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As the lifeline of energy supply for various offshore projects, accurately

evaluating and predicting the operation status of submarine cables are the

foundation for the reliable operation of energy systems. Based on fully mining

the dynamic and static characteristics of submarine cable operation and

maintenance data, this paper proposes a submarine cable operation status

prediction method based on a convolutional neural network—bidirectional

gated recurrent unit (CNN-BiGRU) integrating attention mechanism. Firstly,

the evaluation index system of the submarine cable operation status is

established by considering three key influencing factors including online

monitoring, routine inspection, and static test. Then, the operation condition

evaluation model for submarine cable is constructed based on the cooperative

game theory and the multi-level variable weight evaluation. Finally, the CNN-

BiGRU combined neural network model integrating the attention mechanism is

established, and the historical operation data and condition quantification

results (health value) are used as input characteristic parameters to predict

the evolution trend of the operation status of the submarine cable. The case

study shows that the proposed method can effectively predict the operation

status of submarine cables, and the root mean square error of the prediction is

as low as 1.36%, which demonstrates the superior performance compared with

the back propagation (BP) neural network, CNN, long short-term memory

(LSTM), CNN-LSTM, and other algorithms.
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1 Introduction

In order to achieve carbon neutrality and solve the global energy crisis, the utilization

of marine resources is in a stage of rapid increase, which has driven the rapid development

of various offshore wind farms, offshore oil and gas platforms, and other marine projects.

Submarine cables are not only the main artery between offshore wind farms and onshore
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power systems but also the lifeline of power and communication

between offshore platforms and production systems, as well as

the strategic foundation for building new offshore power systems

based on distributed renewable energy (Bastien et al., 2018; Liu

X.et al., 2019; Purvins et al., 2018). Until 2021, there are more

than 450 submarine cables in use around the world, with a total

length of over 1.2 km × 106 km (Xie et al., 2022). The reliable

operation of submarine cables is essential for the normal

operation of offshore projects. Due to the particularity of the

environment where the submarine cable is located, it is

inconvenient to carry out a routine manual inspection or

UAV inspection. In recent years, thanks to the rapid

development and application of optical fiber sensing

technology, the relevant operating parameters of the

submarine cable can be obtained in real-time (Fang et al.,

2020; Antonio et al., 2021; Miguel et al., 2021; Cao et al.,

2022), such as temperature, disturbance, strain, and other

information of the submarine cable. These monitoring data

can be used for operating condition evaluation and condition

prediction (Lv et al., 2014; Xu et al., 2019), so as to understand the

health status of the submarine cable, and the preventive

maintenance can be carried out in a targeted manner, thereby

improving the operation reliability of the offshore integrated

energy system.

Condition monitoring and evaluation play an indispensable

role in the electrical equipment area, many scholars have carried

out related research on this issue. In terms of submarine cables,

Wei et al. (2015) proposed an online monitoring method for

500 kV submarine oil-filled cable sheath insulation, and Liu Z.

et al. (2019) established an evaluation model for the deterioration

state of submarine cables considering factors such as

morphology, chemical structure, mechanical properties,

thermal properties, and dielectric properties, and the

transformation of the sheath insulation current leakage ratio

and the grounding loop circulating current inductance were used

as the basis for sheath insulation judgment, and insulation

condition of the submarine cable jacket was monitored by

Zhou et al. (2018) and Nie et al. (2020). According to the

requirements of field survey and data management in

submarine cable inspection by remote-operated vehicle (Lei,

2021), analyzed the characteristics of submarine cable tracker

and underwater video inspection data, designed reasonable

system architecture, implemented real-time monitoring and

data management of submarine cable inspection based on

underwater navigation and positioning. Chen et al. (2021)

proposed enhanced coherent optical time-domain

reflectometry (E-COTDR) for monitoring submarine cable

loss and vibration. Chen et al. (2020) established a

temperature monitoring system based on Brillouin Optical

Time Domain Analysis (BOTDA) technology, and the

accuracy of the submarine cable temperature monitoring

system based on optical fiber technology was verified.

Jianfeng, (2019) proposed a submarine cable fault data

monitoring method based on big data fusion and feature

extraction. However, few studies have focused on the

comprehensive evaluation and prediction of the submarine

cable operating condition, which is essential for preventive

maintenance.

With the rapid development of artificial intelligence, various

intelligent algorithm models have been wildly used in various

fields, such as load prediction and condition prediction. Pu et al.

(2020) and Liu et al. (2019a) expounded on the application and

development of big data in electrical equipment condition

monitoring and analyzed the existing deficiencies and

prospects. Xu and Jiang, (2022) developed a power load

prediction method based on BiGRU-Attention-SENet, which

combines the characteristics of different neural networks to

improve accuracy. Tang and Yuan, (2022), Dai et al. (2018),

and Song et al. (2018) used neural networkmodels, such as CNN-

BiGRU and LSTM, to predict the remaining useful life of lithium

batteries and the condition of transformers. However, due to the

special application scenarios and equipment properties of

submarine cables, there are few studies dedicated to the

evaluation and prediction of their operating condition.

Therefore, a submarine cable operation condition evaluation

and prediction method based on CNN-BiGRU integrating

attention mechanism is proposed in this paper. Firstly, a

submarine cable status evaluation index system is established

based on relative industry standards. Secondly, based on the

cooperative game theory and the idea of multi-level variable

weight, the comprehensive evaluation model of health status for

submarine cables is developed. Thirdly, a submarine cable

operation status prediction method based on CNN-BiGRU

integrating attention mechanism is proposed, and the

historical operation data and condition evaluation results are

used as input characteristic parameters to predict the operation

condition of submarine cables. Finally, the validity and feasibility

of the proposed methodology are demonstrated through a

submarine cable in Bohai, China. The contributions of this

paper are as follows:

(1) Based on the industry guidelines and comprehensively

considering the structural characteristics, operation

history, maintenance and fault data of submarine cables,

and the online monitoring data, a submarine cable status

evaluation index system is established, which can accurately

and comprehensively evaluate the operation condition of

submarine cables.

(2) A multi-level variable weight submarine cable condition

evaluation method is developed based on cooperative

game theory, which can effectively change the evaluation

weight adaptively according to different operating periods of

the submarine cable, in order to obtain an appropriate

comprehensive submarine cable operating condition.

(3) A CNN-BiGRU model integrating attention mechanism is

proposed to predict the condition of submarine cables. CNN
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is used to exploit the relationship between the various feature

parameters, while BiGRU is used to capture long-term

decencies from time series data. The attention mechanism

is introduced to give different weights to the implied

conditions of BiGRU through the mapping weighting and

learning parameter matrix, so as to strengthen the influence

of important information and further improve the

forecasting efficiency.

(4) To verify the effectiveness of the proposed model, it is

compared with different models, such as BP, LSTM, GRU,

CNN-LSTM, and CNN-BiGRU. The maximum percentage

of prediction error σE-max, the root mean square error RMSE,

and the mean absolute percentage error MAPE of different

models are calculated to evaluate the performance. The

results demonstrate that the forecasting accuracy of the

proposed model is greatly improved.

The remainder of this paper is organized as follows: The

operation condition evaluation model of submarine cable is

described in Section 2, and Section 3 presents the CNN-BiGRU

prediction method integrating the attention mechanism for

submarine cable operation condition. Case studies are conducted

and analyzed in Section 4. Finally, conclusion are drawn in Section 5.

2 Submarine cable operation
condition evaluation model based on
cooperative game theory and multi-
level variable weight

2.1 Evaluation index system of submarine
cable operation condition

Considering that many indicators can reflect the operating

status of submarine cables, on the basis of fully considering the

structural characteristics, operation history, maintenance, and

fault data of submarine cables, combined with the “Operation

Regulations for Submarine Power Cables (DL/T1278-2013)”

issued by the National Energy Administration of China, this

paper constructs an evaluation index system of submarine cable

operation condition covering three aspects: online monitoring,

routine inspection and static test, which integrates 21 important

indicators for the submarine cable components, as shown in

Figure 1.

2.2 Determination method of index layer
weight based on cooperative game theory

2.2.1 Subjective weight based on improved
analytical hierarchy process

AHP is the most commonly used weight determination

method in the condition assessment research field. It has high

practicability and simplicity, and its essence is to obtain its

importance scale C (C = 1, 2, , 9) for subsequent calculation.

Cause the value of C is relatively fixed, the result will deviate from

the ideal expected value during the weight calculation. Besides,

due to the ambiguity caused by scattered comparison, a

consistency check is required (Cui et al., 2021; Ge et al.,

2022). Therefore, an improved AHP method is proposed, and

the process is as follows:

(1) Determine the importance of indicators.

In this paper, the score is used to replace the 1–9 scale

method used by traditional AHP. First, the industry standards are

comprehensively considered to obtain the importance score S of

each indicator, and then the corresponding judgment matrix is

obtained by comparing the importance scores of each indicator.

The contrasted factor values are more accurate, and due to the

certainty of the importance score, the proposed method does not

need to be checked for consistency.

(2) Construct the judgment matrix.

Based on the importance value of each index obtained, a

judgment matrix C1 is constructed by quantifying the

comparison factor cij (i, j = 1, 2,...,n):

C1 �
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
1 c12 c13 / c1n
c21 1 c23 / c2n
c31 c32 1 / c3n
..
. ..

. ..
.

1 ..
.

cn1 cn2 cn3 / 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ (1)

The mathematical expression of cij is:

cij � Si/Sj (2)

where cij is the value of the i-th row and j-column of the

constructed matrix, and Si is the importance score of the i-th

index.

(3) Determine the subjective weights.

The row means of the constructed judgment matrix after

column normalization is the weight w, and its mathematical

expression is:

cpij � cij/∑n
X�1

cix (3)

wj subjective �
∑n
X�1

cpXj

n
(4)

where cij* is the value after column normalization of the data in

the i-th column and the j-th row, wj_subjective is the subjective

weight of the j-th index.
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2.2.2 Objective weight based on entropy weight
method

Entropy is a measure for judging the degree of disorder of

the system. The entropy weight measures the dispersion

degree of each grass-roots index through the entropy value

and then judges the degree of influence (weight) of the index

on the comprehensive result (Zhu et al., 2020). The basic

process is as follows: For the selected n indicators and m

groups of evaluation data, the evaluation data is normalized

to construct an evaluation matrix C2 (m × n):

C2 �
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 x12 x13 / x1n

x21 1 x23 / x2n

x31 x32 1 / x3n

..

. ..
. ..

.
1 ..

.

xm1 xm2 xm3 / 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ (5)

FIGURE 1
Evaluation index system of submarine cable operation condition.
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where xij is the i-th group of data of the j-th index.

The data of C2 is normalized by the range transformation

method (that is, the worst value of each attribute after processing

is 0, and the optimal value is 1) to calculate the data index ratio zij,

and its mathematical expression is:

Xp � X −Xmin

X max −Xmin
(6)

Xp � Xmax −X

Xmax −Xmin
(7)

zij �
Xp

ij∑n
i�1
Xp

ij

(i � 1, 2, ..., n; j � 1, 2, ..., m.) (8)

where (7) and (8) are the range transformation formulas of

benefits data and cost data, respectively. X*, Xmax, and Xmin are

the value after range processing, the maximum value of the

column, and theminimum value of the column, respectively. zij is

the data index ratio of the j-th item evaluation index (when zij is

0, take lnzij = 0).

According to the normalized data, the information entropy ej
of each index is obtained, and the entropy weight w of each

evaluation index is finally calculated. Its mathematical

expression is:

ej � − 1
ln n

∑n
i�1
(zij ln zij) (9)

wj objective � 1 − ej∑m
j�1
(1 − ej) (10)

where wj_objective is the objective weight of the j-th index.

2.2.3 Determination of the weight of the
indicator layer based on the cooperative game
theory

The basic idea of the cooperative game theory is to combine

several different types of weight methods and use the cooperative

game idea as a whole to determine the combined weight, so as to

ensure the rationality and accuracy of the weight determination

(Li et al., 2021). Denote the weight bymethod i (i = 1, 2,..., n) asW

(i), and the final combined weight W. The specific steps are as

follows:

(1) Consistency correlation coefficient calculation.

Denote W(m_i) as the combined weight obtained by m-1

methods other than the i-th method, and the mathematical

expression of the consistency correlation coefficient L (i) is:

L(i) �
∑
j�1

n [Wj(i) −W(i)][Wj(m i) −W(m i)]
{∑

j�1

n [Wj(i) −W(i)]2}1/2{∑
j�1

n [Wj(m i) −W(m i)]2}1/2

(11)

Where n is the number of evaluation indicators, and “—” means

the average of the values.

(2) Calculate the combined weight W’(i).

W′ � ∑m
i�1
W(i)L(i) (12)

(3) The combined weight is obtained recursively, that is, the

number of weights is reduced by 1 after each calculation of

the formula until the number of weights is 2.

(4) When the number of weights is 2, the mathematical

expression of W’(i) is:

W′ � W(1) +W(2)
2

(13)

2.3 Project layer dynamic self-adaptive
weight determination method

Regarding the weight coefficient of the project layer of the

evaluation system is relatively fixed, due to the difficulty of

inspection and testing for the submarine cable. A dynamic

adaptive mechanism is used to determine the weight of the

project layer: 1) when the submarine cable is in the inspection

and static test stage, weights of monitoring, inspection indicators,

and static tests are determined based on the guidelines and

improved AHP. 2) when the inspection indicators and static

tests are in a stable period, the weights of the indicators of each

project layer are dynamically updated based on the expert

evaluation results, so as to more accurately grasp the real-time

operation status of submarine cables. Taking a certain period of

submarine cable as an example, experts fully consider the historical

condition and determine the importance score k (k = 0, 1, . . ., 5) of

each project layer according to factors such as the operating period

of the submarine cable, and accumulate the importance score of

the project layer. The mathematical expression of value Ki is as

follows:

Ki � ∑n
j�1
Kij (14)

Where Ki is the sum of the expert scores at the i-th project

level, and n is the number of experts participating in the

scoring as shown in Table 1.

According to scoring results of the experts, the latest

weight of each project layer is calculated by using the AHP

method. The construction matrix and its results are shown in

Table 2. The mathematical expression of the calculation

process is as follows:

Spij � Sij/∑n
X�1

Six (15)
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wj project �
∑n
X�1

Spij

n
(16)

where Sijp is the value after column normalization of the data in

the i-th column and the j-th row, and wj_project is the row mean

(weight).

2.3 Comprehensive condition evaluation
of submarine cable

The mathematical expression of the final health value M of

the submarine cable is as follows:

M � mKT (17)

where KT is the life coefficient, m is the sum of the evaluation

index of the submarine cable.

The mathematical expressions of KT and m are:

KT � 100 − λ × 0.5
100

(18)

m � ∑n
i�1
miwi (19)

where n is the number of index layers, λ is operation years, wi is

the weight coefficient of each project layer, mi is the evaluation

value, and the mathematical expression is:

mi � ∑ni
j�1
wijgijKij (20)

where wij is the grass-roots index weight, Kij is the family defect

coefficient, it equals 0.95 if there is a family defect, and 1 if there is

no family defect. gij is the evaluation value of a single indicator

and its mathematical expression is:

gij � 100 × (1 − ∣∣∣∣∣∣∣∣1 − ywr − ynow

ywr − yst

∣∣∣∣∣∣∣∣) (21)

Where ywr, ynow, and yst are the warning value, monitoring value,

and standard value of the indicator, respectively.

The obtained comprehensive health assessment value M of

the submarine cable is used as the predicted output label to

calibrate the operation condition of the submarine cable. The

numerical segmentation of M is as follows:

Assessment status �
⎧⎪⎪⎪⎨⎪⎪⎪⎩

normal (M≥ 90)
notic (90>M≥ 75)
abnormal (75>M≥ 60)
serious (M< 60)

(22)

3 Convolutional neural network-
Bidirectional gated recurrent unit
prediction model integrating
attention mechanism

3.1 Principle of deep learning

3.1.1 Convolutional neural network
The advantage of CNN is to mine the potential associations and

local features of the data to improve the efficiency and accuracy of

the model with higher fault tolerance. The core of its structure is the

convolution layer, which obtains potential features through the

convolution operation between the convolution kernel and the

input data. The mathematical expression is:

xji � f(xj−1pwji + bji) (23)

where xji is the i-th feature of the output of the j-th layer, xj-1 is

the output of the j-1th layer, wji is the weight matrix of the i-th

convolution kernel of the j-th layer, bji is the bias term, and p is

the convolution operator.

The relu activation function is used for all of the models in

this paper, and its mathematical expression is:

f(z) � { 0 (z< 0)
z (z≥ 0) (24)

The structure diagram of CNN is shown in Figure 2 (Li et al.,

2013).

3.1.2 Bidirectional gated recurrent unit
LSTM neural network is the most commonly used network

model for processing sequence data. It can achieve long-term

memory through a unique gating unit, and then effectively solve

the gradient problem existing in traditional recurrent neural

networks. Compared with LSTM, GRU has a simpler

structure, fewer parameters, higher computation efficiency,

TABLE 2 AHP calculation of project layer weight.

S1 S2 S3 Weight (wj)

S1 1 18/11 18/11 0.45

S2 11/18 1 1 0.275

S3 11/18 1 1 0.275

TABLE 1 Expert scoring table of project-level importance at a certain
time.

Expert A B C D K

Index

Online monitoring 4 4 5 5 18

Routine inspection 2 2 3 4 11

Static test 2 2 3 4 11
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and better generalization. It filters and transmits useful

information through the update gate and reset gate in the

unique neuron state for subsequent data processing, discards

low-value information, and outputs the hidden state at each

moment, so as to achieve the key information extraction and

solve the gradient discrete problem. BiGRU network makes the

data flow in two directions based on GRU, realizing deeper

feature mining and more efficient use of data, and the

mathematical expression of the GRU gating unit is as follows

(Li et al., 2022; Yang et al., 2022):

zt � σ(W(z)xt + U(z)ht−1) (25)
rt � σ(W(r)xt + U(r)ht−1) (26)

ht2 � tanh(Wxt + U(rtpht−1)) (27)
ht1 � (1 − zt)pht−1 + ztpht2 (28)

where zt and rt represent the update gate and reset gate; σ is the

Sigmoid function; tanh is the hyperbolic tangent function; W(z),

W(r), U(z), U(r), U, W are the matrix of training parameters, p

represents the product of the matrix, and ht2 is the summary of the

input xt and the output result of the previously hidden layer ht-1.

The BiGRU structure is shown in Figure 3 (Zhang et al., 2022).

3.1.3 Attention mechanism
The essence of AM is to give higher weights to key features and

reduce the weights of other parts accordingly, so as to extract key

information from the feature data (Niu et al., 2022; Deng et al., 2021).

In this paper, the features extracted from theCNN-BiGRU combined

neural network model are fused with the attention mechanism: the

CNN is used to extract the static features of the data, denoted as C,

and the BiGRU is used to extract the time-series features of the data,

denoted as G, and the formula of its fusion is (30). The correlation

between the data feature and the i-th historical feature Fi is measured

by the dot product operation, and then the attention value A is

obtained. As shown in Eq. 31, the weighted sum of the historical

features is calculated according to the attention value, namely the

final data feature FA (Lin et al., 2022). Through the fusion of feature

extraction and attention mechanism performed by the CNN-BiGRU

FIGURE 2
Structure diagram of CNN.

FIGURE 3
The structure of the BiGRU network.
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combined neural network, the model can fully extract the static and

time-series features of historical data, and dynamically adjust them

according to the importance of different features, so as to obtain

better results.

F � tanh(GWaC
T + ba) (29)

A � exp(F)∑n
i�1

exp(Fi)
(30)

FA � ∑n
i�1
AFi (31)

where ba is the bias term obtained by training, F is the fused data

feature, FA is the final data feature, Wa is an adaptive weight

matrix obtained by training the attention mechanism.

3.2 Prediction model

Compared with the traditional neural network, CNN can

efficiently and accurately extract the inherent features of the data

set, but it cannot effectively use the time-series features existing

in the data. Although a single BiGRU neural network can

effectively extract and utilize the temporal features in the

dataset, it is relatively inefficient for the use of correlation

features in the data. When using a single CNN and BiGRU

neural network to process long-term sequences or face multi-

dimensional input data, problems such as insufficient data

feature mining and loss of sequence or associated features will

occur. Therefore, this paper complements the advantages of these

methods, and a CNN-BiGRU combined neural network

integrating the attention mechanism is proposed to improve

the prediction performance.

The framework of the proposed model for the condition

prediction of the submarine cable is shown in Figure 4. First, the

historical operation data of the submarine cable and the

comprehensive health value quantification are processed

through the submarine cable operation condition evaluation

model. Then, the historical operation data and condition

quantification results are imported into the proposed

combined neural network model to realize the operation

condition prediction of the submarine cable.

FIGURE 4
Prediction model of submarine cable operation condition considering condition evaluation.

TABLE 3 Experimental results of model network layer optimization.

BiGRU network layers σE-max (%) MAPE (%) RMSE (%)

1 3.81 1.63 1.47

2 3.35 1.25 1.36

3 3.92 1.55 1.40

4 7.61 4.23 3.44
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3.3 Prediction process

3.3.1 Data processing
Take each index value of the submarine cable operation

status evaluation index system established in this paper as

the original import data, and time step is half a day (Hd). In

order to solve the problem of large error caused by abnormal

data in the data set, the mean square method is adopted to

process the data set, and its mathematical expression is as

follows:

FIGURE 5
Sliding window data reading mode.

FIGURE 6
Structure diagram of HYJQF41-F 35 KV submarine cable.
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⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
δ2 � ∑N

i�1
(xi − μ)2/(N − 1)

μ � ∑N
i�1
xi/N ；i � 1, 2, ..., N (32)

where N is the numbers of data of this type, and xi is the value of

the i-th evaluation. If |xi - u|>3δ, it is judged that xi is an

abnormal point, and the point is eliminated.

In order to solve the negative impact caused by the different

dimensions and the large differences of the input data, before the

model training, the maximum and minimum values of various

data in the data set are used as the benchmark to normalize the

data set. The formula is:

Dn � D −DMIN

DMAX −DMIN
(33)

where Dn is the data obtained after normalization, D is the data

before processing, DMIN and DMAX are the minimum and

maximum values of this type of data, respectively.

3.3.2 Predictive evaluation indicators
In order to evaluate the prediction accuracy of the proposed

method, the maximum percentage of prediction error σE-max, the

root mean square error RMSE, and the mean absolute percentage

error MAPE were selected. The mathematical expression is as

follows (Liu et al., 2019b):

σE−max � max(∣∣∣∣∣yi − ypi

∣∣∣∣∣
yi

) × 100% (34)

RMSE �

�����������∑N
i�1
(yi − ypi)2

N

√√
× 100% (35)

MAPE � ∑N
i�1
(∣∣∣∣∣∣∣∣ypi − yi

yi

∣∣∣∣∣∣∣∣ × 100%
N

) (36)

where yi is the actual value of the i-th sample point; ypi is the

predicted value of the i-th sample point; N is the number of

sample points.

It is worth noting that in order to ensure the scientificity and

unity of the model training and prediction process, the RMSE and

MAPE of the prediction results are the average values obtained by

the models.

3.3.3 Model training
In this paper, the control variable method is used to

optimize the structure of the proposed model. Regarding the

importance of the number of BiGRU network layers, the

prediction performance is tested by continuously increasing

the number of BiGRU layers. The basic parameters of the CNN

module and attention module remain unchanged, and the effect

of the BiGRU layer on the prediction results is tested.

Experiments show that when the number of BiGRU layers is

2, all of the evaluation indexes reach the optimal values, and

then the error rate begins to rise, indicating that the model is

over-learning. The results are shown in Table 3.

The number of convolution kernels of the CNN neural

network is set as 10, the size of the convolution kernel is set

as 2, and the step size is set as 1, the same convolution is selected

for the convolution method, and valid maximum pooling is

performed after continuous convolution. The BiGRU neural

network adopts a sliding-window data reading mode, as

shown in Figure 5, the time step is set to 10, and the batch

size is set to 30 (Su et al., 2021; Jinah et al., 2022). The Adam

algorithm is used to iteratively update the weights so that the

weights and deviations of each neuron are continuously updated

through the momentum and adaptive learning rate, so as to

optimize the output value of the loss function. To deal with the

possible overfitting problem, the Dropout method is used during

the training. In the process of randomly discarding the network

nodes from the network according to a certain probability, the

attention mechanism is integrated into the training of CNN and

BiGRU to improve the accuracy of the model. The mathematical

expression of the loss function is:

Floss � 1
n
∑n
t�1
(λact(t) − λpred(t))2 (37)

TABLE 4 Online monitoring index and evaluation results.

Evaluation index Standard value Warning value Monitor value Single item
score

Weighted score

S11 23.00 35.00 23.57 95.26 19.05

S12 0.00 150.00 11.84 92.11 3.74

S13 2.00 1.60 2.00 100.00 23.26

S14 0.00 40,000.00 3,398.00 91.50 13.83

S15 138.00 150.00 137.00 91.67 14.94

S16 35,000.00 37,000.00 34,844.00 92.20 9.17

S17 0.00 1.00 0.00 100.00 11.32

Health value —— —— —— —— 95.31

Evaluation status —— —— —— —— Normal
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where Floss, λact(t), λpred(t), and n are the loss function of the

model, the actual and predicted health values at time t, and the

number of training samples, respectively.

4 Simulation verification

4.1 Data selection

In order to verify the feasibility and accuracy of the proposed

method in this paper, the HYJQF41-F 35 KV three-core

submarine cable of an offshore oil and gas platform in the

Bohai Sea is taken as the research object. Its structure is

shown in Figure 6. From 2021 to 2022, a total of 510 groups

of monitoring and routine inspection data in 255 days are used.

The training set is divided according to 88%, and the rest of the

data is used as a test set, and the predicted results are compared

with actual values.

4.2 Comprehensive condition evaluation
and analysis

Taking a certain set of data selected in this paper as an

example, the single-item evaluation index data of online

monitoring is shown in the Table 4. Substitute the standard

value, attention value, and monitoring value of each index into

Eq. 21 to obtain the single-item evaluation score, and then

substitute it into Eq. 20 to obtain a single weighted score, and

the cumulative health value of the online monitoring module is

95.31, and its operating condition is normal, which is consistent

with the actual situation on site, as shown in Table 4.

4.3 Condition prediction and analysis

4.3.1 Prediction results
The selected data set is evaluated and quantified by the

evaluation model of the submarine cable operation condition

proposed in this paper, and then the input feature set is formed

and imported into the constructed CNN-BiGRU-AM prediction

model. The prediction results are shown in Figure 7. As can be

seen from Figure 7, the overall health status value of submarine

cables fluctuated between 80 and 90 during this period. Due to

the influence of various factors, it fluctuates within a certain

range, but it is generally stable and shows a certain downward

trend, which is in line with the actual condition of the submarine

cable. Besides, the three evaluation indicators: the maximum

percentage of prediction error σE-max, the root mean square error

RMSE, and the average percentage error MAPE are 3.35%, 1.36%,

and 1.25%, respectively, which illustrates its prediction accuracy,

and can provide effective support for the operation decision of

submarine cables.

4.3.2 Comparative analysis
In order to verify the effectiveness and superiority of the

proposed model in this paper, the same data set is input into

CNN, LSTM, CNN-LSTM, and other neural network models.

The training time required for a single round and single step of

each model are recorded, and the results are shown in Table 5. It

is noted that the right column of the table indicates that the

model incorporates an attention mechanism.

From Table 5, it can be seen that the time spent by each

neural network model is prolonged after combining with each

other or integrating an attentionmechanism. Among them, CNN

has the fastest training rate, LSTM has the longest time due to its

cumbersome gate structure, and the BiGRU network has certain

advantages in terms of speed.

In order to verify the validity of the prediction model proposed

above, the maximum percentage of prediction error σE-max, the root

mean square error RMSE, and the mean absolute percentage error

MAPE are calculated respectively. The comparison results of various

indicators are shown in Table 6 and Figures 8, 9.

According to the comparison information of different

models in Table 6, compared with other similar neural

network models, CNN-BiGRU-AM has the best prediction

accuracy in each evaluation index, and further combined with

the box plot shown in Figure 9, we can see that the average error

and discrete error of the model are obviously dominant. From the

perspective of whether the neural network model is combined or

not, compared with the single neural network model, the

maximum error percentage σE-max, the average absolute

percentage MAPE and the root mean square error RMSE of the

combined neural network model are improved, and the

comparison results are shown in Figure 10.

The attention mechanism is an important module of the

proposed model optimization and feature fusion. From the

FIGURE 7
Prediction results.
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TABLE 5 Comparison of running speed of each model.

Prediction model Time required for training (single round/single step)

Without AM With AM

BP -/4 ms —

CNN 13 ms/1 ms 15 ms/2 ms

LSTM 41 ms/4 ms 42 ms/5 ms

GUR 39 ms/3 ms 40 ms/4 ms

CNN-LSTM 43 ms/5 ms 44 ms/5 ms

CNN-BiGRU 40 ms/4 ms 42 ms/5 ms

TABLE 6 Comparison of prediction results of various models.

Prediction model σE-max MAPE RMSE

Without AM
(%)

With AM Without AM
(%)

With AM Without AM
(%)

With AM

BP 13.75 — 9.61 — 9.19 —

CNN 5.20 4.13% 2.39 1.37% 2.43 1.43%

LSTM 6.95 4.51% 2.32 1.52% 2.44 1.62%

GRU 5.86 3.95% 2.10 1.41% 2.14 1.46%

CNN-LSTM 5.31 3.55% 1.99 1.30% 2.08 1.38%

CNN-BiGRU 4.89 3.35% 1.79 1.25% 1.60 1.36%

FIGURE 8
Comparison of various models.
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perspective of whether the model integrates the attention

mechanism or not, the maximum percentage of prediction

errors σE-max, the mean percentage error MAPE and root mean

square error RMSE increased by 1.54%, 0.3%, and 0.26%,

respectively. Compared with other similar neural network

models, each evaluation index has been improved by up to

9.03%, 7.72%, and 6.81%, reaching 3.35%, 1.25%, and 1.36%,

respectively. The performance of each models with and without

attention mechanism are shown in Figures 11, 12.

It can be seen from Figure 11 that the predicted value of the

BP neural network is significantly lower than the actual value, but

it has a certain trend consistency, which shows that its processing

capability for long-sequence multi-feature samples (such as

submarine cable operation data) is relatively general. CNN

prediction results have a good fluctuation fit, but due to low

numerical value, the accuracy is not ideal, which may be caused

by the insufficient extraction of sample time series features.

LSTM network has better learning efficiency for time series

data, although the maximum error value is relatively high. But

due to the lack of correlation features, there is room for further

optimization. CNN-LSTM is better than the above models in

terms of overall fitting, and remains relatively stable when the

fluctuation is small. The fluctuations and trends of the CNN-

BiGRU network are similar to the CNN-LSTM network, both

FIGURE 9
MAPE and RMSE of different models with and without attention mechanism.

Frontiers in Energy Research frontiersin.org13

Yang et al. 10.3389/fenrg.2022.1023822

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2022.1023822


FIGURE 10
Effect comparison of important single and combined models.

FIGURE 11
Comparison of prediction results of different models without
attention of different models without attention.

FIGURE 12
Comparison of prediction results of different models without
attention of different models with attention.
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greater advantages and higher accuracy, but the former

dominates in training efficiency (Table 5). From Figure 12,

it can be found that after adding the attention mechanism, the

curve fit of each neural network prediction model has been

improved to varying degrees, which shows the effectiveness of

the attention mechanism in neural network time series

prediction. According to whether the unified network adds

attention mechanism as a variable, the comparison effect is

shown in Figure 13.

To sum up, the numerical example verifies the superiority

of the model described in this paper, and the evaluation

indexes (i.e. maximum error, root mean square error, and

average percentage error) are better than other methods, and

it can accurately predict the operation condition of

submarine cables.

5 Conclusion

Aiming at the shortcomings of the existing research in the

field of submarine cable operation condition evaluation and

prediction, a submarine cable operation status evaluation

index system is established in this paper, which includes

online monitoring, routine inspection and static test. To

obtain more scientific evaluation results, based on the

improved AHP and cooperative game theory, a submarine

FIGURE 13
The effect of attention mechanism.
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cable operation condition evaluation model is constructed, and

numerical quantification is carried out in combination with the

guidelines and engineering practice. Besides, the CNN-BiGRU-

AM combined neural network model is established by

synthesizing the advantages of correlation feature extraction of

CNN, the time-series feature extraction of BiGRU and the feature

fusion advantages of the attention mechanism. By comparing

with other neural network models, the better prediction accuracy

verifies the advantages of the proposed model in processing long-

sequence, multi-characteristic submarine cable operation data

samples.
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