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Electricity is a fundamental energy that is essential to the growth of

industrialization and human livelihood. Electric power resources can be used

to meet living and production needs more steadily, effectively, and intelligently

with the help of an intelligent power grid. The accuracy and stability of

component requirements have increased due to the rapid growth of

intelligent power networks. One of the fundamental components for

component production is electronic slurry, so optimizing electronic paste’s

properties is crucial for smart grids. In the field of materials science, the process

of discovering new materials is drawn out and chance-based. The traditional

computation process takes a very long time. Scientists have recently applied

machine learning techniques to anticipate material properties and hasten the

creation of novel materials. These techniques have proven to offer amazing

benefits in a variety of fields. Machine learning techniques, such as the cross-

validated nuclear ridge regression algorithm to predict double perovskite

structure materials and the machine learning algorithm to predict the band

gap value of chalcopyrite structure materials, have demonstrated excellent

performance in predicting the band gap value of some specific material

structures. The performance value of other structural materials cannot be

predicted directly by this targeted prediction model; it can only forecast the

band gap value of a single structural material. This study presents two model

techniques for dividing data sets into element kinds using regression models

and dividing data sets into clusters using regression models, both of which are

based on the fundamental theory of physical properties, band gap theory. This

plan is more efficient than the classification-regression model. The MAE

dropped by 0.0455, the MSE dropped by 0.0425, and the R2 rose by 0.022.

The effectiveness of machine learning in forecasting the material band gap

value has increased, and themodel trained by this design strategy to predict the

material band gap value is more reliable than previously.
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1 Introduction

Electricity, a fundamental energy source in modern society, is

essential to human and industrial progress (Park and Heo, 2020).

Intelligent power grid provides stable, efficient and intelligent

power energy supply is the guarantee of the benign development

of regional economy. Numerous academics have worked on

algorithmic optimization, but fewer have focused on material

optimization (Ma et al., 2021a). Electronic slurries are a fixed

powder and organic solvent through three-roll rolling combined

homogeneous slurries, frequently as dielectric and conductor

slurries. Electronic slurry (Yiwei et al., 2007) is an indispensable

key material, and its various properties are far superior to

traditional circuit devices such as resistance wire and electric

heaters, and it is environmentally friendly, efficient and energy-

saving (Ma et al., 2021b). Electronic slurries, which are used to

make intelligent circuit devices, are the starting point for the

creation of the fundamental components of the intelligent power

grid, and their physical characteristics (Rabek, 2012) play a

crucial part in the effective and reliable operation of the

intelligent power grid. The chance of the intelligent power

grid remaining stable over the long run will be significantly

increased by research into high-performance, low-cost raw

materials.

One of the current research areas is the creation of electronic

slurries with good optoelectronic characteristics. The group of

semiconductors known as narrow bandgapmaterials makes good

thermoelectric materials. There are numerous classes of

semiconductor materials in the real world, and the needs

cannot be met by the limited experimental data currently

available on bandgap. It is also more challenging to

operationally make measurements on bigger scale data.

Accurate bandgap prediction and calculation are necessary for

further screening of new high performance thermoelectric

materials. Semiconductor materials are employed in a variety

of applications, such as photovoltaic materials (Ahn et al., 2010),

transistors (Radisavljevic et al., 2011), and LED (Schubert and

Kim, 2005; Zhuo et al., 2018). One of the crucial characteristics

affecting semiconductor materials is the material bandgap

energy.

The bandgap (Matsuoka et al., 2002) is a straightforward yet

crucial parameter in the study of optoelectronics that is used to

describe semiconductors and insulators. Since it is challenging to

find high-quality single crystals, experimentally determined

bandgap values are very small. Single crystals are crucial for

bandgap prediction. Due to the advancement of bandgap

prediction techniques in the field of materials, the first

principles approach is widely employed to calculate the

bandgap values for a wide range of compounds. The

difference between the lowest unoccupied and highest

occupied energy eigenvalues is utilized as an approximation of

the bandgap in density functional theory (Cohen et al., 2012)

(DFT), which is the theoretical foundation for the electronic

structure of many materials. The resulting bandgap values are

frequently less than the genuine values because of the limitations

of DFT theory. More laborious techniques are employed to get

more precise bandgap values, however these techniques have the

problem of taking a lot of time and resources. Finding a bandgap

estimation method that considers both computing capacity and

accuracy is necessary.

To examine the characteristics of materials, several scientists

have experimented with machine learning (Wei et al., 2019). The

subject of materials science has been more interested in machine

learning (Pilania et al., 2016) recently as a result of its growth and

performance in numerous fields. Many scholars (Zhaochun et al.,

1998; Zeng et al., 2002; Yiwei et al., 2007; Xie and Grossman,

2018) have proposed that basic disciplines attempt introducing

machine learning-related techniques to address the problems

they are now facing (Lee et al., 2016). As demonstrated by the

success of applications in other industries, machine learning

techniques are simple to use, use fewer computer resources,

and have good prediction accuracy. In order to forecast

innovative material properties, machine learning techniques

can be used. This can greatly improve prediction accuracy,

lower computation costs, and give guidance for both material

testing and application. The study is mostly conducted utilizing

the descriptors (Himanen et al., 2020) of material physical

characteristics with a focus on machine learning, which has

produced positive outcomes in the interpretability of material

properties.

Studies have demonstrated that standard machine learning

produces better results than deep learning models built using

complicated neural networks for this type of tabular data of this

physical attribute (Grinsztajn et al., 2022). Data calculations for

material physical characteristics are labor-intensive and take a

long time to complete. TheMaterials Genome Project’ (Jain et al.,

2013)s advancements and the study of high-throughput

computing systems have given machine learning techniques

enough data to work with. In order to hasten the creation of

new materials, machine learning techniques are utilized in this

paper to forecast material characteristics, such as bandgap values.

2 Methodology

The upper bound of the ultimate effect of the model is

established by a high-quality dataset data mining procedure,

which also serves as a strong basis. The goal of data pre-

processing is to process raw data with missing values, outliers,

etc. into a high-quality dataset.

2.1 Data preprocess

The data cleaning (Plutowski and White, 1993) process

includes filling missing values, smooth processing of noisy
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data, removing duplicate values, and handling outliers. The data

is subjected to a number of integrations in order to standardize it.

Among these, handling outliers, removing duplicate values, and

processing noisy data all have defined processing goals. Data

preprocessing includes handling missing values, which is a more

crucial step. Missing values result in a large amount of useful

information being absent from the dataset as a whole, making the

distribution of the dataset more muddled and the information it

expresses more challenging to understand. Large numbers of

missing values in the data will interfere with the typical model

training process and produce extremely unstable model

outcomes. There may be techniques like deletion, manual

padding, padding using the mean value of that feature for

addressing missing values. K-Nearest Neighbor method

(Cover and Hart, 1967), regression, and no processing at all.

For a feature with a high number of missing values, the feature

can be considered for deletion so that the dataset does not

contain missing values. When the dataset itself is well known

and there is industry expertise, the missing value may be precisely

filled using industry expertise. When a numerical value is

missing, the other non-missing values of the feature can be

used to fill in the gap. If the missing value is not plural, the

plural of the other non-missing values should be used. For

numerical missing values, we use Manhattan distance,

Euclidean distance, and cosine distance to find the distance

between them. For discrete missing values, we use Hamming

distance and the K-Nearest Neighbor method, which are easy to

understand and use. Using the full dataset, a machine learning

regression model is built to fill in the missing values by using

features that are known to have no missing values as input and

predicting the missing values.

2.2 Feature engineering

After data pre-processing, feature engineering is one of the

crucial steps in the data mining process. Data pre-processing and

model selection are connected by feature engineering, which is

crucial in carrying out the top and bottom. Models and

algorithms only get close to this maximum limit of machine

learning, which is determined by data and features. After data

pre-processing, significant features are extracted from the data

and used to create new features that algorithms and models can

exploit. The three steps of feature engineering are feature

extraction, feature selection, and feature derivation.

2.2.1 Feature selection
Professional empirical method: Feature selection uses either a

manual process or an algorithm to choose features that are

relevant to the prediction labels. This makes data mining

work better. In some fields, it’s important to get the practical

advice of experts who have a lot of experience. This is because

figuring out which features are related to the prediction goal and

which ones are not can greatly lower the cost of the feature

engineering process.

Variance filtering method (Dong et al., 2018): the

contribution of features to the prediction value lies in the

difference between the feature values under the same feature,

and if all of the feature values for a certain feature are the same,

the feature has no influence on the outcome of the prediction. To

get rid of comparable features, utilize the variance filtering

method.

Correlation filtering method: After feature engineering, a

technique called data correlation can be used to examine the

relationship between two or more features. The correlation

analysis approach can be used to determine why two features

or groups of features are interdependent, as well as to predict

other features and help fill in missing values during the pre-

processing of data.

Pearson correlation coefficient (Hauke and Kossowski,

2011), or “linear correlation coefficient”, is a method of

correlation filtering. This method calculates the degree of

linear correlation between the features, and the values are [-1,

1], the correlation of features close to 0 is weaker, and the higher

the contribution to the future model, the weaker the connection

is. The numbers -1 and one reflect fully linear negative and

positive correlations, respectively. The Pearson correlation

coefficient is quick and simple to compute, and it uses

numbers to measure the link between data components, and

can also indicate the direction of the relationship between

features by positive and negative signs. For continuous data,

the Pearson correlation coefficient can be used to compare two

features whose variances are both non-zero and who are linearly

related. The eigenvalues of these two features must also follow a

normal distribution, or something that is very similar to a single-

peaked normal distribution.

The Pearson correlation coefficient is calculated as shown in

Eq. 1.

ρX,Y � cov(X,Y)
σXσY

� E[(X − EX)(Y − EY)]
σXσY

� E(XY) − E(X)E(Y)��������������������������
E(X2 − E2(X)) �������������

E(Y2 − E2(Y))√√ (1)

cov is the covariance and σ is the standard deviation.

In the actual calculation of the Pearson correlation

coefficient, r is typically used to denote the correlation

coefficient. For instance, the sample points of two

characteristics (X, Y) are used in the calculation, and the

correlation coefficient is calculated using the sample

estimation expectation Eq. 2, variance Eq. 3, and covariance

Eq. 4.

E(X) � ‾X � 1
n
∑n

i�1Xi (2)

σ2
X � 1

n − 1
∑n

i�1(Xi − ‾X)2 (3)
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cov(X,Y) � 1
n − 1

∑i�1
n
(Xi − ‾X)(Yi − ‾Y) (4)

Substituting Eq. 2–4 into the definition of the correlation

coefficient yields Eq. 5.

r � ∑n
i�1(Xi − ‾X)(Yi − ‾Y)�����������∑n

i�1(Xi − ‾X)2√ ������������∑n
i�1(Yi − ‾Y)2√ (5)

Eq. 5 can be used to calculate the correlation coefficient, and

the range of values listed in Table1 can be used to assess the

strength of the connection between the features.

Feature correlation has a big impact on machine learning

performance. The central hypothesis is that good feature sets

contain features that are highly correlated with the class, yet

uncorrelated with each other (Hall, 1999).

2.2.2 Feature derivation
In order to create additional features that are crucial to the

model, derived features are created by leveraging the data’s

original features. On the one hand from the business

perspective, on the other hand from the machine learning

model perspective.

With the use of statistical techniques and commercial

expertise, new features are created from the original data in

order to extract key information. For instance, if you are

knowledgeable about the business logic, you may glean a lot

of useful information from it. You can also glean incremental

features from features with rather significant changes in feature

values.

Feature derivation, which is also known as feature

discretization, expands the value of a single feature to produce

numerous features. The category characteristics must be encoded

using one-hot encoding to produce multiple features before being

fed into the linear model if one is utilized; The feature values for

numerical features could be binned into a number of fixed

interval segments, followed by the use of one-hot encoding to

create the interval segments. Such amethod canmake it easier for

features to be combined later.

The technique of combining two or more features in a certain

way to create new features from a dataset is known as feature

combination. Features are combined by feature intersection,

which combines their intersection, concatenation,

complementary, and Cartesian set intersection. Numerical

operations include adding, removing, multiplying, and

dividing features.

2.3 Machine learning methods

Machine learning is divided into two main parts: supervised

learning (Breiman, 2001) and unsupervised learning (Friedman,

2001). To train a classification model that can discriminate

between cats and dogs, for example, existing photos must be

labeled to indicate whether each image is of a cat or a dog.

Supervised learning requires labeled datasets for model training.

The datasets are directly grouped via unsupervised learning,

which eliminates the need to label the datasets; data inside the

same group shares characteristics. The common models used in

machine learning algorithms are classified as decision trees into

regression decision trees (Hoerl and Kennard, 1970) and

classification decision trees (Fletcher and Islam, 2019).

2.3.1 XGBoost
The premise behind the boost approach (Schapire, 1999),

which was evolved from classification decision tree models, is

that it is significantly simpler to train many models with low

prediction accuracy than it is to train just one model accurately.

The Boost algorithm uses its loss function to adjust the next weak

learner after each training weak learner. The final model is

obtained once the loss function has decreased to a

predetermined small value.

By lowering the gradient of the prior weak learner in Boost

(gradient = actual value - predicted value), GBDT (Ke et al., 2017)

creates a new weak learner in the direction of gradient reduction

(Schapire, 1999; Friedman, 2001; Ke et al., 2017). Following this

GBDT sequentially constructs the weak classifier with reduced

gradient.

The XGBoost (Chen and Guestrin, 2016) regression

algorithm is derived from the GBDT algorithm, which is

derived from the Boost regression algorithm. The benefit of

XGBoost is that the loss function’s form may be customized,

enhancing the model’s generalizability.

XGBoost has made a lot of advancements in order to raise the

model’s efficacy. Among them include the employment of a

regularization term to prevent model overfitting and the

provision of column sampling to increase the model’s

generalizability. The loss function of the model is also

expanded from squared loss to second-order derivable

function loss. The method of XGBoost uses the Taylor

expansion quadratic term as the loss function, and the first

two orders as the improved gradient; the regularization limits

the complexity of the model, and a model with higher complexity

is prone to lead to overfitting. This type of training produces a

model with low error and strong outcomes on the training set,

but it performs terribly on the test set and has poor generalization

TABLE 1 Table of feature correlated intensity.

|r| Related strength

0.0–0.2 Very weak or no correlation

0.2–0.4 Weak correlation

0.4–0.6 Moderate correlation

0.6–0.8 Strong Related

0.8–1.0 Extremely strong correlation
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ability. The column sampling method can be employed in

XGBoost to increase the model’s generalization capacity

because it is comparable to the random forest feature

sampling method.

The loss function and the regularization term make up the

two components of the XGBoost objective function. The

XGBoost objective function’s derivation is carried out below.

It is known that the training set

T � {(x1, y1), (x2, y2), . . . , (xn, yn)}, the loss function ι(yi, ŷi),
and the regularization term Ω(fk) the overall objective function
can be written as Eq. 6:

Obj � ∑
i
ι(yi, ŷi) +∑

k
Ω(fk) (6)

Where Obj is the expression on linear space; i is the ith sample

and k is the kth tree; and ŷi is the predicted value of the ith

sample xi. Obj can be translated into Eq. 7:

Obj � ∑
i
ι(yi, ŷ

t−1
i + ft(xi)) +∑

k
Ω(fk) (7)

Three steps to optimize the XGBoost objective function: first,

the Taylor expansion of the objective function is carried out to

the quadratic term and the constant term is removed, thus

optimizing the loss function term to obtain Eq. 8:

Obj � ∑n

i�1[ι(yi, ŷt−1i ) + gif t(xi) +
1
2
hif

2
t (xi)] +∑

k
Ω(f k) (8)

Then, expanding the regularization term and removing the

constant term yields Eq. 9:

Obj � ∑n

i�1[gif t(xi) + 1
2
hif

2
t (xi)] +Ω(f k) (9)

Next, combining the primary and quadratic coefficients

yields Eq. 10:

Ω(f k) � γΤ + 1
2
λ∑T

j�1w
2
j (10)

Bringing ft(xi) � wq(xi) into the objective function yields

Eq. 11:

Obj � ∑n

i�1[giwq(xi) +
1
2
hiw

2
q(xi)] + γΤ + 1

2
λ∑T

j�1w
2
j (11)

Taking all training samples and grouping them by leaf nodes

yields Eq. 12:

Obj � ∑T

i�1
⎡⎢⎢⎢⎣⎛⎝∑

i∈Ij
gi⎞⎠wj + 1

2
⎛⎝∑

i∈Ij
hi+λ⎞⎠w2

j
⎤⎥⎥⎥⎦ + γΤ (12)

Define Eqs. 13 and 14:

Gj � ∑
i∈Ij

gi (13)

Hj � ∑
i∈Ij

hi (14)

Bringing Gj andHj into the objective function yields Eq. 15:

Obj � ∑T

i�1[Gjwj + 1
2
(Hj + λ)w2

j ] + γΤ (15)

2.3.2 Stacking
One of the integrated learning approaches, along with

bagging and boosting, is stacking. Where the k-fold cross-

validation method is used to address the data leaking issue

and output the samples for each component. Here, we

implement the following design using 5-fold cross-validation

as an example. In the beginning, the data is split into five

segments, of which four are used as the training set and one

as the validation set. A total of five models are then trained.

Second, the models trained on the training set predict the

validation set, and the prediction results are used as the input

of the second layer model. Finally, there are five output values

that are averaged and utilized as the input of the second layer

after each trained model predicts the test set in step three. In

order for the weak learners to complement one another’s

strengths and be able to develop the ideal strong learner, the

weak learners with less resemblance are chosen.

Input: Training setD � {(x1, y1), (x2, y2), . . . , (xm, ym)}
Elementary learning algorithms L1,L1, . . . ,LT

Secondary learning algorithm L

Process:

1. for t � 1, 2, . . . ,T do

2. ht � Lt(D)
3. End for

4. D′ � ∅
5. for i � 1, 2, . . . , m do

6. for t � 1, 2, . . . , T do

7. zit � ht(xi)
8. End for

9. D′ � D′ ∪ ((zi1, zi2, . . . , ziT), yi);
10. End for

11. h′ � L(D′)
12. Output: H(x) � h′(h1(x), h2(x), . . . , hT(x))
Algorithm 1. stacking algorithm.

3 Proposed approach

3.1 Data pre-processing

The dataset underwent data pre-processing, such as data

cleaning, data integration, data statute, and data transformation.

We first sought advice from specialists in the field of materials

before doing data preprocessing for machine learning.

First, the data with feature value of PAW_PBE in feature

dft_type was selected. Then, the features identified after

consultation with material domain experts that are not
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relevant to the bandgap valuesspecies_pp, species_pp_version,

valence_cell_iupac, valence_cell_std, Egap_fit, energy_cutoff,

delta_electronic_energy_convergence, kpoints, delta_electronic_

energy_threshold, positions_fractional, bravais_lattice_orig,

lattice_variation_orig, lattice_system_orig, Pearson_symbol_orig,

Bravais_lattice_relax, lattice_variation_relax, lattice_system_relax,

Pearson_ symbol_relax, others_json_type, all_json_type,

attachment_file, created_at, updated_at, and deleted_at, etc.

3.1.1 Data cleaning
First, the attributes must be chosen and processed. Then,

have to get rid of features that were made by combining other

features (natoms, compound, dft_type), features whose element

values are separated by commas and are messy and irregular, and

features that are missing more than 80% of their values. Finally,

you have to fill the empty values with the mean value of SpinF

features.

Get rid of the columns of features that are missing more than

20% of their values. Using the logic behind the remaining feature

values, we can figure out that the number of oxygen atoms needs to

be filled. Using the periodic table of elements, we can find that the

number of oxygen atoms needs to be set to 6. All of the missing

vacancies in the feature species pp ZVAL are made of oxygen.

The compound can bemade up of the composition and species

to make future feature engineering easier and to make the input

model more convenient. The feature compound can be removed.

The volume cell is equal to the product of the volume atom

times the number of atoms. The energy cell is equal to the

product of the energy atom times the number of atoms. The

enthalpy cell is equal to the product of the enthalpy atom times

the number of atoms. The PV cell is equal to the product of the

PV atom times the number of atoms. Spin cell is the same as spin

atom times the number of atoms. Stoich is the same as the ratio of

the number of atoms of different elements in the compound.

Spacegroup relax and spacegroup_orig are the same as

spacegroup relax and spacegroup_orig.

The cost of training amodel can be cut by getting rid of one of

the features for characteristics that can be combined with other

features or have the same feature value more than once.

3.2 Feature engineering

3.2.1 Characteristic analysis of variance
When the variance of the internal feature vector is 0, the

feature does not give the model any more information. Following

TABLE 2 Variance of feature.

Feature Characteristic variance Feature Characteristic variance

volume_cell 53272.8065 composition_4 13.4827

energy_cell 10109.5627 species_pp_ZVAL_4 11.4282

spacegroup_orig 6460.3881 Density 5.904

species_3 607.4346 bader_atomic_volumes_5 5.3786

geometry_6 588.6892 geometry_1 4.4192

species_2 546.8329 geometry_2 4.1839

species_1 512.9624 Egap 3.5256

geometry_4 406.3538 scintillation_attenuation_length 2.3904

geometry_5 394.0146 species_pp_ZVAL_5 1.8961

Natoms 200.3326 bader_net_charges_2 1.8293

species_4 196.9219 bader_net_charges_3 1.6229

bader_atomic_volumes_1 110.1093 bader_net_charges_1 1.4951

bader_atomic_volumes_2 95.6132 composition_5 1.2616

bader_atomic_volumes_3 75.5462 bader_net_charges_4 0.7398

spin_cell 55.2414 Egap_type 0.6853

composition_3 41.719 nspecies 0.5791

composition_2 37.1896 bader_net_charges_5 0.1463

geometry_3 36.3493 spinF 0.0966

bader_atomic_volumes_4 33.2132 stoichiometry_3 0.0478

species_5 31.8163 stoichiometry_2 0.0404

composition_1 25.8664 stoichiometry_1 0.0372

species_pp_ZVAL_3 25.031 stoichiometry_4 0.0136

species_pp_ZVAL_1 17.4734 stoichiometry_5 0.0014

species_pp_ZVAL_2 16.0521 PV_cell 0
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data preprocessing, the calculated variance of the attributes is

displayed in Table 2.

In addition to evaluating the variance of the internal vector of

the feature, the correlation of each feature must be calculated,

which will speed up the construction of the machine learning

model. So, the next will calculate the Pearson correlation of each

feature.

3.2.2 Feature multicollinearity analysis
Multicollinearity between features during model training has

a detrimental impact on the trained model scores, and this effect

is particularly pronounced in linear models. In this study, we

filter away the features whose absolute value of correlation is

equal to one and keep one of them using Pearson’s coefficient of

correlation approach. When multiple features are positively or

negatively correlated with the same feature, it is sufficient to keep

one feature.

The multicollinearity is computed using the Pearson

correlation coefficient method, and the heat map of the derived

Pearson correlation coefficient component is displayed in Figure 1.

The correlation between natoms and volume cell is 0.85,

according to the calculation of the Pearson correlation

coefficient, the correlation coefficient between

scintillation_attenuation_length and density is -0.82, the

correlation between geometry_1 and geometry_2 The

correlation coefficient between geometry_1 and geometry_2 is

0.81, the correlation coefficient between geometry_5 and

geometry_4 is 0.97, the correlation coefficient between

species_4 and species_pp_ZVAL_4 is 0.86, and the correlation

coefficient between species_5 and species_pp_ZVAL_5 is 0.88.

This work attempts to eliminate one of the extremely strongly

associated aspects for these and their significantly correlated

features. Table 3 displays the model assessment values of these

features both before and after elimination.

The retention of these extremely strongly associated feature

models is more productive, as shown by the assessment metrics

of the aforementioned tests.

4 Machine learning experiments

In order to be more effective when using the model, the

experimental protocol design should adhere to the original logic

of the data business. In the area of material bandgap, there are

FIGURE 1
Heat map of features’ pearson correlation coefficient.
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also some physical laws. The law that states that bandgap values

are 0 for metals and greater than 0 for nonmetals is revealed by a

review of references and data exploration (Zhuo et al., 2018), and

the data for material compounds with bandgap values of 0 and

those with bandgap values greater than 0 are comparable.

Additionally, the physical qualities of materials that share the

same composition or structure are more similar.

Based on the above material characteristics two major types

of scenarios are designed in this section. The process is shown

in the Figure 2. The construction of methods for forecasting the

bandgap values of metallic and non-metallic materials is the

first major category, and it is further broken down into direct

regression models, categorical regression models, and stacking

procedures. The second major category of solutions is to design

solutions for predicting non-metallic bandgap values, which

comprise training the regression model, dividing the dataset

into groups based on the different element kinds, and direct

regression model prediction.

4.1 Classification model

The partial confusionmatrix obtained from the trainingmodel

in 10-fold cross validation using the XGBoost classification

algorithm is displayed in Figure 3. The distinction between

metal and non-metal materials is almost perfectly made by the

average AUC value of 0.9937. There is a 97.3% accuracy rate. The

specificity is 0.9611 and the recall is 0.9820.

Figure 4 displays the ROC curves that were generated using

the ten-fold cross-validation procedure. The model’s area under

the ROC curve is clearly visible in the figure, demonstrating that

the model has a strong classification effect.

4.2 Regression model

The experimental procedure and results of splitting the

dataset according to the number of compound elemental

FIGURE 2
Experiment scheme flow chart.

TABLE 3 The compare of whether to retain Strongly relevant features’ classification model.

Whether
to delete features

AUC Accuracy Recall rate Specificity

Retained features 0.9937 0.9731 0.9820 0.9611

Delete Features 0.9935 0.9725 0.9810 0.9612
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species are described in detail. The scheme of dividing the dataset

according to the compound elemental species performed best on

the test set in predicting the regression model for non-metallic

compounds. The non-metallic dataset contained in this dataset

has 2, 3, 4, and five elemental compounds, so the regression

model for predicting the four bandgap values was trained.

There are 14,457 non-metallic compound data available. The

best model among the three models, XGBoost, random forest,

and lightGBM, is now chosen for training prediction using a ten-

fold cross-validation approach.

The evaluation metrics of the three regression models on the

five datasets are shown in Figure 5.

As shown in the Figure 6. By observing the average values of

the evaluation metrics of the three models on the five test sets, it

can be concluded that the XGBoost model has the best

phenotype, so the XGBoost algorithm is better overall when

training the regression model after splitting the dataset according

to the number of element types.

One dataset was chosen from five datasets to more clearly

and visually demonstrate how the XGBoost model prediction

affected the validation set, and the scatter plot of the bandgap

values and the fitted curves were drawn for the true bandgap

FIGURE 3
XGBoost 10-fold confusion Matrix.

FIGURE 4
XGBoost 10-fold ROC.

FIGURE 5
Three models evaluation metrics.
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values of the training model on the validation set and the

predicted bandgap values of the model on the validation set,

so that the discrepancy between the model’s true bandgap values

on the validation set and predicted bandgap values could be more

easily compared with the true values. As a result, the model’s

impact may be seen.

The model predicts the bandgap values, which are shown in

the vertical coordinates. The real bandgap values, which were

computed using the DFT method, are shown in the horizontal

coordinates. As shown in the Figure 7, the gray straight line

shows the best model, in which the predicted and real values are

exactly the same when fitting the curve, and the orange straight

line shows the line that shows how well the predicted and real

values fit the scatter plot. When the gray line and orange line

overlap more, the trained model works better. When they do not

overlap as much, it does not work as well.

5 Summary and conclusion

In this paper, the classifier that tells the difference between

metal and non-metal is restarted using the training XGBoost

model with machine learning method. This is done by starting

with the physical properties of electronic slurries, which are the

main material used to make devices for the intelligent power grid,

and analyzing the data using bandgap theory. And the grid search

FIGURE 6
Evaluate metric of three regression models.

FIGURE 7
Fitted plot of two elemental compound predict Egap and DFT Egap.
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algorithm is used to find the best value for the XGBoost model’s

hyper parameters. The AUC value, accuracy, recall, and specificity

are the four evaluation indexes that are used to decide what the best

value is. After XGBoost tuning, the AUC of the model is 0.9943,

which is better by 0.0006. The recall is 0.9815, which is worse by

0.0005, and the specificity is 0.9623, which is better by 0.0003. The

accuracy is 0.9733, which is better by 0.0.
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