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Lithium battery has beenwidely applied as new energy to copewith pressures in

both form environment and energy. The remaining useful life (RUL) prognostics

of lithium-ion batteries have become more critical. Convenient battery life

prediction allows early detection of performance deficiencies to help maintain

the battery system promptly. This paper proposes a RUL prognostics model of

lithium-ion batteries based on a coordinate reconfiguration of degradation

trajectory and multiple linear regression. First, a new sampling rule is used to

reconfigure the coordinates of degradation data of new batteries and truncated

similar batteries. Then, the relationship between similar and new lithium-ion

batteries is established by using the reconfiguration data. Moreover, a new RUL

prognostics model based on a coordinate reconfiguration of degradation

trajectory and multiple linear regression is established by considering the

influence of time-varying factors, which can improve prediction accuracy

with small sample data and significantly reduce product development time

and cost.
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1 Introduction

To cope with the dual pressure in the field of environment and energy, most countries

in the world regard the exploitation and utilization of new energy as a significant strategy

for sustainable development (Fan et al., 2021a). With the gradual improvement of energy

storage systems, equipment with batteries as the primary energy supply or energy storage

component is widely applied. Lithium-ion batteries are commonly used in aerospace,

electric vehicles, and electronic products to relieve environmental pressure (Ren et al.,

2019; Zhang et al., 2021; Li et al., 2022c), such as Contemporary Amperex Technology Co.,

Limited (CATL), which is a global leader of new energy innovative technologies, Tesla,

OPEN ACCESS

EDITED BY

Dongming Fan,
Beihang University, China

REVIEWED BY

Haidong Shao,
Hunan University, China
Xiaohong Zhang,
Taiyuan University of Science and
Technology, China

*CORRESPONDENCE

Lianfeng Li,
buaallf@163.com
Weiwei Cui,
buaacvv@126.com

SPECIALTY SECTION

This article was submitted to Smart
Grids,
a section of the journal
Frontiers in Energy Research

RECEIVED 31 August 2022
ACCEPTED 20 September 2022
PUBLISHED 06 January 2023

CITATION

Chen Z, Li L, Cui W, Yang S, Wang Y and
Wang D (2023), Remaining useful life
prognostics of lithium-ion batteries
based on a coordinate reconfiguration
of degradation trajectory and multiple
linear regression.
Front. Energy Res. 10:1033039.
doi: 10.3389/fenrg.2022.1033039

COPYRIGHT

© 2023 Chen, Li, Cui, Yang, Wang and
Wang. This is an open-access article
distributed under the terms of the
Creative Commons Attribution License
(CC BY). The use, distribution or
reproduction in other forums is
permitted, provided the original
author(s) and the copyright owner(s) are
credited and that the original
publication in this journal is cited, in
accordance with accepted academic
practice. No use, distribution or
reproduction is permitted which does
not comply with these terms.

Frontiers in Energy Research frontiersin.org01

TYPE Original Research
PUBLISHED 06 January 2023
DOI 10.3389/fenrg.2022.1033039

https://www.frontiersin.org/articles/10.3389/fenrg.2022.1033039/full
https://www.frontiersin.org/articles/10.3389/fenrg.2022.1033039/full
https://www.frontiersin.org/articles/10.3389/fenrg.2022.1033039/full
https://www.frontiersin.org/articles/10.3389/fenrg.2022.1033039/full
https://www.frontiersin.org/articles/10.3389/fenrg.2022.1033039/full
https://crossmark.crossref.org/dialog/?doi=10.3389/fenrg.2022.1033039&domain=pdf&date_stamp=2023-01-06
mailto:buaallf@163.com
mailto:buaacvv@126.com
https://doi.org/10.3389/fenrg.2022.1033039
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org/journals/energy-research#editorial-board
https://www.frontiersin.org/journals/energy-research#editorial-board
https://doi.org/10.3389/fenrg.2022.1033039


which is the global leader in electric vehicles. The battery

performance directly affects the safety of system operation,

mission completion, and the lifestyle of consumers (Chen

et al., 2021; Li et al., 2022b). In order to extend the service life

of batteries, new electrode and electrolyte materials, new battery

structures, and battery performance degradation mechanisms are

continuously studied. Lithium-ion battery manufacturers must

conduct extensive life testing to obtain the design formulations,

structural parameters, and operating environments that

maximize battery life. Predicting the life of newly developed

batteries based on the full-life degradation data of similar

batteries (reference batteries) can significantly reduce product

development time and cost (Finegan and Cooper, 2019; Fan et al.,

2021b; Ge et al., 2022). Therefore, the remaining useful life (RUL)

prognostics of lithium-ion batteries are beneficial for properly

using and maintaining batteries and assisting in designing new

products during the R&D phase. The RUL of a battery is

influenced by multiple factors such as current health status,

historical data, and failure mechanisms. Therefore, predicting

battery RUL is both exciting and challenging.

Many reviews has discussed the RUL of lithium-ion batteries,

such as papers (Han et al., 2019; Li et al., 2019; Hu et al., 2020; Ge

et al., 2021). Ge et al. (2021) organized four public battery data

sets and gave the advantages and limitations of different state of

health (SOH) estimations and RUL prognostics methods of

lithium-ion batteries. Han et al. (2019) reviewed the aging

mechanisms, degradation characteristics, and the influence

factors of lithium-ion battery degradation along with the

whole cycle life. Wang et al. (2021) gave a critical review of

RUL prognostics of lithium-ion batteries based on deep learning

algorithms, which compared different adaptive mathematical

models. Lipu et al. (2018) analyzed challenges and

recommendations about SOH and RUL estimation methods

for lithium-ion batteries in electric vehicles. Wu et al. (2016)

reviewed the RUL prognostics and analyzed the practical

application problems of vehicle lithium-ion batteries using

data-driven methodologies. Li et al. (2019) summarized the

benefits and drawbacks of data-driven approaches for battery

SOH estimations. Hu et al. (2020) reviewed RUL prediction

methods and provided some challenges: battery data sets, first

principle-based prognostics, early prediction algorithms, and

engineering applications. The RUL prognostics approach for

FIGURE 1
The performance degradation trajectories of the new battery
and similar reference batteries.

FIGURE 2
The coordinate reconfiguration of the performance degradation trajectory of lithium-ion batteries.
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lithium-ion batteries is mainly divided into mechanical models

and data-driven methods. The mechanism model needs to

establish a mathematical system dynamics or degradation

mechanism model.

In recent years, many researchers have used Kalman filters or

particle filters based on degradation modelling to predict the

RUL of lithium-ion batteries. However, it is usually not

economical or feasible to build a physical model when the

degradation mechanism of the battery is unknown. In

addition, mechanical models are generally applicable only to

specific battery models. When historical degradation data is

known, data-driven methods can predict the lifetime of a

lithium battery without a degradation model (Zhao et al.,

2021). Data-driven prediction methods are divided into two

categories: data extrapolation methods and knowledge-based

methods. Zhang et al. (2021) established a hybrid prediction

model, which integrates a random forest, artificial bee colony,

and general regression neural network, to predict the RUL of

lithium-ion batteries in an early-cycle stage. Nuhic et al. (2013)

presented a data-driven method for SOH and RUL prognostics of

lithium-ion batteries based on a support vector machine (SVM)

and training and testing data processing. Jianfang et al. (2021)

proposed a multi-scale prediction approach for RUL and SOH

based on Wavelet neural network and unscented particle filter

model. A new hybrid RUL method for lithium-ion batteries,

which can fully use historical information, is proposed by

combining the algorithms of unscented Kalman filters,

ensemble empirical mode decomposition, and relevance vector

machine (Chang et al., 2017). Lu et al. (2020) predicted the RUL

of lithium-ion batteries with high accuracy based on the

autoregressive integrated moving average model time series

algorithm. Lui et al. (2021) presented a physics-based RUL

prognostics method by considering multiple degradation

mechanisms applicable to lithium-ion batteries, and it has

been used in implantable applications. Wu et al. (2022)

explored a RUL prognostics method for lithium-ion batteries

by improving particle filter algorithm from the perspective of

reweighting the particles, which can improve the accuracy of the

prediction results of its remaining service life. Lyu et al. (2021)

established a model-data-fusion method for battery SOH

estimation and RUL prognostics by combining a data-driven

battery degradation model and a particle filter, and battery aging

tests verified the proposed model-data-fusion method. Li et al.

(2022a) built a novel health indicator for online health estimation

of lithium-ion batteries by combining an interpolation method

and incremental capacity curve filtering. Ma et al. (2021) built a

new framework for capacity regeneration point detection and

RUL prognostics through the particle filter and autoregressive

model. Yu et al. (2022) presented an improved Euclidean

distance method and a cosine similarity method from the

perspective of similarity for online diagnosis of multi-fault in-

series connected battery packs. Ge et al. (2022) established a

comprehensive lithium-ion battery SOH estimation method

based on variable mode decomposition, particle filter, and

long short-term memory with a self-attention mechanism. Hu

and Zhao (2022) presented a RUL prognostics method for

lithium-ion batteries based on the wavelet threshold denoising

and transformer neural network. Wang and Feng (2021)

proposed a new RUL prognostics approach for lithium-ion

batteries using a novel health indicator and relevance vector

machine. The data extrapolation method firstly predicts the

lithium-ion battery capacity or health index sequence and

then determines whether it reaches the failure threshold or

calculates the RUL. Data extrapolation methods are only

suitable for short-term state prediction and late-remaining life

prediction due to iteration errors. The knowledge-based

approach establishes the mapping relationship between data

and life without any iteration error and is widely adopted in

practice.

FIGURE 3
Schematic diagram of life prediction modeling.

FIGURE 4
Lithium-ion battery health index degradation sequence.
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In this paper, we established a new RUL prognostics model

based on a coordinate reconfiguration of degradation trajectory

and multiple linear regression. The main contributions of this

study are summarized as follows:

(1) This paper proposes a coordinate reconfiguration of

degradation trajectory to transform the battery

performance degradation data of different lengths into the

same size, revealing the relationship between the

performance degradation patterns of different battery

samples.

(2) We consider the influence of time-varying factors when

building the RUL prognostics model to improve

prediction accuracy.

(3) The prognostics model can achieve high prediction accuracy

with small sample data and significantly reduce product

development time and cost.

The remainder of this paper is organized as follows. Section 2

introduces the coordinate reconfiguration of degradation

trajectory and multiple linear regression. An analysis of the

results is discussed in Section 3. Finally, some concluding

remarks from this study are presented in Section 4.

2 Materials and methods

Lithium-ion batteries usually have different degradation

model parameters at different life degradation stages and

TABLE 1 Battery life data.

Number #1 #2 #3 #4 #5

Lifespan 524 689 770 870 1081

FIGURE 5
Battery life prediction results under different data conditions.
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different degradation models. Data-driven lithium-ion battery

lifetime prediction methods mainly include data extrapolation

and knowledge-based approaches. Meanwhile, the data

extrapolation method can only generalize the historical

degradation trend to the future. The life prediction results

obtained by using this method have considerable errors in the

case of small sample data. In contrast, the knowledge-based

approach still has high prediction accuracy in the case of

small sample data. Therefore, this section proposes a new

knowledge-based method for the life prediction of lithium-ion

batteries.

2.1 Coordinate reconfiguration of
degradation trajectory

The performance degradation trajectories of new batteries

and their similar reference batteries are shown in Figure 1. It is

shown that the performance degradation trajectories of the new

battery and each reference battery are widely different due to

the different formulations. Both data extrapolation and

similarity-based methods cannot achieve good prediction

accuracy. Degraded data are usually sampled at equal time

intervals. Meanwhile, the performance degradation data are

time-based and collected at equal time intervals. However,

different formulation batteries have different lifetimes, and

the sampling points of performance degradation sequences

are different, which made it extremely difficult to explore the

correlation between the evolution of different battery

performance degradation laws.

Based on above problem, we rotate degradation trajectory

and coordinate system simultaneously by 90 degrees

counterclockwise. The time-based degradation data is

transformed into the degradation amount as the base, which

achieves the coordinate reconstruction of the original

performance degradation trajectory. Since all battery samples

are defined with the same degradation amount of functional

failure, the sampling benchmark is unified among the samples

after the reconfiguration, which is beneficial for mining the

interrelationship between the data. The principle and process

of the coordinate reconfiguration of the performance

degradation trajectory are shown in Figure 2.

Data-based and knowledge-based life prognostic methods

are mathematically regression problems. Regression problems

are divided into two categories: prediction (which is different

from “prediction” in the sense of “life prognostics”) and control.

Prediction in mathematics is defined as mathematical methods to

obtain a functional relationship between the independent and

dependent variables. Control in mathematics is defined as

determining the range of independent variables by ensuring

that the dependent variables are within the specified range.

Prediction is a forward calculation process, while control is an

inverse solution process, so the prediction problem is more

accessible than the control problem. The predictive life

problem in system health management is a control problem

in mathematical terms. The product life is predicted by

controlling the health index of the product.

This paper proposes a method to reconfigure the

performance degradation trajectory coordinates to use the

performance degradation data of similar batteries. The

coordinate reconfiguration transforms the performance

degradation data sampled with equal time intervals into the

cycle number data sampled with equal degradation amount,

which is the same performance degradation trajectory from

two different dimensions. After reconfiguration, the RUL

prognostic problem is transformed into a predictive problem

with the health index as the independent variable and the number

of cycles experienced as the dependent variable, which is much

easier to solve.

The lithium-ion battery performance degradation trajectory

is obtained by connecting several discrete columns of data. The

original performance degradation trajectory is donated

by{(t1, HI1), (t1 + Δt,HI2),
(t1 + 2Δt,HI3), ..., (t1 + (N − 1)Δt,HIN)},

where t1 is the initial test time; Δt is the time interval of the test,

which is a cycle for lithium-ion battery performance degradation;

N is the total number of tests, which is the length of the

TABLE 2 Life prediction results of different batteries.

Number Real life Predicted life Absolute error (%) Relative error (%)

#1 524 616 92 17.6

#2 689 755 66 9.6

#3 770 755 −15 2.0

#4 870 774 −96 11.0

#5 1081 1159 78 7.2

Average value — — 25 9.5
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degradation sequence; HIi, i � 1, 2, ..., N is the lithium-ion

battery health index at different times. The original

performance degradation trajectory can be simplified as

{(1, HI1), (2, HI2), (3, HI3), ..., (N,HIN)} (1)

First, the health index series are smoothed to be strictly

monotonic using the empirical modal decomposition (EMD)

method. The degenerate trajectory is represented

as{(1, HI1*), (2, HI2*), (3, HI3*), ..., (N,HI*N)} with HI1* >HI2* >
HI3* > ...>HI*N. Let HI*i , i � 1, 2, .., N be the smoothed health

index value. It is known that the smoothed health index series are

strictly monotonic according to the properties of EMD.

Then, the health index sampling interval and sequence were

determined. Let ΔHI be the difference in health index between

adjacent sampling points. HI1* and HI*N denote the initial

(maximum) and termination (minimum) values of the

sampling sequence. Therefore, the reconfigured sampling

sequence is {HI1*, HI1* − ΔHI,HI1* − 2ΔHI, ..., HI*N}, where

HI1* is the first value of the smoothed health index sequence,

andHI*N may not be at the sampling point. Now suppose (HI1* −
HI*N)/ΔHI is a positive integer.

We exchange the degradation trajectory coordinates, so

{(1, HI1*), (2, HI2*), (3, HI3*), ..., (N,HI*N)} becomes

{(HI1*, 1), (HI2*, 2), (HI3*, 3), ..., (HI*N,N)}. Then, by using the

piecewise cubic Hermite interpolating polynomial (PCHIP)

algorithm, the sequence of cycle numbers for the reconfigured

sampling sequence is calculated as {C1, C2, C3, ..., CM}. Thus, the
performance degradation trajectory after reconfiguration is

given by

{(HI1
*, C1), (HI1

* − ΔHI, C2), (HI1
* − 2ΔHI, C3), ..., (HI1

*

− (M − 1)ΔHI, CM)} (2)

where HI1* is the health index of the first cycle, ΔHI is the

reconfigured health index sampling interval,M is the number of

sampling points after reconfiguration.

The PCHIP interpolation algorithm is as follows.

Let I � [a, b] be a � x0 <x1 < ...< xn � b, fk is the value of

the function at the split point, denote

hk � xk+1 − xk, pk � f′(xk), where k � 0, 1, .., n − 1. The

PCHIP function Ih(x) satisfies the following conditions:

(1) The definition domain is I � [a, b];
(2) Ik � [xk, xk+1], k � 0, 1, ..., n − 1 is represented as a subset of

I, Ih(x) can be represented as a cubic spline polynomial

equation Ik(x);
(3) The Ih(x) satisfy the interpolation condition: Ih(xk) �

fk, I′h(xk) � pk, k � 0, 1, 2, ..., n − 1.

In each subinterval [xk, xk+1], the PCHIP function can be

expressed as

Ik(x) � fk + ck,1(x − xk) + ck,2(x − xk)2 + ck,3(x − xk)3 (3)
where

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ck,1 � pk

ck,2 � ( 3
hk

(fk+1 − fk) − 2pk − pk−1) 1
hk

ck,3 � (pk+1 + pk − 2
fk+1 − fk

hk
) 1

h2k

hk � xk+1 − xk, pk � f′(xk)
x ∈ [xk, xk+1], k � 0, 1, ..., n − 1

(4)

2.2 Multiple linear regression

After coordinate reconfiguration, the reconfiguration data of

the new and the reference battery is achieved. The newly

developed battery reconfiguration data is noted as

{(HI1, C
p
1 ), (HI1 − ΔHI,Cp

2 ), (HI1 − 2ΔHI,Cp
3 ), ..., (HI1

− (M − 1)ΔHI, Cp
M)} (5)

where Cp
i , i � 1, 2, ...,M is the number of charge cycles for each

new battery sampling point. The data after reconfiguration of the

jth reference battery is noted as:

{(HI1, C
r,j
1 ), (HI1 − ΔHI,Cr,j

2 ), (HI1 − 2ΔHI,Cr,j
3 ), ..., (HI1

− (M − 1)ΔHI,Cr,j
M)}, j

� 1, 2, ..., Q

(6)
where j indicates the jth type of reference battery and Q is the

total number of reference battery types.

The mapping between the cycle number and health index of

the new and reference batteries was established by multiple linear

regression, which is shown in Figure 3. Note that

(HI, Cr,1, Cr,2, ..., Cr,Q)→f fCp (7)

where Cp is the number of cycles of a new battery at a health

index of HI.

The multiple linear regression model is as follows:

Cp � f(Cr,1, ..., Cr,Q,HI; θ) � θ0 + θ1 · Cr,1+, ...,+θQ · Cr,Q + θQ+1 ·HI
� [1, Cr,1, ..., Cr,Q,HI][θ0, θ1, ..., θQ, θQ+1]T

(8)

where θ � [θ0, θ1, ..., θQ, θQ+1]Tis Q + 2 regression parameters,

which can be determined from the training data.

The objective function is determined by the least square

method, and the parameters of the regression model were

estimated using the data shown in Figure 4, where θ̂ �
[θ̂0, θ̂1, ..., θ̂Q, θ̂Q+1]T.
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Let HIthreshold be the failure threshold, suppose the life of

reference batteries is {Lr,1, Lr,2, ..., Lr,Q}, then the life L̂
p
of the

newly developed battery is estimated as

L̂
p � [1, Lr,1, ..., Lr,Q,HIthreshold][θ̂0, θ̂1, ..., θ̂Q, θ̂Q+1]T (9)

3 Case study

In this case study, the effectiveness and feasibility of the

proposed method are verified using data from different lithium-

ion battery life cycle tests under laboratory conditions. Five different

lithium-ion batteries are cyclically charged and discharged under the

same conditions (room temperature). The voltage, current, and

capacity data of the charging and discharging process are recorded

during the test. The discharge capacity is used as a performance

index to quantify the SOH of lithium-ion batteries. The battery fails

when the capacity of the test battery degrades to 82% of the rated

capacity. The discharge capacity of lithium-ion batteries gradually

decreases, and the failure threshold is 82%. The cycle life test data of

the five test batteries are shown in Table 1.

First, the SOH of lithium-ion batteries is evaluated using

capacity data to obtain a sequence of health indices reflecting the

health of lithium-ion batteries.

HI(t) � C(t)
Crated

(10)

where C(t) is the real-time capacity and Crated is the rated

capacity.

The health index degradation sequences of the five test

batteries are shown in Figure 4. The relative length (RL) of

the known data is defined as

RL � 1 −HIend
1 −HIthreshold

× 100% (11)

where HIend is the last health index in the known data and

HIthreshold is the failure threshold of the health index.

One of the five test batteries was selected as the predictive

battery. The remaining four batteries were used as reference

batteries for life prediction analysis under different known data

length conditions. The results are shown in Figure 5. For battery

1, the relative error of prediction is less than the limited value

0.2 after the relative length of known data is greater than 30%; for

batteries 3 and 5, the relative error of prediction is less than the

limited value 0.2 after the relative length of known data is greater

than 20%. With the gradual increase of known data, the life

prediction results are closer to real life. The above illustrates that

the proposed life prediction method can constrain the relative

error of prediction to less than 0.2 with little data.

In order to verify the applicability of the proposed method

to different batteries, batteries 1, 2, 3, 4, and 5 were taken in

turn as the predictive batteries under the condition of 50%

known data length, and the remaining four batteries were used

as the reference batteries. The prediction results are shown in

Table 2.

According to Table 2, the average absolute error of the prediction

results is 25, and the average relative error is 9.5% under the condition

of 50% known data length. The RUL prognostics model based on a

coordinate reconfiguration of degradation trajectory and multiple

linear regression has high accuracy for different batteries. It is

suitable for life inference analysis of newly developed batteries in

the product design stage and gives a reference formanufacturers when

developing new batteries.

4 Conclusion

Fastly and accurately predicting the RUL of lithium-ion

batteries in an early-cycle stage can speed up battery

improvement and optimization. This paper established a new

RUL prognostics model based on a coordinate reconfiguration of

degradation trajectory and multiple linear regression, which can

improve prediction accuracy with small sample data. Firstly, we

proposed a coordinate reconfiguration of the degradation

trajectory, revealing the relationship between performance

degradation patterns of different battery samples. Then, a

RUL prognostics model of lithium-ion batteries is presented

to improve prediction accuracy by considering the influence

of time-varying factors. Finally, a practical case was examined

by a RUL prognostics model. Through five different lithium-ion

battery test data analyses, we obtained the prediction life and

error, which can decrease the life test time while ensuring the

prediction accuracy, thus reducing the cost in the R&D phase.
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