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A new meta-heuristic algorithm called like-attracts-like optimizer (LALO) is

proposed in this article. It is inspired by the fact that an excellent person (i.e., a

high-quality solution) easily attracts like-minded people to approach him or her.

This LALO algorithm is an important inspiration for video robotics cluster

control. First, the searching individuals are dynamically divided into multiple

clusters by a growing neural gas network according to their positions, in which

the topological relations between different clusters can also be determined.

Second, each individual will approach a better individual from its superordinate

cluster and the adjacent clusters. The performance of LALO is evaluated based

on unimodal benchmark functions compared with various well-known meta-

heuristic algorithms, which reveals that it is competitive for some optimizations.
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1 Introduction

Optimization is almost everywhere in ourworld, which usually attempts to find the perfect

solution for a certain issue. To deal with these issues, various optimization methods have been

proposed and have shown a good performance. Most of them fall into two categories:

mathematical programming methods andmeta-heuristics (Dai et al., 2009). The first type can

rapidly converge to an optimum with high convergence stability by utilizing the gradient

information (Guo et al., 2014), such as quadratic programming (Wang et al., 2014) and the

Newton method (Kazemtabrizi and Acha, 2014). But the mathematical programming

methods are highly dependent on the mathematical model of the optimization problem

(Mirjalili and SCA, 2016). Furthermore, they are even incapable of addressing a blank-box

optimization with only the input and output measurements. In contrast, the meta-heuristic

algorithms aremore flexible to be employed for different optimization problems since they are

highly independent of the mathematical model of the specific problem (Zhang et al., 2017).
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Furthermore, they are easily applied to an optimizationwith only the

input and outputmeasurements instead of any gradient information

or convex transformation. Meanwhile, through the balance between

global search and local search, they can effectively avoid falling into

the low-quality local optimal solution (Alba and Dorronsoro, 2005).

Consequently, meta-heuristic algorithms have become a popular

and powerful way to engineer optimization problems.

So far, most meta-heuristic algorithms have been designed

from different nature phenomena (Askari et al., 2020), e.g.,

animal hunting and human learning. Among all of these

meta-heuristic algorithms, there is no one able to tackle every

optimizing issue with a good performance based on the No-Free-

Lunch theorem (Wolpert and Macready, 1997). In fact, each

meta-heuristic algorithm can show superior performance in only

some kinds of optimization problems compared with most of the

other algorithms (Zhao et al., 2019). This is also the main reason

why so many different meta-heuristic algorithms have been

designed and proposed.

According to the number of searching individuals, the meta-

heuristic algorithms can be divided into two categories, including

the single-individual-based and population-based algorithms

(Mirjalili et al., 2014). It is noticeable that the single-

individual-based algorithms with simple searching operations

require fewer fitness evaluations and computation time than

those of the second category (Mas et al., 2009). However, it is also

easily trapped in a low-quality local optimum since the single

individual is difficult to increase the solution diversity while

guaranteeing an efficient search, such as simulated annealing

(SA) (Kirkpatrick et al., 1983) and tabu search (TS) (Glover,

1989). In another aspect, population-based methods (Mirjalili

et al., 2014) can effectively improve the optimization efficiency

and global searching ability via a specific cooperation between

different individuals. In contrast to the single-individual-based

algorithms, the population-based algorithms need to consume

more computation time to execute adequate fitness evaluations

for exploration and exploitation.

The video robot system has the benefits of high strength, high

precision, and good repeatability. Meanwhile, it has a strong

ability to withstand extreme environments, so it can complete a

variety of tasks excellently (Mas et al., 2009). Although the

majority of video robots execute these tasks in an isolated

mode, increasing attention is being paid to the use of closely

interacting clustered robotic systems. The potential benefits of

clustered robotic systems include redundancy, enhanced

footprint and throughput, resilient irreconcilability, and

diverse features in space. A key feature among these

considerations is the technology utilized to coordinate the

movement of individuals.

In this article, a new machine learning-based hybrid

algorithm named like-attracts-like optimizer (LALO) is also

proposed based on solution clustering. Video clustering robots

require optimization algorithms for further planning of their

routes during population coordination in order to achieve

higher efficiency. For this problem, the proposed LALO

algorithm can perform the corresponding optimization. It

essentially mimics the social behavior of human beings

where an excellent person easily attracts like-minded people

to approach them (Fritzke et al., 1995; Fišer et al., 2013).

Similarly, all the searching individuals in LALO will be

divided into multiple clusters by a growing neural gas

(GNG) network (Mirjalili et al., 2014) according to their

positions. Different from the conventional clustering

methods, the topological relations between different clusters

can be generated for guided optimization (See Figure 1).

The rest of this article is organized as follows: Section 2

provides the principle and the detailed operations of LALO. The

discussions of optimization results in unimodal benchmark

functions are given in Section 3. At last, Section 4 concludes

this work.

2 Like-attracts-like optimizer

2.1 Inspiration

Like-attracts-like is one of the main parts of social

interactions which shows an excellent person easily drives

like-minded people to approach them; thus, a group of people

with similar features will be formed, as illustrated in Figure 2

(Gutkin et al., 1976). Inspired by this social behavior, a searching

individual can represent a person in like-attracts-like, while each

cluster can be regarded as a group of people. In this work, the

proposed LALO is mainly designed according to the interaction

network of different clusters.

2.2 Optimization principle and
mathematical model

LALO is mainly composed of two stages: the clustering stage

and the searching stage. Particularly, the clustering stage is

achieved by the GNG network, and the searching stage is

designed by combining the encircling prey of gray wolf

optimizer (GWO) depending on the interaction network of

the different clusters.

2.2.1 Clustering phase by the GNG network
As a form of unsupervised learning, the GNC network (Fišer

et al., 2013) can dynamically adjust its topological structure tomatch

the input data without any desired outputs. It can not only achieve

fast data clustering but also keep a topological structure to guide the

optimization. In general, the GNCnetwork contains a set of nodesV
and a set of edges E without weights, i.e.,G � (E,V), in which each

node represents a cluster; V � {v1, v2,/, vn}; and E ⊆ V × V . The

nodes and the edges will be dynamically changed to adapt to the

input data (i.e., the solutions at the current iteration). Overall, the
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GNG network-based clustering phase contains ten steps as follows

(Fritzke et al., 1995):

Step 1. Initialize the network from two nodes, in which the positions of

these two nodes are randomly generated within the lower and upper

bounds of the input data, as

ω1 orω2 � xlb(k) + �r0*[xub(k) − xlb(k)], (1)
⎧⎪⎨⎪⎩

xd
lb(k) � min

i�1,2,...,N
xd
i (k), d � 1, 2, . . . , D,

xd
ub(k) � max

i�1,2,...,N
xd
i (k), d � 1, 2, . . . , D,

(2)

where xlb(k) and xub(k) are the vectors of the lower

and upper bounds of the input data, respectively, with xlb(k) �
{x1

lb(k), x2
lb(k), . . . , xd

lb(k), . . . , xD
lb(k)} and

�xub(k) � {x1
ub(k), x2

ub(k), . . . , xd
ub(k), . . . , xD

ub(k)}; xd
i (k)

represents the position of the dth dimension of the ith individual

in LALO; �r0 is a random vector within the range from 0 to 1; k

denotes the kth iteration of LALO;N is the population size of LALO; d

denotes the dth dimension of the solution, and D is the number of

dimensions.

Step 2. Randomly select a solution ξ from the input data and determine

the nearest and the second nearest nodes according to their

distances as

⎧⎪⎪⎨⎪⎪⎩
n1 � argmin

c∈V
‖ωc − ξ‖2,

n2 � argmin
c∈V ,c≠n1

‖ωc − ξ‖2, (3)

FIGURE 1
Video robotics in real-world grid applications.

FIGURE 2
Illustration of like-attracts-like and its connection with optimization.
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where n1 and n2 represent the numbers of the nearest and the

second nearest nodes, respectively; and ωc is the position of the

cth node.

Step 3. Update the age of all the edge links with the nearest node as

Age(n1, j) � Age(n1, j) + 1,∀(n1, j) ∈ E, (4)

where Age(n1, j) denotes the age of the edge (n1, j).

Step 4. Update the accumulated error of the nearest node as

Error(n1) � Error(n1) + ‖ωn1 − ξ‖2, (5)

where Error(n1) denotes the accumulated error of the node n1.

Step 5. Update the positions of the nearest node and its linked nodes as

{ ωn1 � ωn1 + ε1(ξ − ωn1),
ωj � ωj + ε2(ξ − ωj),∀(n1, j) ∈ E, (6)

where ε1 and ε2 represent the learning rates of the nearest node

and its linked nodes, respectively.

Step 6. If (n1 ,n2) ∈ E, then Age(n1 ,n2) � 0; otherwise, create the edge

(n1 ,n2) in the network.

Step 7. If Age(i, j) > t max , then remove the edge (i, j) from the network,

where t max is the maximum allowable age of each edge. If a node does

not have any adjacent nodes, then remove this node from the network.

Step 8. Insert a new node if the time of network learning is an integral

multiple of the inserting rate λ, i.e., Time”0(MOD λ). Particularly, the new

node r should be inserted halfway between the node p with the largest

accumulated error and its adjacent node q with the largest accumulated

error, as

⎧⎪⎨⎪⎩
p � argmax

i∈V
Error(i),

q � argmax
j∈Ωi

Error(j), (7)

ωr � 0.5 × (ωp + ωq), (8)

where Ωi is the set of the neighborhood of node i.

Alongwith the newnode r, the original edge (p,q) shouldbe removed,

while the newedges (p, r) and (r,q) should be added. At the same time, the

accumulated errors of these three nodes are updated as

{ Error(r) � Error(p) � α · Error(p),
Error(q) � α · Error(q), (9)

where α is the error decreasing factor for the new node and its

neighborhood.

Step 9. Decrease the accumulated errors of all the nodes, as

Error(j) � β · Error(j), j ∈ V , (10)

where β is the error-decreasing factor for all the nodes.

Step 10. Export the network if the conditions for termination are

fulfilled; otherwise, switch to Step 2.

2.2.2 Searching phase
In LALO, each individual will approximate a better

individual (i.e., the learning target) with a high-quality

solution; thus, a potentially better solution can be found with

a higher probability. This process is achieved based on the

encircling prey of gray wolf optimizer (GWO) (Mirjalili et al.,

2014). To guarantee high solution diversity (Gutkin et al., 1976),

the learning target (See Figure 3) is selected from the interactive

clusters or the best solution so far, according to solution

comparison between adjacent clusters as follows:

xbest
j (k) � argmin

xi(k)∈Xj, i�1,2,..,N
Fit(xi(k)), (11)

xtarget
j (k) � argmin

m�j,m∈Ωj

Fit(xbest
m (k)), (12)

xtarget
i (k) � ⎧⎨⎩ xtarget

j (k), if xi(k) ∈ Xj andFit(xbest
j (k))<Fit(xtarget

j (k)),
xbest
sf (k), if Fit(xbest

j (k))≥Fit(xtarget
j (k)),

(13)

where xbest
j (k) is the best solution in the jth cluster; xtarget

j (k) is
the best solution in the social network of the jth cluster; xtarget

i (k)
is the learning target of the ith individual; xbest

sf (k) is the best

solution so far by LALO; Xj is the solution set of all the

individuals in the jth cluster; and Fit denotes the fitness

function for a minimum optimization.

Based on the selected learning target, the position of each

individual can be updated as follows (Zeng et al., 2017):

xi(k + 1) � xtarget
i (k) − �A · L,→ (14)

�A � 2a · �r1 − a, (15)
�L � ∣∣∣∣2 �r2 · xtarget

i (k) − xi(k)
∣∣∣∣, (16)

where �A is the coefficient vector to approach the learning target;
�L is the difference vector between the individual and its learning

target; �r1 and �r2 are the random vectors ranging from 0 to 1; and

a is a coefficient.

2.2.3 Dynamic balance between exploration and
exploitation

Like many meta-heuristic algorithms, LALO also requires

wide exploration in the early phase (Heidari et al., 2019). As the

iteration number increases, the exploration weight should be

gradually weakened, while the exploitation weight should be

gradually enhanced. To achieve a dynamic balance between

them, the cluster number n and the coefficient a are decreased

as the iteration numbers increase as follows:

n � round(n max − (n max − n min) · k

k max
), (17)
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a � 2 · (1 − k

k max
), (18)

where n max and n min are the maximum and minimum number

of clusters, respectively; and k max is the maximum iteration

number of LALO.

2.2.4 Pseudocode of LALO
To summarize, the pseudocode for LALO is provided in

algorithm 1, where T is the iteration number in the GNC

network and Tmax is the corresponding maximum iteration

number (i.e., the termination condition of the GNC network).

Algorithm 1 Pseudocode of LALO

3 Like-attracts-like optimizer for
unimodal benchmark functions

In this section, unimodal features are adopted to test the

capability of LALO. Meanwhile, nine well-known meta-

heuristic algorithms, namely, GWO (Mirjalili et al.,

FIGURE 3
Illustration of the learning target-based searching phase of multiple interactive clusters in LALO.

TABLE 1 Main parameters of LALO.

ε1 ε2 t max λ α β nmax nmin T max

0.5 0.005 5 5 0.1 0.9 12 4 150

TABLE 2 Unimodal benchmark functions.

Function D Range f min

F1(x) � ∑n
i�1x2i 30 [−100, 100] 0

F2(x) � ∑n
i�1|xi| +∏n

i�1|xi| 30 [−10, 10] 0

F3(x) � ∑n
i�1(∑i

j−1xj)2 30 [−100, 100] 0

F4(x) � max i{|xi|, 1≤ i≤ n} 30 [−100, 100] 0

F5(x) � ∑n−1
i�1 [100(xi+1 − x2i )2 + (xi − 1)2] 30 [−30, 30] 0

F6(x) � ∑n−1
i�1 (xi + 0.5)2 30 [−100, 100] 0

F7(x) � ∑n
i�1ix4i + random[0, 1) 30 [−1.28, 1.28] 0
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FIGURE 4
(Continued).
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2014), GA (Holland, 1992), EO (Faramarzi et al., 2020),

PSO (Kennedy and Eberhart, 1007), gravitational search

algorithm (SSA) (Mirjalili et al., 2017), GSA (Rashedi et al.,

2009), evolution strategy with covariance matrix adaptation

(CMA-ES) (Hansen et al., 2003), success-history-based

parameter adaptation differential evolution (SHADE)

(Tanabe and Fukunaga, 20132013), and SHADE with

linear population size reduction hybridized with the semi-

parameter adaption of CMA-ES (LSHADE-SPACMA)

(Faramarzi et al., 2020), are used for performance

FIGURE 4
(Continued).
LALO for unimodal benchmark functions (D = 2) with searching space, initial solutions, interactive clusters, and the fitness curve.(A) F1; (B) F2; (C) F3;
(D) F4; (E) F5; (F) F6.

TABLE 3 Average fitness and rank obtained by different algorithms for unimodal benchmark functions in 30 runs.

Function Metrics LALO EO PSO GWO GA GSA SSA CMA-ES SHADE LSHADE-SPACMA

F1 Avg. 1.31E-37 3.32E-40 9.59E-06 6.59E-28 0.55492 2.53E-16 1.58E-07 1.42E-18 1.42E-09 0.2237

Rank 2 1 8 3 10 5 7 4 6 9

F2 Avg. 4.09E-27 7.12E-23 0.02560 7.18E-17 0.00566 0.05565 2.66293 2.98E-07 0.0087 21.1133

Rank 1 2 7 3 5 8 9 4 6 10

F3 Avg. 1.84E-05 8.06E-09 82.2687 3.29E-06 846.344 896.534 1709.94 1.59E-05 15.4352 88.7746

Rank 4 1 6 2 8 9 10 3 5 7

F4 Avg. 7.27E-05 5.39E-10 4.26128 5.61E-07 4.55538 7.35487 11.6741 2.01E-06 0.9796 2.1170

Rank 4 1 7 2 8 9 10 3 5 6

F5 Avg. 26.02845 25.32331 92.4310 26.81258 268.248 67.5430 296.125 36.7946 24.4743 28.8255

Rank 3 2 8 4 9 7 10 6 1 5

F6 Avg. 0.137603 8.29E-06 8.89E-06 0.816579 0.5625 2.50E-16 1.80E-07 6.83E-19 5.31E-10 0.2489

Rank 7 5 6 10 9 2 4 1 3 8

F7 Avg. 0.002606 0.001171 0.02724 0.002213 0.04293 0.08944 0.1757 0.0275 0.0235 0.0047

Rank 3 1 6 2 8 9 10 7 5 4

Average rank 3.43 1.86 6.86 3.71 8.14 7.00 8.57 4.00 4.43 7.00

EO: Equilibrium optimizer; PSO: Particle Swarm Optimization; GWO: Grey wolf optimizer; GA: Genetic algorithm; GSA: Gravitational search algorithm; SSA: Salp swarm algorithm;

CMA-ES: Evolution strategy with covariance matrix adaptation; SHADE: Success-History based Adaptive Differential Evolution; LSHADE-SPACMA: SHADE with linear population size

reduction hybridized with semi-parameter adaption of CMA-ES.
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TABLE 4 Fitness standard deviation and ranks obtained by different algorithms for unimodal benchmark functions in 30 runs.

Function Metrics LALO EO PSO GWO GA GSA SSA CMA-ES SHADE LSHADE-SPACMA

F1 Avg. 2.06E-37 6.78E-40 3.35E-05 1.58E-28 1.2301 9.67E-17 1.71E-07 3.13E-18 3.09E-09 0.148

Rank 2 1 8 3 10 5 7 4 6 9

F2 Avg. 4.70E-27 6.36E-23 0.04595 7.28E-17 0.01443 0.19404 1.66802 1.7889 0.0213 9.5781

Rank 1 2 6 3 4 7 8 9 5 10

F3 Avg. 2.35E-05 1.60E-08 97.2105 1.61E-05 161.499 318.955 11242.3 2.21E-05 9.9489 47.23

Rank 4 1 7 2 8 9 10 3 5 6

F4 Avg. 7.50E-05 1.38E-09 0.6773 1.04E-06 0.59153 1.74145 4.1792 1.25E-06 0.7995 0.4928

Rank 4 1 7 2 6 9 10 3 8 5

F5 Avg. 0.187512 0.169578 74.4794 0.793246 337.693 62.2253 508.863 33.4614 11.208 0.8242

Rank 2 1 8 3 9 7 10 6 5 4

F6 Avg. 0.118325 5.02E-06 9.91E-06 0.482126 1.71977 1.74E-16 3.00E-07 6.71E-19 6.35E-10 0.1131

Rank 8 5 6 9 10 2 4 1 3 7

F7 Avg. 0.000805 0.000654 0.00804 0.001996 0.00594 0.04339 0.0629 0.0079 0.0088 0.0019

Rank 2 1 7 4 5 9 10 6 8 3

Average rank 3.29 1.71 7.00 3.71 7.43 6.86 8.43 4.57 5.71 6.29

EO: Equilibrium optimizer; PSO: Particle Swarm Optimization; GWO: Grey wolf optimizer; GA: Genetic algorithm; GSA: Gravitational search algorithm; SSA: Salp swarm algorithm;

CMA-ES: Evolution strategy with covariance matrix adaptation; SHADE: Success-History based Adaptive Differential Evolution; LSHADE-SPACMA: SHADE with linear population size

reduction hybridized with semi-parameter adaption of CMA-ES.

FIGURE 5
Box-and-whisker plots of ranks obtained by different algorithms for the benchmark functions from F1 to F7. (A) Rank of average fitness. (B) Rank
of fitness standard deviation.
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comparisons, in which their parameters can be referred in Gutkin

et al., 1976. To allow for an equitable competition, the maximum

suitability rating for each algorithmwas set to 15,000. Consequently,

the population size andmaximum iteration number of LALO are set

to be 20 and 750, respectively, while other parameters can be

determined via trial and error, as shown in Table 1. To clearly

illustrate the searching process for the 2-dimensional benchmark

functions, the population size and maximum iteration number of

LALO are set to be 50 and 100, respectively; the maximum cluster

number is set to be 8.

The unimodal benchmark functions F1 to F7 are given in

Table 2, where range denotes the searching space of each

optimization variable and fmin denotes the global optimum.

Since each of them has only one global optimum, they are

suitable to evaluate the exploitation ability of each meta-

heuristic algorithm.

Figure 4 provides the searching space of the two-dimensional

unimodal benchmark functions and the searching process of

LALO, where the initial solutions and interactive clusters of

LALO are also given. In consequence, the initial interactive

clusters are distributed dispersedly, which can achieve wide

exploration in the initial phase of LALO. As the iteration

number increases, LALO can gradually find a better solution

with an enhanced exploitation weight (Storn and Price, 1997;

Regis, 2014).

Table 3 shows the average fitness and rank obtained by different

algorithms for unimodal benchmark functions in 30 runs. It can be

seen that LALO can obtain high-quality optimums on the whole for

the unimodal benchmark functions, especially for function F2with the

first rank. Particularly, the average rank of average fitness LALO is the

highest among all the algorithms except EO for the seven unimodal

benchmark functions (Rao et al., 2011; Jin, 2011; El-Abd, 2017; Jin et

al., 2019). This effectively verifies the highly competent exploitation

ability of LALO against the other nine meta-heuristic algorithms.

On the other hand, Table 4 gives the fitness standard

deviation and rank obtained by different algorithms for the

unimodal benchmark functions in 30 runs. Similarly, the

average rank of the fitness standard deviation obtained by EO

outperforms the other algorithms for the unimodal benchmark

functions, followed by LALO. It reveals the high optimization

stability of LALO compared with other algorithms for the

unimodal benchmark functions.

Figure 5 provides the box-and-whisker plots of ranks

obtained by different algorithms for the benchmark

functions from F1 to F7. It can be found from Figure 5A

that the ranks of the average fitness obtained by LALO are

mainly distributed in the top three for all the benchmark

functions, which is the highest among all the algorithms. In

contrast, the ranks of average fitness obtained by GA are

mainly distributed from 6 to 9, which demonstrate that it

easily traps into a low-quality optimum due to premature

convergence. Similarly, LALO also performs best among all

the algorithms on the ranks of fitness standard deviation, as

shown in Figure 5B. This sufficiently indicates that LALO is

highly competitive compared to the presented nine meta-

heuristic algorithms for the benchmark functions.

4 Conclusion

This article proposes a novel machine learning-based meta-

heuristic algorithm, in which the main contributions can be

summarized as follows:

1) The proposed LALO is a novel meta-heuristic algorithm

inspired by the social behavior of human beings that states

an excellent person easily attracts like-minded people to

approach him or her. Compared with the traditional

clustering-based meta-heuristic algorithm, LALO can

not only divide the searching individuals into multiple

clusters by using the GNG network but can also generate

the interaction topology between different clusters. Hence,

each individual can select its learning target from the

interactive clusters; thus, a wide exploration can be

implemented in the searching phase.

2) The exploration and exploitation of LALO can be

dynamically balanced via adjusting the number of

interactive clusters and the searching coefficient. As a

result, it can enhance the exploration of LALO in the

initial phase, while the exploitation can be gradually

strengthened as the iteration number increases.

3) The comprehensive case studies are carried out to

evaluate the optimization performance of LALO

compared with various meta-heuristic algorithms. On

the whole, LALO is highly competitive in the optimum

quality and optimization stability for 29 benchmark

functions and 3 classical engineering problems.

Particularly, the simulation results clearly

demonstrate that LALO is more appropriate to handle

fix-dimension multimodal benchmark functions,

composite benchmark functions, and classical

engineering problems.

Due to the superior optimization performance of LALO, it

can be applied to various real-world optimizations. Furthermore,

it also can be extended into a multi-objective optimization

algorithm to search the Pareto optimum solutions for

different kinds of multi-objective optimization problems.
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