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Obtaining the core temperature of the cable joint is vital to ensure the safe

operation of the modern power system with integration. To improve the speed

and accuracy of core temperature inversion, this study proposed a non-

embedded cable joint temperature inversion method named uniform

manifold approximation and projection (UMAP) and the improved sparrow

search algorithm (ISSA) optimized the back propagation neural network

(BPNN). Firstly, UMAP is used to reduce the feature dimension of sample

data input and enhance the data visualization effect. After dimension

reduction, the model input features are consistent with the international

ampacity calculation standard, and the calculation speed and accuracy of

the model are improved. To improve the optimization ability of SSA, the

Tent chaotic operator is introduced, and then the ISSA is used to optimize

BPNN to address the issue of unstable output and easy falling into a local

minimum. At last, the optimization ability and temperature inversion effect of

the improved model were compared with other competing algorithms based

on the 10 kV cable joint temperature-rise test and CEC2017 benchmark

function. The experimental results show that the proposed method shortens

the calculation time of the model, and the mean absolute error of temperature

inversion is about 0.1°C. The overall performance is the most outstanding, the

training data set is unbiased, and the interpretability of the model improves,

which can provide a reliable reference for line operation and maintenance

personnel.
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1 Introduction

Under the constraints of the “carbon peak carbon neutral”

goal, there will be a transition of electric energy structure from

traditional thermal power generation into new energy

generation as the main power source (Han et al., 2021; Li

and Niu, 2021). With the acceleration of the urbanization

process, the demand for electricity surges, but the power

supply reliability needs to be enhanced with relatively low

costs. Therefore, how to maximize the current carrying

capacity of in-service cables within the safety margin has

become one of the current research directions. The

dynamic capacity of the line is limited by the cable

temperature, and the cable joint has thicker insulating and

protection layers than the cable, which will lead to

overheating, the remaining useful life of the cable, and

safety reduction of cable joint (Ghaderi et al., 2019; Enescu

and Russo, 2020). Therefore, real-time and accurate

temperature monitoring of cable joint core is of great

significance to operation security and the economy of the

power system.

At present, the classification of cable core temperature

monitoring mainly includes embedded detection and non-

embedded detection according to measurement methods. The

embedded detection refers to the fiber and sensor integrated

into the cable core. However, because fiber is brittle and prone

to breakage, maintaining the temperature and measuring the

element inside requires damaging the joint structure, which is

challenging and expensive (Li et al., 2019), (Mikolajek et al.,

2020). Due to its ease, monitoring the temperature of the cable

surface for non-embedded internal core temperature

detection has attracted much interest lately. Numeric

methods include the thermal circuit method (Swift et al.,

2001; Liang, 2016) and the finite element method (FEM)

(Klimenta et al., 2011; Ghoneim et al., 2021; Zhang et al.,

2022). The former was proposed by Neher (1949) since the

Kennelly hypothesis (Neher and Mcgrath, 1957) was put

forward. Subsequently, the International Electrotechnical

Commission (IEC) successively formulated the calculation

standard of conductor temperature and ampacity, which is

still in use today (IEC 60287, 2006; IEC-60853, 1985). The

latter gradually became popular with the development of

simulation software such as Comsol and Ansys. According

to many experiments and finite element simulations, Sedaghat

and De Leon (2014) revised the calculation formula of the

cable thermal circuit in free air in the IEC standard. Gao et al.

(2016) estimated cable joint temperature through the second-

order transient thermal circuit and diagnosed cable joint fault

combined with parameter identification. Bragatto et al. (2017)

developed a nonlinear calculation method for underground

medium-voltage cables. Fu et al. (2018) proposed a rapid

calculation method for temperature-rise using a transfer

matrix based on FEM. However, as the model structure

becomes complex, the computational efficiency of these

methods is not fast enough, they are affected by various

environmental factors, and their applicability still needs

further improvement.

The emergence of machine learning (ML) has brought earth-

shaking changes to various fields. Their accuracy and

computational efficiency in regression prediction,

classification, image recognition, and other aspects are very

high. Many algorithms have been applied to cable

temperature prediction (Cheng and Yu, 2019a; Cheng and Yu,

2019b). Ruan et al. (2018) applied a support vector machine

(SVM) in temperature estimation of medium and low voltage

three-core cables and verified the accuracy of the estimated result

through experiment. Lei et al. (2011) used BPNN to solve the

influence of cable physical parameters on temperature inversion.

Wang et al. (2017) proposed an estimation algorithm for high-

voltage cable joint ampacity. However, they all have some

parameters that are randomly initialized, requiring multiple

iterations to get to relatively optimal values.

The meta-heuristic algorithm realizes the optimal solution by

simulating natural and human intelligence. Compared with the

traditional optimization method, it is a more flexible

optimization method, which is mainly divided into four

categories. For example, the genetic algorithm (Holland, 1992)

and differential evolution (DE) (Storn and Price, 1997) were

developed based on the evolution idea. The gravitational search

algorithm (GSA) (Rashedi et al., 2009) and sine cosine algorithm

(SCA) (Mirjalili, 2016), among others, were developed based on

physics and chemistry. The particle Swarm optimization (PSO)

(Kennedy and Eberhart, 2002), grey wolf optimization (GWO)

(Mirjalili et al., 2014), whale optimization algorithm (WOA)

(Mirjalili and Lewis, 2016), butterfly optimization algorithm

(BOA) (Arora and Singh, 2019), and Harris Hawks

optimization (HHO) (Heidari et al., 2019), among others,

were developed based on swarm intelligence. Moreover, the

socio-evolution and learning optimization algorithm (SELO)

(Kumar et al., 2018) was based on human behavior. All these

algorithms have a common feature. They comprise two phases:

exploration and exploitation. In the exploration phase, the

algorithm should fully search the space domain. In the

exploitation stage, the algorithm needs to search locally in the

optimal solution region to find the global optimal value.

The meta-heuristic algorithm has a good performance in

solving quality and convergence speed, but there is still a problem

that it is easy to fall into the local optimal value. Therefore, many

variants of meta-heuristic algorithms and hybrid algorithms have

been proposed. Premkumar et al. (2022a) used Gaussian and

Cauchy mutation-based Hunger Games Search Optimization

(GCMHGSO) was used to optimize the enhanced

Newton–Raphson method (NRM) to achieve accurate

parameter identification of photovoltaic cells and modules.

Premkumar et al. (2022b) improved a multi-objective

balanced optimizer (MOEO) with the crowding distance
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mechanism and the non-dominated sorting strategy, which

proved its computational efficiency in 33 contextual problems.

Premkumar et al. (2021a) used the opposition-based learning

mechanism (OBL) to improve the gradient-based optimization

algorithm (GOA). A new many-objective gradient-based

optimizer (MaOGBO) to calculate the optimal power flow

(OPF) under multi-objective constraints was proposed by

Premkumar et al. (2021b). Xavier et al. (2021) proposed the

orthogonal learning-based Gray Wolf Optimizer (OLBGWO) to

balance the exploration and exploitation phases properly. Fan

et al. (2020) used the quasi-reflection-based learning mechanism

to improve the convergence speed of HHO. Sayed and Hassanien

(2018) combined Moth–Flame optimization (MFO) algorithm

and simulated annealing (SA). Nadimi-Shahraki et al. (2022)

used a pooling mechanism and three strategies to improve WOA

and conduct effective feature selection.

SSA is a new swarm intelligence algorithm proposed by Xue

and Shen (2020). Due to its excellent performance, this

optimization algorithm has been applied to maximum power

point tracking (MPPT), load forecasting, cost control, parameter

identification, the traveling salesman problem (TSP), route

planning, and other challenging engineering problems and

achieved good results. To solve the problem of large-scale data

regression classification. Zhang and Ding (2021) optimized the

parameters of the stochastic configuration network (SCN) by

using SSA enhanced by logical chaotic mapping and mutation

operator. Tang et al. (2021) developed the SSA variant (CLSSA)

that integrated the spiral strategy and adaptive step strategy and

proved its practicability in testing functions and engineering

problems. Liu et al. (2022a) used the variant of SSA to optimize

BP neural network to achieve short-term stock market index

prediction. Chen et al. (2022) developed a generalized neural

network model optimized by SSA, which reduced the complexity

of spectral data and improved the computational efficiency of the

model. Liu et al. (2022b) believed that the performance of the

hybrid model was stable and compared and analyzed the

performances of RF-GWO, RF-SSA, and SVM-GWO, among

others. Althoughmanymeta-heuristic algorithms have been used

in the literature, the stable performance of SSA in the face of

complex problems is the primary reason for selecting it as the

optimizer in this study.

With the rapid growth of the application speed of ML, how to

improve the interpretability of such “black box” models for end

users is considered more important. Because ML may reflect the

bias of human or physical environment when making decision

judgments, as well as the weight of sample collection and

selection, these may lead to unfair or completely wrong results

and decisions. The black box model only maps the input and

output without explaining the reason. The more complex the

background sample, the greater the burden of interpretation.

There are several ways to explain ML (Angelov et al., 2021;

Psychoula et al., 2021): some classic transparent models, such as

decision trees, Bayesian networks, and k-nearest neighbors, find

an alternative to the original model to explain complex models

with simple models. Input features are evaluated based on their

contribution to model results by feature correlation. Some

visualization means are also included. Facing the high-

dimensional data training set constructed in the cable joint

operation environment, the information between the input

feature quantities of the model is redundant and contains

much invalid information, which will lead to the slow training

speed of the model and even the overfitting. Because ML is

generally trained on relatively fixed and independent identically

distributed data, we need to shift from pure statistical

interpretation to causal interpretation or combine them. This

can help end users trust temperature inversion methods and

systems without understanding the working principle of ML.

Uniform manifold approximation and projection (UMAP) is a

popular dimensionality reduction algorithm in biology and other

fields (McinnesHealy et al., 2018; Becht et al., 2019). Compared

with T-distributed stochastic neighbor embedding (T-SNE)

(Cheng et al., 2015) and other dimension reduction

algorithms, the sample data of the UMAP do not need to

satisfy Gaussian distribution, and the relative structure of

high-dimensional space of original data can be well

maintained, so it is of better high-dimensional data processing

ability and faster calculation speed.

Based on the above literature research, this study proposes a

cable joint core temperature inversion method combining

UMAP data dimensionality reduction preprocessing and the

improved SSA-optimized BPNN hybrid algorithm. The main

contributions of this study are as follows:

1) A new SSA variant, named improved sparrow search algorithm

(ISSA), is proposed by combining the Tent chaotic map and

population mutation perturbation strategy with SSA. Strategy

improvement increases the optimizing ability of SSA, and Tent

mapping increases the population diversity and the initial

population distribution uniformity to improve the global

search ability of the algorithm. In the later stage of iteration,

the chaotic operator perturbs the current optimal individual to

help the group jump out of the local optimum and accelerate the

optimization speed of SSA.

2) The dimensionality reduction effect of UMAP is verified by

comparison with T-SNE. The interpretability of the inversion

algorithm model is improved through the analysis of the

cumulative contribution rate and dimensionality reduction of

sample data

3) The performance of the ISSA algorithm is verified by

comparing it with other algorithms on benchmark functions.

4) The temperature inversion effect of UMAP-ISSA-BPNN is

proved by comparing it with other competitive algorithms on

the cable joint temperature-rise test.

The remaining part of this study is organized as

followings: The dimension reduction and visualization
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effect comparison between UMAP and T-SNE are introduced

in Section 2. The basic principle, improvement strategy, and

model framework of SSA are introduced in Section 3. Section 4

conducts the cable joint temperature-rise test to collect

training data. In Section 5, the optimization ability and

temperature inversion effect of the proposed model are

verified by comparing six benchmark functions and the

cable joint temperature-rise experiments. Section 6 provides

some conclusions and future work.

2 UMAP dimension reduction
algorithm and visualization analysis

2.1 UMAP

UMAP is a dimension reduction algorithm based on

Riemannian geometry and algebraic topology. It maps the

characteristics of high-dimensional data to low-dimensional

space by searching the closest equivalent fuzzy topology

structure of lower-dimensional data. For points in the high-

dimensional space xi and xj, pi|j denotes the conditional

probability that xi is an adjacent point of xj. It can be

specifically expressed as follows:

pi|j� e−
d(xi ,xj)−ρi

σi , (1)

where ρi is the distance from the ith data point to its first nearest

neighbor and σi is obtained by the nearest neighbor parameter

and binary search.

Because the weights of the nearest neighbors between two

points are not necessarily equal, it is necessary to symmetrize the

high-dimensional probability:

pij� pi|j+pj|i − pi|jpj|i. (2)

UMAP uses curve clusters to model low-dimensional

distance probability. It is similar to Student’s t-distribution

and is shown as follows:

qij � (1 + a(yi − yj)2b)−1
, (3)

where default hyper-parameters a = 1.93, b = 0.79. The piecewise

function with min-dist as the condition was fitted by the values of

a and b. The smaller the min-dist is, the more intensive the

similarity is after projection. On the contrary, similar points are

more sparse.

UMAP uses binary cross entropy (CE) as a cost function to

perform random gradient descent by adjusting the loss function.

It can be expressed as follows:

CE � ∑
i

∑
j

⎡⎢⎢⎣pij log⎛⎝pij

qij
⎞⎠ + (1 − pij)log⎛⎝1 − pij

1 − qij
⎞⎠⎤⎥⎥⎦. (4)

2.2 UMAP dimension reduction
visualization effect analysis experiment

Due to the requirements of urban planning, cable laying

cannot be completely installed under regulations, and the

operating environment is complex and changeable. With the

increase in operation years, the joint quality will decline, and

insulation aging and cable joint state degradation will lead to

cable joint overheating and cause safety accidents. Therefore, it is

necessary to consider the influence of multi-dimensional and

variable factors. According to the monitoring data of a

transmission line in a certain area, variables related to cable

core temperature—six kinds of data, namely, load, cable surface

temperature, air temperature, air humidity, wind speed, and

atmospheric pressure—were visualized for dimension

reduction analysis. Firstly, the contribution rate of each

component was obtained by Gauss kernel KPCA, as shown in

Figure 1, and the results showed that the cumulative contribution

rate of the first two principal components had exceeded 90%.

Then, T-SNE and UMAPwere used for visual contrast analysis of

dimension reduction, respectively.

Figure 2 shows the scatter diagrams of the original data

reduced to 2D and 3D, respectively. Each axis in the graph

represents a principal component. Compared with T-SNE, data

reduced to 2D using UMAP better maintain the structure in

high-dimensional space, resulting in the larger spacing of original

data, crowded and overlapping data become divergent, and

visualization is enhanced. Through this data visualization

method, the reporter and the receiver can understand and

receive the results more efficiently.

FIGURE 1
Gauss kernel KPCA contribution rate.
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3 Improved model and inversion
method

3.1 SSA

The SSA simulated the process of individual sparrows

avoiding natural enemies and getting closer to food. The

population consists of three roles: producer, scrounger, and

alert. Producers have a high energy reserve and a larger

foraging area, which can provide foraging area and direction

information for the population. Scroungers approach producers

and grab food resources. The alert can give a warning signal when

danger is coming, and if necessary, give up food to avoid danger.

The producer location is updated as follows:

Xt+1
i,j �

⎧⎪⎪⎨⎪⎪⎩
Xt

i,j × exp( −i
α × T

), R2 < ST

Xt
i,j + Q × L, R2 ≥ ST

, (5)

where t represents the current iteration number, i = 1, 2, . . . , P.Xt

i,j represents the position information of the j-dimension of the

ith sparrow in the iteration of t, α ∈ (0,1) is a random number; T is

the maximum number of iterations; R2 ∈ [0,1] indicates the

warning value. The value of ST ∈ [0.5, 1] indicates the security

threshold. Q is a random number that follows the standard

normal distribution; L is 1 by d matrix with all elements 1.

When R2 < ST, the population is not in danger, and the foraging

range of sparrows will increase. When R2 ≥ ST, natural enemies

appeared and individual sparrows moved to the safe area.

The position update formula of scroungers is described as

follows:

Xt+1
i,j �

⎧⎪⎪⎪⎨⎪⎪⎪⎩
Q · exp(Xt

w −Xt
i,j

i2
), i>N/2

Xt+1
p +

∣∣∣∣∣Xt
i,j −Xt+1

p

∣∣∣∣∣ × A+ × L i≤N/2

, (6)

where N is the population size, Xp is the optimal position

that producers occupied, Xw is the global worst position.

A+= AT (AAT)−1, where A is a 1×d matrix with all elements

1 or −1.

Both producers and scroungers will have a certain proportion

(10%–20%) of individuals acting as alert, and their position is

updated as follows:

FIGURE 2
Visual effect comparison between UMAP and T-SNE dimension reduction. (A)UMAP reduced to 2D. (B) UMAP reduced to 3D. (C) T-SNE
reduced to 2D. (D) T-SNE reduced to 3D.
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Xt+1
i,j �

⎧⎪⎪⎪⎨⎪⎪⎪⎩
Xt

b + β ×
∣∣∣∣∣Xt

i,j −Xt
b

∣∣∣∣∣, fi >fg

Xt
i,j + K ×

∣∣∣∣∣Xt
i,j −Xt

w

∣∣∣∣∣(fi − fw) + ε
, fi � fg

, (7)

where Xb is the global optimal position and β is the step size,

which is the random number of standard normal distribution. K

∈ [−1, 1] is the random number; fi is the fitness value of the

current sparrow; fw and fg are the current global worst and best

fitness values, respectively. ε is the minimum constant to avoid a

zero denominator. When fi = fg, individuals in the middle

position found the dangerous and updated position. When

fi > fg, the edge individual alerts the updated position.

3.2 ISSA

Generally, swarm intelligence algorithms randomly initialize

the population. However, the uniformity of the spatial

distribution of the population cannot be controlled, and the

initial population distribution has a significant impact on the

convergence speed and accuracy of the algorithm (Phan et al.,

2020; Al-Betar et al., 2018). At the end of the iteration, SSA still

has the common problem of the swarm intelligence algorithm.

The population approaches the food location, the foraging space

shrinks, the population diversity decreases, and the algorithm is

prone to be “premature.” The randomness of chaotic mapping

can enrich the population and improve the global search ability

of the algorithm. Common chaos operators include logistic

mapping and Tent mapping. However, the probability of

logistic mapping in the interval of [0,0.1] and [0.9,1] is much

higher than the probability of the middle position (Zhang and

Ding, 2021). By contrast, the Tent chaos mapping in the interval

of [0,1] has better ergodicity and uniformity (Wang and Wang,

2011; Liu et al., 2022c). In addition, in order to overcome the

shortcomings of traditional Tent chaotic mapping and avoid

chaotic particles falling into the small period and unstable period

points during iteration, a random variable rand(0,1)/N is added

to the original mapping formula, and the modified Tent chaotic

mapping can be expressed as follows:

xi+1 � { 2xi + rand(0, 1)/N 0≤xi < 0.5
2(1 − xi) + rand(0, 1)/N 0.5< xi ≤ 1

. (8)

The chaotic value obtained in Eq. 8 is mapped to the sparrow

population:

xd,n � lb + xd(ub − lb), (9)

where xd,n is the new value of the chaotic sequence carrier in the

population space; ub and lb are the upper and lower bounds of

the sparrow position, respectively; and xd is a chaotic variable. Eq.

10 is then used to perturb the locally optimal individuals of the

population and retain them preferentially:

xn � (x + xd,n)/2, (10)

where xn is the individual after disturbance and x is the individual

to be disturbed.

3.2.1 UMAP-ISSA-BPNN cable joint core
temperature inversion model

The advantages of the BPNN are strong nonlinear

mapping ability and flexible network structure. However,

due to the high sensitivity of the network to weights and

thresholds, the self-learning time will be greatly increased if

the return error is large in the continuous iterative cycle.

Therefore, ISSA is adopted in this study to optimize the

weights and thresholds of the neural network to reduce the

network training time. Figure 3 is the cable joint temperature

inversion flowchart using UMAP and BPNN optimized by

ISSA. The specific process is as follows:

Step 1: Sample data dimension reduction and neural network

topology determination.

Step 2: Initialization of sparrow population parameters: input N,

T, ST, R2, P and D.

Step 3: Tent chaos initializes the sparrow position.

Step 4: The fitness value of each sparrow was calculated and

sorted.

Step 5: Update producer, scrounger, and alert positions.

Step 6: Judge whether the fitness value meets the convergence

condition. If not, a chaotic disturbance update will be

carried out.

FIGURE 3
Flowchart of cable joint core temperature inversion method.
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Step 7: If the number of iterations reaches the maximum, the

position information of the globally optimal sparrow is

output; otherwise, return to step 5 to continue the cycle.

Step 8: The optimal parameters obtained by ISSA are assigned to

the weights and thresholds of the neural network for

temperature inversion.

4 Cable joint temperature-rise test

A 10 kV cable straight joint was made according to the

production process of medium voltage cable joint of the power

distribution network. The cable joint temperature-rise test platform

installed the thermocouple temperature measuring device in the

following six positions: the surface of the joint connecting pipe, cable

joint connector surface, prefabricated rubber surface, cable joint

armor wrap surface, cable sheath surface (1 m away from the cable

joint connector), cable core conductor (axial direction 1 m away

from connector), and the air (radial distance more than 1 m away

from the joint). The current rising circuit uses a transformer to

generate a large current, which is controlled by the output voltage

regulation of the autotransformer. In order to be close to the actual

situation, the specific experimental platform and temperature

measuring point distribution are shown in Figure 4.

The season, geography, population, and other factors will all

impact the real line load, which is continuous and periodic. By

considering the maximum current carrying capacity of the cable

connector of this model, the experimental platform was

originally loaded with a current of 250 A. After waiting for

6 h for the temperature to become somewhat stable, the

current increased by 50 A each time step until reaching 750 A.

This is how the multi-step equivalent current is loaded in the test.

The electricity was then shut off to give the cable joint time to

cool naturally. The air pressure is around 0.96 standard

atmospheric pressure, the relative humidity ranges from 60%

to 70%, and the wind speed ranges from 3.4 to 5.4 m/s in the

experimental setting. Figure 5 displays the temperature

measurement point information for each layer.

Figure 5 shows that the crimping point of the cable connector

has the fastest temperature-rise and maximum temperature

throughout the entire experimental object. Moreover, the

closer the position is to the connector, the higher the

temperature is (T1 > T2 > T3). Because the copper core has

large thermal conductivity, T5 is higher than the temperature of

FIGURE 4
Temperature-rise test platform. (A) Cable joint. (B) Schematic diagram of the temperature-rise test platform. (C) Distribution of temperature
measuring points on the quarter section of the cable joint.
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other layers. The temperature measurement data of joints and

cables that are closer to the ambient air are more influenced by

the environment. T3 and T4 have the most obvious effect. With

the increase in loading current, the temperature continues to rise

but simultaneously presents a downward trend with the decrease

in ambient temperature. Particularly T4 is most impacted by

changes in ambient temperature because its temperature

measuring point is immediately exposed to the air. As a

result, T4 is even higher than T3 in the period of 18–36 and

46–56 h. Therefore, the temperature measuring data of the cable

surface contains the fluctuation rule of ambient temperature,

which is in line with the conclusion of the principal component

analysis. Only load and cable surface temperature measurement

data are needed as the character input for the cable joint

temperature estimation inversion.

5 Results and discussion

5.1 Algorithm performance test

In order to reflect the advantages of the strategy

improvement model in this study, ISSA, PSO, WOA, and SSA

are selected to test six benchmark functions. All algorithm

population size is set to 50, the number of iterations is set to

300, and other parameters are set as shown in Tables 1, 2 shows

the specific function information. Among them, f1–f2 is a high-

dimensional unimodal function, f3–f4 is a high-dimensional

multimodal function, and f5–f6 is a low-dimensional

multimodal function. In order to remove errors caused by

chance, 30 independent tests were conducted on six test

functions, and the results are shown in Table 3.

From the data analysis of Table 3, under the same operating

environment and constraints, the ISSA algorithm performs

better on the test function. For unimodal test function f1 and

multimodal test function f4, SSA and ISSA have found their

theoretical optimal values, which shows that SSA is superior to

other swarm intelligence algorithms. On f2 and f3, although the

theoretical optimal value is not found, ISSA performs better in

the calculation of mean and standard deviation. On the low-

dimensional test function, PSO, GWO, SSA, and ISSA can find

the theoretical optimal solution, but the standard deviation of

ISSA is smaller than that of other algorithms. On f6, ISSA can

directly search for the optimal solution every time, indicating that

the improved algorithm has better stability and optimization

accuracy than other algorithms.

In order to compare the optimization speed and accuracy of

the algorithm more intuitively, the convergence curve shown in

Figure 6 is drawn. The peak single-extremum function can detect

the local development ability of the algorithm, and the multi-

extremum function can test the global search ability of the

algorithm. It can be seen from the function test results of

f1–f6 that PSO, GWO, and SSA are easy to fall into the local

optimum in the late iteration, which greatly reduces the

convergence speed. In summary, the effectiveness and

superiority of ISSA are proven.

5.1.1 Optimization comparison and analysis of
hybrid model ISSA-BPNN

Temperature inversion analysis was carried out based on the

temperature-rise test data of a 10 kV cable joint. The measured

temperature and influencing factor data obtained from the

experiment were sampled every half an hour. The sample data of

the previous 48 h were used as the training set of the neural network,

and the data from 48 to 72 hwere used as the test set for temperature

estimation. In order to ensure the fairness of the experiment, the

same parameters of each algorithm should be kept consistent. The

population size N = 50, and the number of iterations is set to 100.

The hidden layer of the neural network is 1, the neuron is 8, and the

input node is 6. The optimization process and results of each

algorithm obtained by operation are shown in Figure 7.

Figure 7 shows that the minimum fitness value found by

ISSA-BPNN in the 14 iterations round is 4.3 × 10–2, and SSA-

BPNN and GWO-BPNN converge to 8.16 × 10–2 and 1.11 × 10–2

in the 34 and 27 iterations, respectively. PSO-BPNN did not find

the global optimal solution at the end of the iteration round.

Moreover, the initial error value of the improved BPNN based on

TABLE 1 Experimental parameters for four optimization algorithms.

Algorithm Parameter

SSA ST = 0.8, p = 0.2N, SD = 0.2N

PSO ω = 1, c1 = c2 = 1.5

GWO a decreases linearly from 2 to 0, r1, r2 ∈ [0,1]

ISSA ST = 0.8, p = 0.2N, SD = 0.2N

FIGURE 5
Load and temperature of each monitoring point.
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the SSA is also smaller than that of the other two heuristic

optimization algorithms. Therefore, the ISSA can effectively

improve the inversion accuracy of BPNN.

5.1.1.1 Comparison test of temperature inversion of

hybrid model ISSA-BPNN

This section conducted cable joint temperature inversion. To

quantitatively evaluate the temperature inversion effect of the

improved algorithm model, δMAE, δMSE, R
2, and operation time

were used as evaluation indexes to compare each model. R2 can

reflect the degree of fitting between the estimation temperature of

the algorithm and the real temperature. δMAE and δMSE can

reflect the degree of difference between the estimation value and

the real value. The specific formulas are as follows:

δMAE � 1
n
∑n
i�1

∣∣∣∣∣yp − yi

∣∣∣∣∣, (11)

δMSE � 1
n
∑n
i�1
(yp − yi)2, (12)

TABLE 2 Benchmark test function set.

Function name Function Dimension Range Optimal value

Noisy quartic f1 � max i{|xi|, 1≤ i≤ n} 30 [−100,100] 0

Step f2 � ∑n
i�1(|xi + 0.5|)2 30 [−100,100] 0

Schwefel 2.26 f3 � ∑n
i�1−xi sin(

���|xi|√ ) 30 [−500,500] −418.9829D

Griewank f4 � 1
4000∑n

i�1x2i −∏n
i�1cos( xi�

i
√ ) + 1 30 [−600,600] 0

Hartman f5 � −∑4
i�1ci exp(−∑6

j�1aij(xj − pij)2) 6 [0,1] −3.32237

Shekel f6 � −∑5
i�1[(X − ai)(X − ai)T+ci]−1 4 [0,10] −10.5363

TABLE 3 Function test results.

Function Algorithm Optimal value Average value Standard deviation

f1 PSO 1.43E-05 6.45E-03 4.37E-03

GWO 3.54E-15 4.51E-08 5.44E-08

SSA 0.00E00 8.41E-48 3.25E-48

ISSA 0.00E00 7.42E-155 5.72E-155

f2 PSO 6.81E-01 9.64E-01 7.26E-01

GWO 3.81E-05 1.65E-02 1.32E-02

SSA 4.32E-07 8.16E-03 8.95E-03

ISSA 7.16E-13 3.14E-08 9.12E-08

f3 PSO −7.01E03 −5.14E03 −2.43E02

GWO −7.45E03 −6.35E03 5.15E02

SSA −9.42E03 −8.75E03 4.85E03

ISSA −1.26E04 −1.04E04 3.12E01

f4 PSO 3.15E-03 6.97E-02 4.22E-03

GWO 0.00E00 2.34E-02 6.57E-03

SSA 0.00E00 0.00E00 0.00E00

ISSA 0.00E00 0.00E00 0.00E00

f5 PSO −3.32E00 −3.28E00 4.51E-02

GWO −3.32E00 −3.21E00 1.42E-01

SSA −3.32E00 −3.25E00 3.87E-02

ISSA −3.32E00 −3.26E00 8.42E-02

f6 PSO −1.05E01 −5.47E-00 3.12E00

GWO −1.05E01 −7.01E-00 2.87E00

SSA −1.05E01 −8.34E-00 2.39E00

ISSA −1.05E01 −1.05E01 0.00E00
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FIGURE 6
Convergence curve of fitness for four optimization algorithms on Benchmark function. (A) Convergence curve of f1. (B) Convergence curve of
f2. (C) Convergence curve of f3. (D) Convergence curve of f4. (E) Convergence curve of f5. (F) Convergence curve of f6.

FIGURE 7
Convergence curve of fitness for four optimization
algorithms.

FIGURE 8
The comparison of inversion temperature and test
temperature of BPNN improved by swarm intelligence algorithm.
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R2 � 1 −
∑n
i�1
(yp − yi)2

∑n
i�1
(yi − yi,ave)2 (13)

where n is the number of estimation samples, yp is the model

estimation value, yi is the actual value, and yi,ave are the average

values of the actual value.

The training and test sets are divided the same as in the

previous section. Figure 8 shows the curve of estimation results

and real values. Clearly, the estimation accuracy of ISSA-BPNN is

higher, which is more consistent with the actual situation.

Combined with Table 4, compared with BPNN, BPNN

optimized by swarm intelligence optimization algorithm

performs better. The temperature inversion effect of ISSA-

BPNN is significantly better than the other four algorithms.

The highest R2 of ISSA-BPNN is 91.34%, which is 5.22%

higher than SSA-BPNN, 8.89% higher than GWO-BPNN, and

13% higher than PSO-BPNN, the R2 of BPNN is the lowest, only

59.45%. δMAE and δMSE of ISSA-BPNN are lower than the other

four algorithms too. In addition, the operation time of ISSA-

BPNN is also low, only 0.2 s more than the original BPNN, but

6.23, 7.82, and 1.82 s faster than the other three improved

algorithms, respectively. Therefore, it can be concluded that

the convergence speed and accuracy of the ISSA-BPNN model

improved by mixed strategy in this study have been significantly

improved, and it has an excellent performance in the application

of cable joint temperature estimation.

5.1.1.2 Comparison test of temperature inversion after

dimension reduction

Various factors affecting cable joint temperature were

processed by dimension reduction using UMAP and T-SNE.

Then, new two-dimensional data were obtained to construct a

new training set. The dimension reduction data of the previous

48 h were used as the training set to train the neural network,

where the number of network input nodes was 2, the number of

hidden layer nodes was 10, and the number of output layers

was 1.

Figure 9 demonstrates that the inversion result of the hybrid

model trained by the data after dimension reduction has been

significantly improved, and the R2 of cable joint temperature

inversion has become higher, as seen in Table 5. After UMAP

dimension reduction, ISSA-BPNN calculates approximately 3.4 s

more quickly than that after T-SNE, and the inversion accuracy

of cable joint core temperature is better improved. Although the

dimensional reduction approach adds to the time complexity, it

also reduces the dimension of the input characteristics and

speeds up neural network training. As a result, compared with

ISSA-BPNN, the operation time of UMAP-ISSA-BPNN is not

considerably longer, but the inversion accuracy is noticeably

better, and δMAE is only 0.103°C, a decrease of about 77.5%. As it

is not always feasible or difficult to fully explain everything in the

model in terms of short-term rapid prediction, we have a good

balance between model interpretability and time consumption.

The cable ampacity calculation method based on the

IEC60287 equivalent thermal circuit model uses the ambient

TABLE 4 Comparison results of inversion performance for BPNN and
improved models.

Algorithm δMAE δMSE R2 (%) Operation time (s)

BPNN 4.673 32.7584 59.45 9.6542

PSO-BPNN 2.261 6.2302 78.34 16.1561

GWO-BPNN 1.741 3.7110 82.45 17.6843

SSA-BPNN 1.017 1.3322 86.12 11.6854

ISSA-BPNN 0.457 0.2956 91.34 9.8673

FIGURE 9
The comparison of inversion temperature and test
temperature of BPNN improved by swarm intelligence algorithm
after dimension reduction.

TABLE 5 Cable joint core temperature inversion performance after
dimension reduction.

Algorithm δMAE δMSE R2 (%) Operation time (s)

T-SNE-PSO-BPNN 1.379 2.6474 97.37 20.7231

T-SNE-GWO-BPNN 0.982 1.4288 97.94 19.8554

T-SNE-SSA-BPNN 0.341 0.1578 98.02 16.8565

T-SNE-ISSA-BPNN 0.227 0.0630 98.28 13.6884

UMAP-PSO-BPNN 1.160 1.7469 97.87 17.9897

UMAP-GWO-BPNN 0.630 0.5679 98.14 16.5178

UMAP-SSA-BPNN 0.253 0.0828 98.56 13.5644

UMAP-ISSA-BPNN 0.103 0.0139 99.72 10.1556
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temperature and current as independent variables to obtain the

cable temperature distribution. The data trained by the model in

this study cover different working conditions of cable joints in the

range of 250–750 A. It includes the maximum current carrying

capacity range of the normal operation of the cable. The input of

the model after UMAP processing is current and cable surface

temperature. The experimental analysis also shows that the

temperature measurement data of the cable surface hides the

change law of the ambient temperature. Therefore, by

comparison, the selection of the input characteristics of the

model helps construct a more reasonable and unbiased data

set, which conforms to some basic physical laws such as the

Fourier heat transfer law and obtains more accurate temperature

inversion results. It can help industry experts and other live

working personnel to better understand and accept the results of

the model.

6 Conclusion

In this study, the UMAP-ISSA-BPNN model was introduced

into the non-destructive testing of cable joint core temperature.

The main work and conclusions are summarized as follows:

1) The UMAP algorithm is used to visualize the multi-

dimensional variables that can characterize the cable joint

temperature compared with T-SNE. The results show that

UMAP can retain more information about the original data.

Two inputs, the current and the cable surface temperature, are

selected in such a way that they are highly consistent with the

variables calculated for thermal circuits in international

standards and satisfy the basic heat transfer laws.

2) The SSA is improved by combining the strategy, and the

optimization performance is compared with PSO, GWO, and

the original SSA by the CEC2017 test function. The results

show that ISSA has good stability, strong optimizing ability,

and short running time.

3) The temperature inversion effect of the hybrid model is

verified by thermal cycle test data. The results show that

the mean absolute error, mean square error, and running time

of ISSA-BPNN are small, and the inversion effect is the best.

UMAP extracts effective information, simplifies the input

data, and improves the inversion accuracy and the

explainability of the improved model, but the overall time-

consuming growth is not large.

In the more complex electromagnetic and thermal

environments, such as multi-loop cluster laying, it is necessary

to further verify the temperature inversion effect of this research

model.
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