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With the change of users’ energy consumption concept, the users are no longer

rigid as the traditional inelasticity but can be flexible to carry out integrated

demand response (IDR). The load has also been transformed from a traditional

purely consumptive load to a new type of load that combines production and

consumption with the improvement and popularization of renewable energy

production technologies such as wind power and photovoltaic. In this paper,

considering the IDR of loads and the uncertainty of renewable energy output, a

decentralized robust optimal dispatch study is conducted on user-level

integrated electricity-gas-heat systems (IEGHSs) composed of energy hubs

(EHs) and some users. This paper firstly developed the comprehensive model of

the user-level IEGHS, including the detailed mathematical model of EH, IDR,

and users. Then, based on the establishedmodel, an optimal dispatching model

is established with the goal of the lowest operating cost for the system. In order

to cope with the uncertainty of the output of renewable energy equipment

while protecting the security and privacy of different participants in the

integrated energy system (IES), a decentralized robust algorithm is used to

solve the model. Finally, the proposed model is analyzed and verified by an IES

example composed of one EH and three users with the ability of IDRs, and the

feasibility of the proposed model and algorithm is verified.
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1 Introduction

Climate problems are becoming increasingly serious, and energy conservation and

emission reduction are imperative. The IESs play a significant role in promoting

renewable energy accommodation and improving energy utilization efficiency by

virtue of their advantages of multi-energy complementation and energy cascade
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utilization. It is exactly because of the above advantages of the IES

that the reliability of users’ energy use can be guaranteed and the

IDR at the user level can be implemented (Ma et al., 2021).

With the increasingly severe energy situation, the role of the

energy hub of the integrated energy system has become increasingly

prominent (Jia et al., 2021; Ma et al., 2021; Li et al., 2022). References

(Liu et al., 2022) and (Zhang et al., 2021) established an energy sharing

framework for a two-layer Heat–Electricity integrated energy system

including EHs and prosumers, aiming to maximize the EH profits.

Reference (Schick et al., 2022) studied the role and influence of

prosumers in integrated energy systems and pointed out that

distributed energy storage can provide key flexibility under high

renewable energy shares. Reference (Liu N et al., 2019) studied

multi-microgrid energy sharing considering combined heat and

power and demand response and used a distributed optimization

algorithm to solve it. References (Nunna et al., 2020) and (Ding et al.,

2022a) established an energy storage market model and considered

energy storage systems as multi-agent energy transactions. Reference

(Peng et al., 2021) pointed out the shortcomings of the traditional

single energy centralized optimization and introduced a distributed

multi-energy sharing mechanism centered on EHs. Reference (Qin

et al., 2020) studied the multi-objective optimization and game of

electric-gas integrated energy system considering the demand

characteristics of distributed energy stations and energy users.

Reference (Martinez Cesena et al., 2020) carried out the simulation

and optimization of integrated electricity–heat–gas systems in flexible

MEDs and considers the support services of the multi-energy

network. Reference (Wang et al., 2021) conducted a research

analysis on the optimized operation and demand response of

integrated community energy systems to reduce costs. Reference

(Sangswang and Konghirun, 2020) introduced a home energy

system including solar energy, energy storage, and electric vehicles,

and conducted demand response analysis and demand response

program development.

The coupling and substitution of multiple energy enhance the

flexibility of the energy consumption method, and the demand side

can change the energy consumption method according to the supply

side price and the system feature to implement IDR (Liu P et al.,

2019). Reference (Shao et al., 2021) introduced an IDR optimization

model for EHs and enabled interaction with integrated electrical-gas

systems. Reference (Zhang et al., 2022) studied the relationship

between demand response and dynamic prices and established a

two-dimensional demand response model of spatio-temporal

coupling. Reference (Bahrami and Sheikhi, 2016) called an EH

capable of implementing IDR a smart EH and studied an ordered

potential gamewith a uniqueNash equilibriumamongmultiple smart

EHs. Reference (Bukhsh et al., 2016) utilized demand-sideflexibility to

cope with the uncertainty of renewable energy generation to optimize

the cost of generation. Reference (Gao et al., 2021) studied the IDR of

residential users and pointed out its characteristics of incomplete

rationality and strong randomness. Reference (Dababneh and Li,

2019) studied the relationship between manufacturers’ electricity and

natural gas demand and established a production scheduling model

considering integrated electricity and natural gas demand response.

Reference (Huang et al., 2021) developed an intelligent demand

response program to address practical challenges in microgrids,

such as the uncertainty of photovoltaics. Reference (Hassan et al.,

2020) brought together residential, commercial, and industrial

consumers to implement demand responses to reduce energy

consumption. Reference (Han et al., 2022) established a data-

driven demand response model and pointed out that edge

computing is beneficial to shorten the optimal scheduling time.

Renewable energy is a powerful pillar for addressing the

energy crisis and achieving carbon neutrality, but it is

characterized by uncertainties that can be handled

through robust optimization (Zang et al., 2018; Zang

et al., 2020; Wang et al., 2022). Reference (Sharma et al.,

2021) developed a two-stage robust optimization model for

multiple uncertainties in multi-energy buildings. References

(Zhao et al., 2018; He et al., 2019; Ding et al., 2022b)

established a distributionally robust scheduling model to

deal with load uncertainty in integrated gas-electricity

systems and AC/DC hybrid microgrids, respectively.

References (Ding et al., 2017) and (Ding et al., 2021)

established a two-stage robust centralized optimal

scheduling model to deal with the inverter setting problem

caused by photovoltaic intermittency. References (Xu et al.,

2018) and (Liu et al., 2021) investigated robust scheduling

methods for highly variable and stochastic wind power

generation. Reference (Lara et al., 2019) proposed a robust

energy management system and modeled it in detail.

Distributed optimization is more realistic than centralized,

and can protect user privacy and security, which is the future

development trend (Mu et al., 2020; Qu et al., 2021). Reference

(Wei et al., 2022) proposed a decentralized demand energy

management approach for industrial parks and protected

private data. Reference (Chen et al., 2021) studied the

distributed robust dynamic economic dispatch for

transmission and distribution network coordination. Reference

(Lilla et al., 2020) adopts the alternating direction multiplier

method (ADMM) for day-ahead scheduling among multiple

users who have their characteristic confidentiality

requirements. Reference (Zheng et al., 2018) proposed an

asynchronous distributed ADMM to solve the convergence

problem of optimal operation of multi-agent systems.

However, few research has considered the decentralized

robust optimal dispatch and two-level IDR in the user-level

IEGHS. To make up for this gap, the main contributions of

this paper are summarized as follows:

1) A detailed mathematical model is established for the user-

level IEGHS based on the comprehensive modeling of EH,

users, and IDR mechanisms. The user-level IEGHS is

divided into two levels: node load and user load,

corresponding to the implementation of the two-level IDR.
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2) A decentralized robust optimal dispatch model is proposed

for the user-level IEGHS, where the two-level IDR is

incorporated to cope with the uncertainty of renewable

energy while protecting the user’s privacy. Moreover, the

multi-agent decentralized robust optimization solution

method is developed to adapt to the multi-agent multiple

energy interaction architectures.

The rest of the paper is organized as follows. Section

2 presents the comprehensive model of the user-level IEGHS.

Section 3 proposes the centralized optimal dispatch model of the

user-level IEGHS. Section 4 develops the decentralized robust

optimal dispatch model of the user-level IEGHS. Section

5 introduces the multi-agent decentralized robust optimization

solution method. Section 6 presents the simulation results of the

proposed model. Finally, conclusions are drawn in Section 7.

2 Modeling of the user-level IEGHS

The schematic diagram of a typical user-level IEGHS is

shown in Figure 1, where the two ends are the distribution

network side and the user side, respectively providing energy

supply and energy demand for the integrated energy system, and

the middle is the EH, which realizes the generation, conversion,

and storage of various forms of energy and is the key to the

implementation of IDR. Moreover, EH contains renewable

energy generation (REG) equipment, adjustment equipment

between distribution networks and users such as power

transformers (PT), heat exchangers (HE), gas regulators (GR),

energy conversion equipment such as electricity-to-heat (P2H),

gas-to-heat (G2H), gas-to-electricity (G2P) equipment, and

energy storage equipment such as electricity storage (ES) and

heat storage (HS) devices.

The user-level IEGHS can be divided into two layers: one is

node load, which is the output of the distribution network node

and the input of EH, and the other is user load, which is the

output of EH and the input of users. From the distribution

network side, part of the node loads in the electricity, heat, and

gas networks are directly used by the users through PT, HE, and

GR, while another part is transformed by the energy conversion

and storage equipment in the EH and then used by the users. So

the node loads are essentially the same as the user loads.

Due to the existence of two types of loads, node loads and

user loads, the IDR of loads can be viewed at two levels: first, the

IDR of user loads, where users’ electricity, heat, and gas loads

FIGURE 1
The schematic diagram of a typical user-level IEGHS.
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actively or passively cut and shift according to energy sales prices

and incentive policies; second, the IDR of node loads, where the

cut and shift of user loads constitutes a part of the cut and shift of

node loads, and in addition nodal electricity, heat, and gas loads

can converse and shift through the energy conversion and storage

equipment in the EH respectively.

2.1 EH

The EH is the hub for coupling different types of energy and

is key to implementing IDR. The EH can break down energy

barriers, consisting of renewable energy generation equipment to

produce green electricity, and energy conversion equipment and

storage equipment to break through the limitations of energy use

in form and time.

2.1.1 Renewable energy generation
The REG mainly includes wind power and photovoltaic

power generation, which are the current mainstream REG

methods. The technical route has been quite mature and is

clean, zero carbon, and sustainable, but both wind power and

photovoltaic power generation have a direct relationship with the

weather, featuring uncertainty. The mathematical model of REG

in the EH is

0≤ ERE,t ≤ Emax
RE,t ,∀t ∈ T (1)

where ERE,t and Emax
RE,t are the actual power output and maximum

predicted output of REG at tth time period.

2.1.2 Energy conversion equipment
The energy conversion equipment under the EH mainly

includes G2P, G2H, and P2H. These devices are important

for breaking energy barriers, increasing the flexibility of

energy use at the load side of root nodes, improving

energy utilization efficiency, and realizing energy cascade

utilization.

The G2P, such as gas turbines, converts the chemical

energy in natural gas into electrical energy and supplies it

to the users with electrical load. The unified mathematical

model of G2P is

EG2P,t � ηG2PGG2P,t ,∀t ∈ T (2)
Gmin

G2P ≤GG2P,t ≤Gmax
G2P ,∀t ∈ T (3)

ΔGmin
G2P ≤GG2P,t − GG2P,t−1 ≤ΔGmax

G2P ,∀t ∈ T (4)

where GG2P,t is the gas consumed by the G2P on tth time

period; EG2P,t is the electrical power output of the G2P on tth

time period; ηG2P is the conversion efficiency of the G2P; Gmin
G2P

and Gmax
G2P are the lower and upper limits of the gas

consumption at all times; ΔGmin
G2P and ΔGmax

G2P are the lower

and upper limits of gas consumption fluctuations between

two consecutive time periods.

The G2H, such as gas boilers, converts the chemical energy in

natural gas into heat energy to supply the users with heat load.

The unified mathematical model of G2H is

HG2H,t � ηG2HGG2H,t ,∀t ∈ T (5)
Gmin

G2H ≤GG2H,t ≤Gmax
G2H ,∀t ∈ T (6)

ΔGmin
G2H ≤GG2H,t − GG2H,t−1 ≤ΔGmax

G2H ,∀t ∈ T (7)

whereGG2H,t is the gas consumed by the G2H on tth time period;

HG2H,t is the thermal power output of the G2H at tth time period;

ηG2H is the conversion efficiency of the G2H; GG2H
min and

GG2H
max are the lower and upper limits of the gas

consumption at all times; ΔGG2H
min and ΔGG2H

max are the

lower and upper limits of gas consumption fluctuations between

two consecutive time periods.

The P2H, such as electrical boilers, converts the electrical

energy into heat energy, supplying the users with heat load. The

unified mathematical model of P2H is

HP2H,t � ηP2HEP2H,t ,∀t ∈ T (8)
Emin
P2H ≤ EP2H,t ≤Emax

P2H ,∀t ∈ T (9)
ΔEmin

P2H ≤EP2H,t − EP2H,t−1 ≤ΔEmax
P2H ,∀t ∈ T (10)

where EP2H,t is the electricity consumed by the P2H at tth time

period;HP2H,t is the thermal power output of the P2H at tth time

period; ηP2H is the conversion efficiency of the P2H; Emin
P2H and

Emax
P2H are the lower and upper limits of the electricity

consumption at all times; ΔEmin
P2H and ΔEmax

P2H are the lower and

upper limits of electricity consumption fluctuations between two

consecutive time periods.

2.1.3 Energy storage equipment
The energy storage equipment under the EH is ES and HS.

These devices break the limitation of matching supply and

demand in real time, making the load transferable in time and

enhancing the flexibility and economy of the whole system

operation.

The HS can be modeled as

HSt � HSt−1 +Hc,tζ c,H −Hdc,t/ζdc,H ,∀t ∈ T (11)

∑T
t�1
Hc,t � ∑T

t�1
Hdc,t (12)

HSmin ≤HSt ≤HSmax ,∀t ∈ T (13)
Hc,min ≤Hc,t ≤Hc,max ,∀t ∈ T (14)

Hdc,min ≤Hdc,t ≤Hdc,max ,∀t ∈ T (15)

where HSt , Hc,t , and Hdc,H represent the heat-containing state,

heat storage power, and heat release power of the HS at tth time

period; ζc,H and ζdc,H are the charging and discharging

efficiencies of the HS; HSmin and HSmax indicate the lower

and upper limits of the capacity of the HS; Hc,min and Hc,max

indicate the lower and upper limits of HS input; Hdc,min and

Hdc,max indicate the lower and upper limits of HS output.
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The ES can be modeled as

ESt � ESt−1 + Ec,tζ c,E − Edc,t/ζdc,E ,∀t ∈ T (16)

∑T
t�1
Ec,t � ∑T

t�1
Edc,t (17)

ESmin ≤ ESt ≤ESmax ,∀t ∈ T (18)
Ec,min ≤ Ec,t ≤Ec,max ,∀t ∈ T (19)

Edc,min ≤ Edc,t ≤Edc,max ,∀t ∈ T (20)

where ESt , Ec,t , and Edc,H represent the electricity-containing

state, the charging power, and the discharging power of the ES at

tth time period; ζ c,E and ζdc,E are the charging and discharging

efficiencies of the ES; ESmin and ESmax indicate the lower and

upper limits of the capacity of the ES; Ec,min and Ec,max indicate

the lower and upper limits of ES input; Edc,min and Edc,max

indicate the lower and upper limits of ES output.

2.2 Users

In addition to energy usage equipment, users can also

possess small-scale distributed energy production

equipment, such as rooftop photovoltaics (RPVs), rooftop

solar heatings (RSHs), etc. Due to the existence of these

apparatuses, users do not have to rely entirely on upper-level

energy suppliers, and even have the possibility to interact

with other users.

The RPV can be modeled as

0≤ EPV ,n,t ≤ Emax
PV ,n,t ,∀t ∈ T (21)

where EPV ,n,t and Emax
PV ,n,t are the actual power output and

maximum predicted output of the RPV of nth user at tth time

period.

The RSH can be modeled as

0≤HSP,n,t ≤Hmax
SP,n,t ,∀t ∈ T (22)

where HSP,n,t and Hmax
SP,n,t are the actual power output and

maximum predicted output of the RSH of nth user at tth time

period.

2.3 IDR

The IDR is a derivation and expansion of traditional

electricity demand response, with coordinated optimization

of energy coupling, storage, and redistribution on the user-

level IEGHS. The mathematical model of the IDR is

established for the adjustable load, which is classified as

the translatable load, the curtailable load, and the

convertible load to represent the shift in time and

conversion in energy type.

2.3.1 The translatable load
The translatable load refers to the load whose use time can be

advanced or delayed. However, the total translatable load should

not change after the adjustment. The mathematical model of the

translatable load is stated as

∑
t∈ΩT+

Dshif t+,n,t � ∑
t∈ΩT−

Dshif t−,n,t ,∀n ∈ ΩUSE (23)
Dshif t+,n,min ≤Dshif t+,n,t ≤Dshif t+,n,max ,∀n ∈ ΩUSE t ∈ ΩT+ (24)
Dshif t−,n,min ≤Dshif t−,n,t ≤Dshif t−,n,max ,∀n ∈ ΩUSE t ∈ ΩT− (25)

Where ΩUSE represents the set of users of IEGHS; ΩT+ and ΩT−
represent the set of time periods during which the loads are

moved in and out, respectively; Dshift+,n,t and Dshift−,n,t indicate
the amount of load moved in and out of nth user at tth time

period; Dshift+,n,min and Dshift+,n,max are the lower and upper

limits of the load moved in of nth user; Dshift−,n,min and

Dshift−,n,max are the lower and upper limits of the load moved

out of nth user.

2.3.2 The curtailable load
The curtailable load refers to the load that can be directly

interrupted within a limited range and within a specific time

period, which is to ensure the safe operation of the system during

peak hours. The mathematical model of the curtailable load is

stated as

Dcut,n,min ≤Dcut,n,t ≤Dcut,n,max,∀n ∈ ΩUSE t ∈ ΩTcut (26)

whereΩTcut represents the set of time periods during which loads

are curtailed;Dcut,n,t indicates the amount of load curtailed of nth

user at tth time period; Dcut,n,min and Dcut,n,max are the lower and

upper limits of the load curtailed of nth user.

2.3.3 The convertible load
The convertible load mainly represents the substitution of

different energy forms, e.g. energy demand can be flexibly met by

converting one energy source to another through energy

conversion equipment in EH. The mathematical model of the

convertible load is stated as

Econv+,n,t � ωH2EμH2EHconv−,n,t + ωG2EμG2EGconv−,n,t ,∀n ∈ ΩUSE t ∈ T

(27)
Hconv+,n,t � ωE2HμE2HEconv−,n,t + ωG2HμG2HGconv−,n,t ,∀n ∈ ΩUSE t ∈ T

(28)
Gconv+,n,t � ωE2GμE2GEconv−,n,t + ωH2GμH2GHconv−,n,t ,∀n ∈ ΩUSE t ∈ T

(29)
Econv−,n,min ≤Econv−,n,t ≤Econv−,n,max,∀n ∈ ΩUSE t ∈ ΩTconv,E

(30)
Hconv−,n,min ≤Hconv−,n,t ≤Hconv−,n,max ,∀n ∈ ΩUSE t ∈ ΩTconv,H

(31)
Gconv−,n,min ≤Gconv−,n,t ≤Gconv−,n,max ,∀n ∈ ΩUSE t ∈ ΩTconv,G

(32)
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μE2H + μE2G � 1, μH2E + μH2G � 1, μG2E + μG2H � 1 (33)

where ΩTconv,E , ΩTconv,H and ΩTconv,G represent the set of time

periods during which the electricity, heat and gas load are

converted in and out; Econv−,n,t , Hconv−,n,t and Gconv−,n,t
indicate the amount of the electricity, heat and gas load

converted out of nth user at tth time period; Econv+,n,t ,
Hconv+,n,t and Gconv+,n,t indicate the amount of the electricity,

heat and gas load converted in of nth user at tth time period;

ωH2E , ωG2E , ωE2H , ωG2H , ωE2G and ωH2G are the conversion

efficiency of the convertible load; μH2E , μG2E , μE2H , μG2H , μE2G
and μH2G are the conversion ratio of the convertible load. If

there is no conversion form among users, the corresponding

conversion efficiency and conversion ratio are equal to 0.

Econv−,n,min and Econv−,n,max are the lower and upper limits of

the electric load converted out of nth user; Hconv−,n,min and

Hconv−,n,max are the lower and upper limits of the heat load

converted out of nth user; Gconv−,n,min and Gconv−,n,max are the

lower and upper limits of the gas load converted out of

nth user.

3 Centralized optimal dispatch model
of the user-level IEGHS

3.1 Objective function

The objective function of the optimal dispatch model is to

minimize the cost of EHs and users in the day-ahead

integrated energy dispatch of the user-level IEGHS, which

is related to the supply-side energy prices, the operation and

maintenance costs of energy conversion and storage facilities,

and the cost of distributed energy production by users. The

objective function is shown below.

minCost � ∑T
t�1
ERE,tγRE,t +∑T

t�1
EG2P,tγG2P,t +∑T

t�1
HG2H,tγG2H,t

+∑T
t�1
HP2H,tγP2H,t +∑T

t�1
(Hc,t +Hdc,t)γHS,t

+∑T
t�1
(Ec,t + Edc,t)γES,t +∑T

t�1
(EB,tpB,E,t +HB,tpB,H,t + GB,tpB,G,t)

+∑N
n�1

∑T
t�1
((EPV ,n,tγPV ,n,t +HSP,n,tγSP,n,t)

(34)

where γRE,t , γG2P,t , γG2H,t , γP2H,t , γHS,t and γES,t are the

operation and maintenance cost coefficients of the REG,

G2P, G2H, P2H, HS, and ES, respectively; EB,t , HB,t and

GB,t are electricity, heat and gas energy purchased from the

distribution network side; pB,E,t , pB,H,t and pB,G,t are the prices
of electricity, heat and gas energy purchased; γPV ,n,t and γSP,n,t
are the operation and maintenance cost coefficients of the

RPV and RSH of nth user.

3.2 Root node constraints

The root node constraint, i.e., the energy limit of the

electricity distribution network, heat distribution network, and

gas distribution network to supply electricity, heat, and gas to the

EH, can be expressed by the following equations.

0≤ EB,t ≤ Emax
B,t ,∀t ∈ T (35)

0≤HB,t ≤Hmax
B,t ,∀t ∈ T (36)

0≤GB,t ≤Gmax
B,t ,∀t ∈ T (37)

where Emax
B,t , Hmax

B,t , Gmax
B,t are the upper limits of energy supply

from the distribution network to the EH at tth time period,

respectively.

3.3 EH constraints

The operation constraints of the energy production, conversion,

and storage equipment in the EH are already formulated as Eqs 1–20.

3.4 Users constraints

The operation constraints of the RPV and RSH in the users

are already presented in Eqs 21, 22.

3.5 IDR constraints

The constraints related to the three types of IDR, translatable,

curtailable, and convertible, when the user loads perform the IDR are

shown in Eqs 23–33.

3.6 Energy balance constraints

The energy balance constraint consists of two parts, namely,

the energy balance constraints of electric energy, heat energy, and

gas energy in the EH, and the energy balance constraints of the

users’ electricity, heat, and gas loads before and after the IDR.

Based on the refined mathematical model of the EH, the energy

balance constraints of electric energy, heat energy, and gas energy

inside the EH are formulated as

∑N
n�1

ED,n,t � EB,t + ERE,t + EG2P,t − EP2H,t − Ec,t + Edc,t (38)

∑N
n�1

HD,n,t � HB,t +HG2H,t +HP2H,t −Hc,t +Hdc,t (39)

∑N
n�1

GD,n,t � GB,t − GG2P,t − GG2H,t (40)
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The energy balance constraints of the user’s electricity load

before and after the IDR can be expressed as

ED,n,t + EPV ,n,t � ED0,n,t − Eshif t,n,t − Ecut,n,t − Econv,n,t + ∑N
j�1,j ≠ n

ES,nj,t

(41)
ES,ij,t + ES,ji,t � 0 (42)

Eshif t,n,t � Eshif t−,n,t − Eshif t+,n,t (43)
Econv,n,t � Econv−,n,t − Econv+,n,t (44)

where ED0,n,t is the electricity load of users before IDR; ED,n,t is

the electricity load of users after IDR; ES,nj,t denotes the electricity

transferred from the n-th user to the j-th user at t-th time period.

The energy balance constraints of the users’ heat load before

and after the IDR can be expressed as

HD,n,t +HSP,n,t � HD0,n,t −Hshif t,n,t −Hcut,n,t −Hconv,n,t + ∑N
j�1,j ≠ n

HS,nj,t

(45)
HS,ij,t +HS,ji,t � 0 (46)

Hshif t,n,t � Hshif t−,n,t −Hshif t+,n,t (47)
Hconv,n,t � Hconv−,n,t −Hconv+,n,t (48)

where HD0,n,t is the heat load of users before IDR; HD,n,t is the

heat load of users after IDR; HS,nj,t denotes the heat transferred

from the n-th user to the j-th user at t-th time period.

The energy balance constraints of the users’ gas load before

and after the IDR can be expressed as

GD,n,t � GD0,n,t − Gshif t,n,t − Gcut,n,t − Gconv,n,t (49)
Gshif t,n,t � Gshif t−,n,t − Gshif t+,n,t (50)
Gconv,n,t � Gconv−,n,t − Gconv+,n,t (51)

where GD0,n,t is the gas load of users before IDR; GD,n,t is the gas

load of users after IDR.

4 Decentralized robust optimal
dispatch model of the user-level
IEGHS

4.1 robust optimal dispatch model

In the user-level IEGHS in this paper, the renewable

energy production equipment consists of REG in the EH

and distributed energy production equipment of the users.

The output of these energy production facilities is highly

dependent on the weather and has certain uncertainties.

Although the current renewable energy output forecast has

reached a certain accuracy, there is still a certain error between

the forecast and the actual output. There are various ways to

consider the prediction error, and robust optimization is one

of the typical ways.

The solution of the robust optimization strictly satisfies all

the constraints corresponding to all the values of the uncertain

parameters in the uncertain set. The uncertain set includes box,

ellipsoid, polyhedron, and other forms. Among them, the box

uncertainty set is used because it is more convenient to calculate.

The renewable energy output uncertainty constraints in EH and

users are as follows

∀ERE,t ∈ URE ,∀EPV ,n,t ∈ UPV ,n,∀HSP,n,t ∈ USP,n (52)
URE � {ERE,t

∣∣∣∣ERE0,t − ΔERE,t ≤ERE,t ≤ERE0,t + ΔERE,t ,∀t ∈ T}
(53)

UPV ,n � {EPV ,n,t

∣∣∣∣EPV0,n,t − ΔEPV ,n,t ≤EPV ,n,t ≤EPV0,n,t + ΔEPV ,n,t ,∀t ∈ T}
(54)

USP,n � {HSP,n,t

∣∣∣∣HSP0,n,t − ΔHSP,n,t ≤HSP,n,t ≤HSP0,n,t + ΔHSP,n,t ,∀t ∈ T}
(55)

where ERE,t , EPV ,n,t , and HSP,n,t are the actual output of the

renewable energy production equipment; ERE0,t , EPV0,n,t , and

HSP0,n,t are the mean value of the fluctuation interval of the

output of renewable energy production equipment; ΔERE,t ,

ΔEPV ,n,t , and ΔHSP,n,t are the radius of the fluctuation

interval of the output of renewable energy production

equipment.

The above uncertainty constraints on renewable energy

output in EH and users are written in a uniform

mathematical form as follows

y(ξ) � y + ξ (56)
∀ξ ∈ U � {ξ| − Δξ ≤ ξ ≤Δξ} (57)

where y(ξ) is the actual output of the renewable energy

production equipment; y is the predicted output of the

renewable energy production equipment; ξ is the deviation of

actual output from the predicted output; Δξ is the radius of the

fluctuation interval of the deviation.

A robust optimal dispatch model is developed by considering

uncertainty constraints on renewable energy output in EH and

users. The proposed robust optimal dispatch model is a min-max

two-layer robust optimization model, which aims to promote the

accommodation of renewable energy as much as possible while

minimizing the system cost. In addition, the two-layer robust

optimization model is different from the two-stage robust

optimization model which is essentially a min-max-min three-

layer robust optimization model. And to simplify the narrative,

the robust optimal dispatch model is described in a compact

format as follows

min(aTx +max
ξ∈U

bTy(ξ))
s.t. Ax ≤ c
By(ξ)≤ d,∀ξ ∈ U

Gx +Hy(ξ)≤ g ,∀ξ ∈ U

(58)

where x and y(ξ) denote the decision variables of the first stage

and the second stage, respectively; ξ indicates uncertainty
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variables; A, B, G, and H are the corresponding coefficient

matrices; a, b, c, d, and g are the corresponding vectors. In

equation (58), the first line of the constraint includes equations

(2)-(20), equations (23)-(33), equations (35)-(37), equations

(39)-(40), equations (42)-(44), and equations (46)-(51); the

second line of the constraint includes equation (1), equations

(21)-(22), and equations (52)-(55); and the third line of the

constraint includes equation (38), equation (41), and

equation (45).

4.2 Multi-agent decentralized
optimization framework

The user-level IEGHS includes multiple agents of EH and

different users, with information and energy interactions

between the agents. Although the traditional centralized

optimal dispatching can yield the optimal dispatching

operation plan for the entire system, it requires the

equipment operation information within each agent, which

cannot protect privacy and security. Some studies have

already used the alternating direction multiplier method

(ADMM) for different participating agents to coordinate

the solution alternately, and each participating agent

performs the optimal dispatching on its own, in addition

to providing a small amount of necessary interaction

information to ensure the normal inter-agent energy

interaction, without sharing the internal information,

which protects the privacy and security of each agent.

The multi-agent decentralized optimization framework is

shown in Figure 2, with the EH as subject 1 and the different

users as the remaining agents. The EH, i.e., agent 1, purchases

electricity, heat, and gas energy from the distribution network for

users, and is the hub for realizing energy production, conversion,

and storage, as well as the bridge between the distribution

network and the users. The different users, i.e., the remaining

agents, are the direct users of electricity, heat, and gas energy, and

also the demand side of the EH, which can perform IDR

according to the real-time energy prices.

Moreover, different users have different energy-using

equipment and different energy-using characteristics, and

some users even have small-scale distributed energy

production equipment, such as rooftop photovoltaics, solar

water heaters, biogas tanks, etc. The existence of these

distributed energy production equipment makes the user load

not exactly a user of energy, but also a producer of energy, so

energy interaction is feasible between different users.

The coordinated operation of multiple agents is conducive

to the rational allocation of renewable resources such as wind

power and photovoltaic, as well as the optimal allocation of

each energy flow within the node load.

5 Multi-agent decentralized robust
optimization solution method

The ADMM is used for the decentralized solution of the

proposed robust optimization model to form a decentralized

FIGURE 2
The multi-agent decentralized optimization framework.
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robust optimization solution method. Since the two-layer

robust optimization model is difficult to be solved directly,

it is necessary to convert the two-layer robust optimization

model into a single-layer robust optimization model by a

robust counterpart, and then split the objective function and

constraints of the built robust optimization model by agent to

realize the decoupling among agents and form multiple sub-

problems, and finally solve multiple sub-problems alternately

by the decentralized solution algorithm ADMM. The

decentralized robust optimization solution framework is

shown in Figure 3.

5.1 Robust counterpart

The two-layer robust optimization model shown in Eq.

58 is an NP-hard problem, which is difficult to solve directly,

and the mainstream solution methods can be divided into

two categories: the affine strategy and the decomposition

method. In this paper, the affine function is used to establish

the affine relationship between the second-stage decision

variables and the uncertain parameters, i.e., it is assumed

that the second-stage decision variables can be automatically

adjusted according to the corresponding uncertain

parameters to solve the established two-layer robust

optimization model. The affine function is defined as

(Ben-Tal et al., 2009)

y(ξ) � y0 +∑K
k�1

ykξk (59)

Where K is the number of renewable energy units in the system;

y0 and yk are the newly introduced auxiliary variables, the values

of which can be obtained by solving the model.

By substituting the affine function into the robust

optimization model and introducing the auxiliary variable

Q, the original model can be transformed into

min(aTx + Q)
s.t. Ax ≤ c

max
ξ∈U

bT⎛⎝y0 +∑K
k�1

ykξk⎞⎠≤Q

max
ξ∈U

⎧⎨⎩B⎛⎝y0 +∑K
k�1

ykξk⎞⎠ − d
⎫⎬⎭ ≤ 0

max
ξ∈U

⎧⎨⎩Gx +H⎛⎝y0 +∑K
k�1

ykξk⎞⎠ − g
⎫⎬⎭ ≤ 0

(60)

Taking the second equation in the constraints as an example

to illustrate the transformation process of the model solution, the

original problem represented by the second equation is as follows

max
ξ

bT⎛⎝y0 +∑K
k�1

ykξk⎞⎠
s.t. ξk0 − Δξk ≤ ξk ≤ ξk0 + Δξk

(61)

The dual problem is as follows

min bTy0 +∑K
k�1

[(λk − νk)ξk0 + (λk + νk)Δξk]
s.t. λk − νk � bTyk

(62)

Where λk and νk are nonnegative dual variables. According to the

strong dual theory, the objective value of the original problem is

guaranteed to be less than or equal to Q when and only when the

objective value of the dual problem is less than or equal to Q.
Therefore, the second equation in the constraints can be

transformed into the following linear form.

bTy0 +∑K
k�1

[(λk − νk)ξk0 + (λk + νk)Δξk]≤Q (63)

FIGURE 3
The decentralized robust optimization solution framework.
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λk − νk � bTyk (64)

The transformation process of the third and fourth equation

in the constraints is similar to the second equation. Up to this

point, the adjustable robust optimization model is transformed

into a single layer optimization problem.

5.2 The ADMM algorithm

The main idea of the ADMM with both decomposition

and convergence is that the independent variables are

decomposed into blocks of sub-independent variables

according to the idea of blocking, and when solving one

block of sub-independent variables, the form of the extended

Lagrangian objective function is maintained, and the other

block of sub-independent variables in its objective function

are substituted into the latest optimization result (or the

initial value) and used as constants in this optimization. This

solves the problem of cross terms between the independent

variables from different blocks in the quadratic penalty term

and ensures fast convergence from the quadratic penalty

term (Mu et al., 2020).

In order to use the ADMM for the decentralized solution

of the proposed robust optimization model, it is first

necessary to decouple the association between agents,

i.e., to split the objective function and constraints of the

proposed robust optimization model by agents. For the

centralized optimal dispatch model in which two agents

use the same variable representation, the replica variable

method is used to decouple and add the corresponding

equation constraints, as shown in equations (65)-(67); the

energy interaction constraints between different users are

shown in equations (68)-(69).

EEH
D,n,t − EUSE

D,n,t � 0,∀n ∈ ΩUSE t ∈ T (65)
HEH

D,n,t −HUSE
D,n,t � 0,∀n ∈ ΩUSE t ∈ T (66)

GEH
D,n,t − GUSE

D,n,t � 0,∀n ∈ ΩUSE t ∈ T (67)
ES,ij,t − ES,ji,t � 0,∀i, j ∈ ΩUSE , i ≠ j, t ∈ T (68)
HS,ij,t −HS,ji,t � 0,∀i, j ∈ ΩUSE , i ≠ j, t ∈ T (69)

The robust optimization model where the objective function

and constraints have been split is shown below.

minf 0(x0, y0(ξ0)) +∑N
n�1

gn(xn, yn(ξn))
s.t. Aixi ≤ ci, i � 0, 1,/N

Biyi(ξi)≤ di,∀ξi ∈ Ui, i � 0, 1,/N
Gixi +Hiyi(ξi)≤ gi,∀ξi ∈ Ui, i � 0, 1,/N

Eixi + Fjxj � 0, i ≠ j, i � 0, 1,/N , j � 0, 1,/N

(70)

Where the fourth line of the constraints includes Eqs 65–69,

indicating the coupling constraints among the agents.

Using the extended lagrangian relaxation technique, the

extended lagrangian function of the optimization problem

can be obtained as shown in Eq. 71

L � f 0(x0, y0(ξ0)) +∑N
n�1

gn(xn, yn(ξn))
+∑N
i�0

∑N
j�0,j ≠ i

λTij(Eixi + Fjxj)
+∑N
i�0

∑N
j�0,j ≠ i

ρ

2
‖ Eixi + Fjxj ‖2

(71)

Following the idea of the dual ascent method, the solution is

solved for the split independent variables in alternating iterations

in turn, as shown below.

(xk+1i , yk+1i ) � argmin
xi

Li(xi , yi, xkj , ykj , λkij), i ≠ j, i � 0, 1,/N , j � 0, 1,/N

(72)
λk+1ij � λkij + ρ(Eixi + Fjxj), i ≠ j, i � 0, 1,/N , j � 0, 1,/N

(73)
Convergence to the optimal solution can be achieved by

increasing the number of iterations of optimization k. The

residuals converge as shown in (74), the objective function

converges as shown in (75), and the dual variables converge

as shown in (76).

k → ∞, Eix
k
i + Fjx

k
j → 0, i ≠ j, i � 0, 1,/N , j � 0, 1,/N

(74)

k → ∞, f 0(xk0, yk0) +∑N
n�1

gn(xkn, ykn) → p* (75)

k → ∞, λkij → λij
* i ≠ j, i � 0, 1,/N , j � 0, 1,/N (76)

The convergence stop iteration condition of ADMM is based

on the original residuals and dual residuals being less than a set

threshold ( εpri is the convergence threshold of the original

residuals). The original residuals in the kth iteration are

calculated as shown in (77).

‖ rk‖2 �‖ Exk + Fxk‖2 ≤ εpri (77)

Where xk represents (xk0; xk1;/; xkN ); E and F are the

corresponding coefficient matrices.

Themathematical analysis of the convergence rate of ADMM

is more difficult than the analysis of other optimization

algorithms (e.g., the interior point method). However, after

several examples, it can be found that the convergence rate of

ADMM is between linear and sublinear (closer to sublinear),

which can converge quickly to low medium accuracy, while it

takes longer to converge to high accuracy. Therefore, when we

use the ADMM for optimization, we can set the accuracy to meet

the engineering application, and the residual convergence

threshold can usually be 10-3 or 10-4, without deliberately

pursuing ultra-high accuracy.
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In addition, it is necessary to explain the iterative step

size when the alternate direction multiplier is updated.

Selecting different values will affect the convergence effect.

If it is too large or too small, the number of iterations will

increase, so it is usually enough to choose ρ � 0.05 ~ 1.5.

6 Case study

6.1 Case description

In this paper, there are four agents in the setting case, which are an

EH and three users. The structural relationship among the four agents

is shown in Figure 2, and these three users have IDR capability. In this

case, the day is divided into 24 time periods for decentralized robust

optimal dispatching of each agent on an hourly basis. Considering the

uncertainty of renewable energy output in each agent and different

flexible load ratios in user load, four uncertainties (0, 0.1, 0.2, 0.3) and

five flexible load ratios (0.3, 0.4, 0.5, 0.6, 0.7) are set to compare and

analyze the results of decentralized robust optimal dispatch under

different uncertainties and different flexible load ratios. The

contribution of IDR to renewable energy accommodation, the

mutual influence of different demand response markets for

electricity, heat, and gas, and the convergence effect of the

decentralized robust algorithm are also analyzed.

Energy prices are shown in Figure 4. The price of

purchasing electricity and heat from the distribution

network is a real-time price mechanism, and the price of

selling electricity and heat to customers is a peak and valley

price mechanism; the purchase and sale prices of natural gas

are both fixed price mechanisms.

6.2 The results of the decentralized robust
optimal dispatch

Considering the uncertainty of 0.1 and the flexible load ratio

of 0.5, the results of the decentralized robust optimal dispatching

of the three energy flows in the EH are shown in Figure 5. There

are four ways of supplying electricity, which are REG, G2P,

discharging of ES, and electricity purchase from the distribution

network; there are three ways of consuming electricity, user

consumption, P2H, and charging of ES. The original peak

hours of electricity load are 8:00–13:00 and 18:00–20:00,

which are also the peak periods of electricity price. ES charges

in non-peak hours and discharges in peak hours, which realizes

the transfer of electricity consumption in time. In addition, the

G2P generates electricity mainly during peak hours, which

realizes the conversion from electricity to gas in the form of

energy utilization, thus effectively reducing the energy purchase

cost. The supply of heat is mainly produced by P2H, G2H,

discharging of HS, and heat purchase from the distribution

network during low heat price hours, while the heat is only

consumed by users, except for the charging of HS. Since there is

FIGURE 4
Energy prices.
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no equipment to produce gas in the EH, the supply of gas is

completely dependent on the distribution network. Part of the

gas is directly consumed by the users, and the remaining part is

converted into electricity and heat by the G2P and G2H to reduce

energy costs.

The results of users participating in IDR are shown in Figures

6–8, respectively. The mechanism of IDR is the price mechanism,

i.e., based on energy prices, IDR is carried out by shifting load use

periods, transferring load use users, transforming load use energy

forms, and cutting unnecessary loads.

For electricity, the peak hours of electricity load before IDR

are 8:00–13:00 and 18:00–20:00. User 1, user 2, and user

3 participate in load shifting and load cutting during the peak

hours, in addition to the contribution of distributed energy

production equipment such as RPV, 8:00–13:00 and 18:00–20:

00 are no longer peak hours, which plays a role in peak shaving

and valley filling as well as reducing the cost of electricity

purchase. For heat, the peak hours for heat loads before IDR

are 1:00–6:00 and 22:00–24:00. The main way of IDR for the heat

loads of user 1, user 2, and user 3 is load shifting and load

conversion during peak hours, i.e., shifting heat loads to non-

peak hours and converting heat loads to electric loads during

peak hours. Moreover, there is a small amount of curtailment

during peak hours. For gas, the peak hours of gas loads before

IDR are 6:00–8:00, 11:00–13:00, and 16:00–20:00. Since the price

of gas is constant, gas loads participate little in IDR, mainly in

load cutting and shifting, but the participation of gas loads can

serve the optimal use of the other two energy flows.

In addition to load shifting, cutting, and converting within

users, there are interactions among users, namely, the load can be

transferred between different users from the perspective of IDR.

In this case, only electricity and heat can interact, and gas is not

available for interaction because it is all supplied by the

distribution network. According to the result shown in the

figure below, user 3 outputs electricity and heat to user 1 and

user 2, and user 2 also outputs electricity and heat to user 1. In

other words, part of a load of user 1 is transferred to user 2 and

user 3, and a load of user 2 is also transferred to user 3.

6.3 The comparison of different IDR
scenarios

The consideration of IDR can decrease the operating cost of

integrated energy systems and promote the accommodation of

renewable energy. In order to study the impact of considering

IDR, three different scenarios are set, namely, without

considering IDR (No IDR), considering IDR without energy

coupling of electricity, heat, and gas (IDR without coupling),

and considering IDR with energy coupling of electricity, heat,

and gas (IDR with coupling). The cost of decentralized robust

optimal dispatch for each agent under different IDR scenarios is

FIGURE 5
The results of the decentralized robust optimal dispatching in the EH.
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FIGURE 6
The results of user 1 participating in IDR.

FIGURE 7
The results of user 2 participating in IDR.
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shown in Table 1. It can be noted that accounting for IDR has a

significant improvement on the revenue of the EH as well as the

cost of energy use for each user. The total cost under IDR without

coupling is ¥60,167.1, which is ¥7,889.7, or 11.59%, lower

compared to the total cost of ¥68,056.8 under No IDR. The

scenario IDR with coupling has a cost of ¥54,162.0, which is

$13,894.8, or 20.42%, lower compared to the total cost of

¥68,056.8 under No IDR.

The renewable energy accommodation under No IDR, IDR

without coupling, and IDR with coupling in 1 day is 36.31 MW,

38.69 MW, and 40.9 MW, respectively. Taking IDR into account,

there is a significant improvement in the accommodation of

renewable energy in the EH, which is mainly reflected in the

accommodation of nighttime wind power. The renewable energy

accommodation under different IDR scenarios is shown in

Figure 9.

Specifically, compared to No IDR, in the IDR without

coupling scenario, energy can be shifted on the time axis due

to the consideration of energy storage devices and the

translatable load. The load level of the original daytime peak

hours is reduced, so the accommodation of daytime PV during

10:00–12:00 and 14:00 h is insufficient and there is an

abandonment phenomenon. However, the load level in the

nighttime hours has increased, and the accommodation of

nighttime wind power is enhanced in the hours of 1:00–7:

00 and 21:00–24:00. Overall, the accommodation of renewable

energy has increased and promoted to some extent. Compared

with IDR without coupling scenario, in the IDR with coupling

FIGURE 8
The results of user 3 participating in IDR.

TABLE 1 The cost of decentralized robust optimal dispatch for each agent under different IDR scenarios.

IDR scenarios Revenue of
EH (¥·d−1)

Cost of
user 1
(¥·d−1)

Cost of
user 2
(¥·d−1)

Cost of
user 3
(¥·d−1)

Total cost
(¥·d−1)

No IDR 34858.7 34673.0 33760.0 34482.7 68056.8

IDR without coupling 35544.6 32255.4 31422.4 32033.9 60167.1

IDR with coupling 40640.5 31950.8 31083.6 31768.1 54162.0
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FIGURE 9
The renewable energy accommodation under different IDR scenarios.

FIGURE 10
The energy purchases in different demand response markets.
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scenario, in addition to the existence of the shift of energy in the

time axis, there is also the transformation of energy between

different forms, which not only compensates for the

abandonment phenomenon in the uncoupled scenario but

also further enhances the accommodation of nighttime wind

power, thus achieving the complete accommodation of

renewable energy.

6.4 The comparison of different modes of
demand response market

A comparative analysis is made of the purchase of energy by

EH from the distribution network under the three modes of the

user-level electricity demand response market, electricity-heat

demand response market, and electricity-heat-gas demand

response market. Figure 10 shows the energy purchases in

different demand response markets.

When considering the electricity demand response market,

due to the load reduction and load shift out of peak hours, and

the need to accommodate renewable energy as much as possible,

the electricity purchase period is mainly distributed in off-peak

hours, and the peak hours of the original electricity load, 8:00–13:

00 and 18:00–20:00 are the valleys of electricity purchases. And

because the coupling between electricity and heat and electricity

and gas is not involved, it has little impact on the purchase of heat

energy and gas energy.

The electricity-heat demand response market, based on the

electricity demand response market, introduces the heat demand

response market and takes into account the coupling between

electricity and heat. For the part of the heat, the load is converted

into electricity load, and the peak hours of heat load are cut and

shifted out, so that the heat energy purchased during the peak

hours of the original heat load, i.e., 1:00–6:00 and 22:00–24:00,

decreases significantly, while the purchases of electricity and gas

increase. In addition, during the off-peak period of heat, because

the user’s solar thermal equipment is at its peak output, and there

is a conversion of thermal load to an electrical load, as well as the

support of gas-to-heat equipment at the EH level, although the

heat load shifts in, the heat energy purchases do not

change much.

When considering the electricity-heat-gas demand

response market, the purchases of electrical energy and

heat energy are almost unchanged compared to the

electricity-heat demand response market. This is because

the gas energy price is constant, so the mechanism of the gas

energy participating in the demand response is not a real-

time price response mechanism, but is coupled with

electricity and heat through G2P equipment and G2H

equipment at the EH. The function of gas demand

response is to provide another form of energy support for

electricity and heat, which can be understood as a capacity

market for another form of energy, which can play a huge

role in the sudden emergency failure of the power system and

thermal system.

6.5 The comparison of different
uncertainties and elastic load ratios

Table 2 shows the decentralized robust optimal dispatch cost

of each agent under different uncertainties. When the

uncertainty is 0, it means that the uncertainty of renewable

energy output is not considered, and the result is a

deterministic optimal dispatch, with a total cost of ¥52,045.7,

and the economy is optimal. When the uncertainty is 0.1, 0.2, and

0.3, it means that the uncertainty of renewable energy output of

10%, 20%, and 30% are considered respectively, which is a robust

optimal dispatch. The total cost is ¥54162.0, ¥56292.0, and

¥58482.8 respectively. Compared with the deterministic

optimal dispatch cost, the cost increases by ¥2116.3, ¥4246.3,

and ¥6437.1 respectively, accounting for 4.07%, 8.16%, and

12.37%. The economy is weakened, but the optimization

results have certain robustness.

With the increase in uncertainty, the revenue of the EH

decreases, and the cost of 3 users increases. The reason should be

that in order to cope with the uncertainty of renewable energy, each

agent will increase the dependence on reliable energy, that is, increase

the purchase of energy. And the greater the uncertainty, the greater

the purchase of energy and the higher the cost. Robust optimization

sacrifices some economies to deal with uncertainty. Since the output

forecast of renewable energy has reached a certain accuracy,

considering the robustness and economy comprehensively, it can

be considered that under the uncertainty of 0.1, the deviation of the

output forecast of renewable energy can be satisfied.

The decentralized robust optimal dispatch cost of each agent

under different elastic load ratios of users is shown in Figure 11. It

can be seen from the figure that the total cost of the integrated

energy system decreases with the increase of the user’s elastic

load ratio. The reason is that the higher the ratio of the user’s

elastic load, the greater the degree that the user can participate in

the IDR, and the more flexible the user’s load is, so the user’s own

energy consumption cost can be reduced. In addition, the upper-

level EH has more options for operating modes, and the

adjustable range is larger, so the income of the EH will also

increase. The reduction of the cost of the users and the increase of

the income of the EH will reduce the final operating cost of the

integrated energy system.

In addition, it is worth noting that although the total

operating cost of the system decreases with the increase of the

user’s elastic load ratio, due to the user’s participation in the

demand response, it will cause discomfort in energy

consumption and pay a certain price. The more the user

participates in the IDR, the higher the discomfort, so the

relative cost reduction caused by the increase in the elastic

load ratio gradually decreases.
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TABLE 2 The cost of decentralized robust optimal dispatch for each agent under different uncertainties.

Uncertainties Revenue of
EH (¥·d−1)

Cost of
user 1
(¥·d−1)

Cost of
user 2
(¥·d−1)

Cost of
user 3
(¥·d−1)

Total cost
(¥·d−1)

0 42396.4 31821.4 30979.6 31641.1 52045.7

0.1 40640.5 31950.8 31083.6 31768.1 54162.0

0.2 38870.4 32064.5 31224.7 31873.2 56292.0

0.3 37052.0 32190.5 31348.3 31996.0 58482.8

FIGURE 11
The decentralized robust optimal dispatch cost of each agent under different elastic load ratios.

FIGURE 12
The input conditions of G2P.
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The input conditions of G2P equipment, G2H equipment,

and P2H equipment under different elastic load ratios are shown

in Figures 12, 13, 14, respectively. For G2P equipment, the

conversion efficiency is 0.6, the upper limit of gas

consumption in each period is 1MW, and the upper limit of

gas consumption fluctuation between two periods is 0.3MW; for

G2H equipment, the conversion efficiency is 0.5, and the gas

consumption in each period is 1MW, and the upper limit of gas

consumption fluctuation between two periods is 0.3MW; for P2H

equipment, its conversion efficiency is 0.95, the upper limit of

power consumption in each period is 0.4MW, and the upper

limit of power consumption fluctuation between two periods is

0.12 MW.

Firstly, it can be seen from the figure that the input peak and

valley conditions of G2P equipment and G2H equipment are

consistent with the peak and valley conditions of the real-time

price of electric energy and the real-time price of heat energy

respectively, while the input peak and valley conditions of P2H

equipment is opposite to the real-time price of electric energy.

This is the response of the energy coupling equipment to the real-

time price mechanism, but it is also restricted by the equipment

output constraints and ramp constraints at the same time.

FIGURE 13
The input conditions of G2H.

FIGURE 14
The input conditions of P2H.
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Secondly, as the ratio of elastic load increases, the degree of load

participating in IDR increases, especially the coupling effect

between electricity load and heat load increases, so the output

of G2P equipment and G2H equipment decreases, and the output

of P2H equipment increases. In addition, it should be noted that

when the elastic load ratio is 0.3, 0.4, and 0.5, the output of each

energy conversion equipment is almost unchanged because it is

constrained by the equipment output constraints and ramp

constraints. The above conclusions are not reflected until the

elastic load ratio rises to 0.6 and 0.7.

6.6 Result analysis of the decentralized
robust optimization algorithm

The convergence effect of the decentralized robust optimization

algorithm is shown in Figure 15. It can be seen from (a) that when the

value is large, such as ρ � 100, the residual converges faster in the

initial iteration process, but fluctuates greatly in the later iteration,

and the convergence effect is poor; When the value is small, such as

ρ � 0.1, the residual converges slowly in the initial iteration process,

but the fluctuation is small in the later iteration, and the convergence

effect is good. As shown in (b), the convergence of the benefits and

costs of the decentralized robust optimal dispatch of each agent. The

EH benefits finally converge to ¥40624.6, the costs of user 1 finally

converge to ¥31940.1, the costs of user 2 finally converge to ¥31091.6,

and the costs of user 3 finally converge to ¥31755.2. Compared with

the centralized robust optimal dispatch, the errors shown in Table 3

are 0.039%, 0.033%, 0.026%, and 0.041% respectively, which can be

regarded as no deviation.

7 Conclusion

In this paper, the following conclusions can be obtained by

conducting a decentralized robust optimal dispatch study on a user-

level IEGHS composed of EH and multiple users under the

consideration of IDR. Users can carry out IDR by responding to

price signals, and actively adjusting their own energy consumption

methods. On the one hand, through the translation, reduction, and

conversion of internal loads, and on the other hand, through energy

interaction between users, they can cut peaks and fill valleys, and

FIGURE 15
The convergence effect of the decentralized robust optimization algorithm.

TABLE 3 The comparision of the results of centralized and decentralized approaches.

Approach Revenue of
EH (¥·d−1)

Cost of
user 1
(¥·d−1)

Cost of
user 2
(¥·d−1)

Cost of
user 3
(¥·d−1)

Total cost
(¥·d−1)

Centralized 40640.5 31950.8 31083.6 31768.1 54162.0

Decentralized 40624.6 31940.1 31091.6 31755.2 54162.3

Errors 0.039% 0.033% 0.026% 0.041% 0.00055%
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reduce energy purchase costs to optimize resource allocation. For

three different IDR scenarios (No IDR, IDR without coupling, and

IDR with coupling), IDR without coupling has promoted the

accommodation of renewable energy to some extent, but there is

an abandonment phenomenon of light. And IDR with coupling

makes up for the abandonment phenomenon of light, and further

promotes the accommodation of renewable energy. For the three

modes of demand response market (electricity, electricity-heat, and

electricity-heat-gas), the purchase of electricity increases, and the

purchase of heat decreases under electricity-heat compared to the

electricity-only demand response market due to the conversion of

heat load to electricity load. In addition, the mechanism by which

gas participates in the electricity-heat-gas demand response market

can be understood as a capacity market of another energy form,

which has little impact on the purchase of electricity and heat. With

the increase of the elastic load ratio of users, the decentralized

robust optimal dispatching cost of each agent gradually decreases,

but the relative cost reduction between different elastic load ratios

also gradually decreases. In addition, with the increase of

uncertainty, the dispatching cost of each agent increases, which

needs to be considered comprehensively with robustness and

economy. Finally, compared with the centralized robust optimal

dispatching, the multi-agent decentralized robust optimal

dispatching has a very small result error, which can be regarded

as unbiased.
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Nomenclature

Abbreviation

IEGHS Integrated electricity-gas-heat system

IDR Integrated demand response

EH Energy hub

ADMM Alternating direction multiplier method

REG Renewable energy generation

PT Power transformer

HE Heat exchanger

GR Gas regulator

P2H Electricity-to-heat equipment

G2H Gas-to-heat equipment

G2P Gas-to-electricity equipment

ES Electricity storage equipment

HS Heat storage equipment

RPV rooftop photovoltaics

RSH rooftop solar heatings

Matrices

A B E F G H The corresponding coefficient matrices in a

compact format

Vectors

a b c d g The corresponding coefficient vectors in a compact

format

Sets

T Set of dispatch periods

U Set of uncertainty
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