layer are

improved. As we know, the stretching ratio parameter is

directly proportional to the stretching rate of the wedge

surface. Therefore, an increase in the stretching ratio

parameter leads to a stronger stretching process of the surface

and thus increases the fluid movement. It is evident from Figure 6

that an improvement in the stretching ratio parameter λ reduces

θ(η). From Figure 7, it is evident that the ϕ(η) field increases near
the surface of the wedge, while ϕ(η) field decreases when away

from the surface.

The variation of pressure gradient number (β) on

dimensionless f′(η), θ(η), and ϕ(η) can be obtained,

respectively, in Figures 8–10. Here, in Figure 8, the velocity

f′(η) and its allied thickness of the boundary layer are enriched

for the growing values of β. Physically, because the pressure

gradient number descends the fluid viscosity, such viscosity

establishes an increase in the velocity field f′(η). Figure 9

depicts that the thermal layer thickness enhances with β.

However, the ϕ(η) shows the double behavior for the

influence of β (see Figure 10). Figure 11 shows that the

velocity is an increasing function of K2.

Figures 12–14 illustrate the variation inf′(η), θ(η), and ϕ(η)
for a higher estimation of the Eyring–Powell fluid number (K1).

It is evident from Figure 12 that an improvement in K1

diminishes the velocity. Physically, this infers that those larger

values of K1 improve the nonlinear relationship between shear

stress and the shear rate, which condenses the velocity field

f′(η). The thermal field enhanced with K1 can be seen in

Figure 13. However, the nanoparticle concentration field

decreases in the region η ∈ [0, 1.3], increases in the region

η ∈ [1.4, 3], and approaches zero for η> 3 for increasing

values of K1 (see Figure 14). The higher values of the Biot

number (γ), internal heat source parameter (Q), and radiation

parameter (Rd) cause an enhancement in the temperature

distribution θ(η), which is shown in Figures 15–17,

respectively. Physically, the convective heating process adds

supplementary heat to the surface of the wedge, so the

thermal layer thickness increases with the Biot number (γ).

Both internal heat source and thermal radiation mechanisms

integrate the thermal energy due to which the temperature field

increases significantly.

The effects of the thermophoresis parameter (Nt) on

dimensionless θ(η) and ϕ(η) are presented, respectively, in

Figures 18, 19. Figure 18 signifies that θ(η) and its allied

thickness of the boundary layer are improved with Nt.

Materially, since the nanoparticles migration improves the

fluid thermal conductivity and establishes an increase in the

temperature profile, the solutal layer thickness increases with

Nt (see Figure 19). It is also observed that the impact of Nt is

more evident on the wedge surface. The effects of Sc and Nb

are qualitatively similar on the nanoparticle’s volume fraction

field, as shown in Figures 20, 21. The variability of the

concentration field for different Nb values are shown in

Figure 21. When there is a greater input of Nb, both the

thickness of the boundary layer and the concentration profile

decrease. The cause of this is because it accelerates the rate at

which minute particles move at diverse speeds in numerous

unexpected directions.

TABLE 1 Comparison values of −f 99(0) for different values of β when
K1 � K2 � M � 0.

β Reference (Khan et al.,
2017b)

Present

0.0 0.4696005 0.46960

0.1 0.5870353 0.58703

0.3 0.7747546 0.77475

0.5 0.9276800 0.92768

1.0 0.2325880 0.23259
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Figures 22, 23 illustrate the role of the stretching ratio

parameter (λ) on the skin friction coefficient (CfxRe0.5x ) and

the Nusselt number (NuRe−0.5x ). The skin friction coefficient

(CfxRe0.5x ) is a descending function of λ; this is because the

momentum layer is thicker for larger values of λ. Figure 23

depicts thatNuRe−0.5x is an ascending function of λ. As we noted,

the thermal layer thickness increases with λ, and subsequently

NuRe−0.5x increases. Figures 24, 25 present the consequence ofK1

and K2 on CfxRe0.5x and NuRe−0.5x . CfxRe0.5x is an increasing

function of K1 and K2, whileNuRe−0.5x is a diminishing function

ofK1 andK2. The role ofQ and Rd onNuRe−0.5x is demonstrated

in Figures 26, 27, respectively. The thermal boundary layer

thickness increases with Q; as a result, NuRe−0.5x reduces by

enlarging the values of Q, while NuRe−0.5x is an increasing

function of Rd. Finally, Figures 28A,B present the streamlined

patterns for different values of λ.

6 Concluding remarks

The theoretical analysis conducted for the Eyring–Powell

nanofluid flow with convective boundary condition, internal heat

source, and thermal radiation is created by stretching the surface

of the wedge. Passive control of the nanoparticle mechanism is

also accounted for. The chief outcomes are summarized as

follows:

• The stretching ratio number enhances the velocity field,

while the thermal field reduces for a higher stretching ratio

number.

• The pressure gradient number tends to enhance the

velocity and reduces the temperature.

• Thermal field fluctuation is more pronounced for changing

Brownian motion parameters close to the wedge’s surface.

• The thermal field is higher for larger thermophoresis

parameters, radiation parameter, heat source parameter,

and Biot number.

• An increase in the Eyring–Powell fluid number decreases

the velocity field.

• The Nusselt number reduces the heat source mechanism.

• The friction factor is an increasing function of K1 and K2,

while the Nusselt number is a diminishing function of K1

and K2.
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Glossary

x, y space coordinates (s−1)
u, v velocity components(ms−1)
C fluid concentration(kgm−3)
C∞ ambient concentration (kgm−3)
Tf wall temperature (K)
T∞ ambient temperature (K)
T fluid temperature (K)
k fluid thermal conductivity (Wm⁻K⁻)
DB Brownian diffusion (m2s−1)
DT thermophoretic diffusion (m2s−1)
K1, K2 Eyring–Powell fluid parameter

Pr Prandtl number

Sc Schmidt number

Nb Brownian motion parameter

Nt thermophoresis parameter

Q heat source parameter

Ue free stream velocity

Uw wedge surface velocity (ms−1)
Re Reynolds number

d, Ε fluid parameters

Nu Nusselt number

Cf skin friction

Rd thermal radiation

M magnetic parameter

γ Biot number

β pressure gradient parameter

τ ratio of specific heat

τ@w wall shear stress (kgs−2 m−1)
q@w heat flux (W ·m−2)
λ stretching ratio parameter

μ dynamic viscosity (kgs−1 m−1)
] kinematic viscosity (m2s−1)
ρ density of the fluid (kgm−3)
θ dimensionless temperature

ψ stream function

η dimensionless similarity variable

Cp specific heat (J kg−1K)
a, c constants
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