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The traditional method of detecting fault current based on threshold judgment

method is limited by the current size and is easily disturbed by noise, and it is

difficult to adapt to the arc ground fault detection of the distribution network.

Aiming at this problem, this paper proposes a single-phase arc-optic ground

fault identification method based on waveform subsequence splitting fault

segmentation, combined with three-phase voltage-zero sequence voltage

waveform feature extraction clustering. First of all, the waveform fault

segment is segmented and located, secondly, the characteristic indexes of

the time domain and frequency domain of the combined three-phase voltage-

zero sequence voltage waveform are established, and the multidimensional

feature distribution is reduced by the principal component analysis method, and

finally, the characteristic distribution after the dimensionality reduction is

identified by the K-means clustering algorithm based on the waveform

subsequence. Experimental results show that the arc light grounding fault

identification method proposed in this paper achieves 97.12% accurate

identification of the test sample.
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1 Introduction

According to the survey, more than 80% of the power outage losses are caused by

distribution network failures, so the fault diagnosis of distribution networks has always

been the research object of power supply units. Among them, arc light grounding fault is

not easy to find and the harm is huge, and the mechanism is complex, which is a category

of grounding faults that are difficult to detect. Therefore, it is of great significance to

propose a reliable and efficient arc-ray grounding identification algorithm for the

operation of the distribution network.
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The traditional arc-optic grounding fault identification

method of the distribution network is based on the steady-

state or transient electrical parameters and the set threshold

(Chen et al., 2021), and in the fault identification method based

on the transient electrical parameters, the characteristic

parameters of the typical fault type are first extracted,

including wavelet transform (WT) (Qin et al., 2018; Lin et al.,

2019; Wei et al., 2020a), empirical mode decomposition (EMD)

(Guo et al., 2019; Cai and Wai, 2022), and S transformation (ST)

(Peng et al., 2019); Then, the arc ground fault is classified and

identified by the pattern recognition method, mainly including

the neural network method (Siegel et al., 2018; Du et al., 2019a),

the Support Vector Machine (SVM) (Xia et al., 2019; Dang et al.,

2022), the fuzzy control method (Zeng et al., 2016), the clustering

(Wang et al., 2015), etc., in addition, the high-precision current

transformer can be used to improve the fault identification ability

(Paul, 2015), but the detection cost is also significantly increased.

Reference (Mishra et al., 2016) classifies arc ground faults

through fault data, extracts five fault features, and inputs them

into a fuzzy inference system for identification. Although the

identification effect is remarkable, the establishment of fuzzy

control rules relies on historical experience, and the ability to

learn independently is poor. Reference (Gadanayak and Mallick,

2019; Wang et al., 2021) combined Variational Mode

Decomposition (VMD) and support vector machine to

identify arc ground faults. Different eigenmode functions were

obtained by decomposing the collected ground fault signals by

VMD, and the faults were extracted. The typical characteristics of

the signal are found, the displacement entropy with the greatest

contribution is found, and the arc ground fault is identified by the

support vector machine. However, support vector machines need

a large number of samples for training, and mode aliasing effects

are prone to occur during empirical mode decomposition, and

the parameters of variational mode decomposition need to be

selected manually. Reference (Guo M. F. et al., 2018) proposed a

ground fault detection method based on wavelet transform and

Convolutional Neural Network (CNN). The time-frequency

components were obtained through wavelet transform, and

then each component was normalized. Identify fault features.

However, the selection of wavelet transform basis functions has

limitations, and the neural network needs to be trained on a large

number of samples. Reference (Wei et al., 2020b) proposed a

generalized S-transform with variable factors to detect ground

faults. This method has stronger adaptability and higher

detection accuracy, but local over-fitting is prone to occur in

the S-transform calculation process. Reference (Zhang et al.,

2019) proposed a fault identification method based on

waveform feature extraction and matrix analysis and

clustering. This method can identify different grounding

resistances, but the efficiency and accuracy of the algorithm

need to be improved.

For this reason, this paper proposes a time series

characteristic analysis method combining three-phase voltage

and zero-sequence voltage waveforms to solve the problems

that the threshold value setting cannot be automated and

requires a large number of samples training in the

traditional detection of electrical parameters and threshold

values. At the same time, in view of the problems of

traditional waveform analysis feature dimension redundancy

and large amount of calculation, a method of arc grounding

fault identification for distribution network based on

segmentation-clustering is proposed.

The main contributions of this paper are:

(1) Considering that there are developing faults in the field data,

the direct use of the wave recorder data will cause the

eigenvalues of the arc ground fault to be confused with

other types of fault data. Therefore, a waveform

subsequence segmentation method based on the sliding

t-test is proposed to achieve the same Segmentation of

different types of fault data in recorded wave data.

(2) A fault identification model combining the time series

feature extraction of three-phase voltage and zero-

sequence voltage waveforms is established. Through the

analysis of experimental data, the boundary conditions of

arc ground fault and other faults are obtained, which

effectively improves the traditional feature extraction

based on current analysis. The problem.

The first part of this paper analyzes the waveform

characteristics based on waveform subsequence segmentation,

the second part proposes an arc-flash grounding fault

identification algorithm based on segmentation-clustering, the

third part carries out numerical example simulation and analysis,

and finally gives the conclusion.

2Waveform feature analysis based on
fault waveform subsequence
segmentation

2.1 Waveform subsequence segmentation

The data source of the on-site arc ground fault is mainly the

recorded data of the fault recorder. When a fault occurs, the fault

recorder can automatically and accurately record the changes of

various electrical quantities in the process before and after the

fault occurs. Due to the development of ground faults, it is

possible to evolve from one type of fault to another. As

shown in Figure 1, no fault occurred in the time period of

1.0 s–1.08 s; arc ignition occurred many times in the time

period of 1.08 s–2.7 s; resonance fault occurred in the time

period of 2.7 s–3.1 s; 3.1 s–3.5 return to normal within s time

period.

If the data analysis of the fault segment of the wave

recorder is used directly, the analysis of fault
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characteristics may be confused, so each fault needs to be

segmented. To this end, this paper proposes a fault

subsequence segmentation method based on sliding t-test.

Compared with other sequence segmentation algorithms, this

method is simple in algorithm and less computationally

expensive. Due to the strong periodicity of the fault

voltage waveform, the parameter selection problem of the

sliding t-test becomes simple, and the selected parameters are

applicable to all the recorder data.

Sliding t-test tests for mutation by calculating whether the

difference between the mean of two groups of samples is

significant, t follows a distribution with df � n1 + n2 − 2

degrees of freedom, Given a significant level of α � 0.05, the

critical value t0.05 is obtained by looking up the t distribution

table, if |ti|> tα,a fault is considered to have occurred at that

point. For time series X(t) of length n, set time i(n1 ≤ i≤ n − n2)
as the reference point, The two subsequences x1 and x2 before and

after the reference point define the statistic ti at time i:

ti � 1��������
n1s21+n2s22( )
n1−n2−2( )*

√ �����
1
n1
+ 1

n2

√ x1 − x2( ) (1)

In the formula (Du et al., 2019b): n1 and n2 are the sample

sizes of the two subsequences, x1 and x2 are the average of the

two subsequences, s21 and s22 are the variances of the two

subsequences.

FIGURE 1
Three-phase voltage waveform diagram of developing fault.

FIGURE 2
Schematic diagram of waveform subsequence segmentation.
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As shown in Figure 2, when the sliding t-test is performed

on the fault recorder data in this paper, there is at least a

segment of non-fault sample points before the fault sample

point i and the length is at least L, the length of the sequence

(i, i+a+1) is L, the length of the sequence (i+a, i+b+1) is less

than or equal to L, the length of the sequence (i+b+1, i+c-1)

is greater than L and all are normal sample points, the

sequence (i, i+b+1) is a waveform subsequence. In this

paper, the following considerations are made for

subsequence segmentation:

(1) Sequence (i, i+a+1), that is, a sequence of length L at the

beginning of the fault is temporarily stored as the initial

waveform subsequence.

(2) If there are fault points in the sequence (i+a, i+b+1), that is,

taking the last fault point of the waveform subsequence as the

starting point and there are fault points in the supplementary

sequence of length L, all the fault points before the last fault

point of the supplementary sequence are merged with the

initial waveform subsequence, and the initial waveform

subsequence is replaced. If there is no fault point within

the supplementary sequence, the initial waveform

subsequence is split into the final waveform subsequence

and labeled.

(3) Repeat step (2) until all waveform subsequences are

segmented.

2.2 Waveform feature analysis

2.2.1 Time domain waveform characteristics
Time Domain Analysis enables intuitive and accurate

analysis of systems in the time domain. For the arc

grounding system, time domain indicators such as mean

value, variance, peak-to-peak value and kurtosis coefficient

are selected for analysis. The mean shows the average level

of the data, the variance measures the degree of dispersion of

the data, the peak-to-peak value shows the difference between

the highest value and the lowest value of the signal in a period,

and the kurtosis coefficient reflects the distribution

characteristics of the vibration signal. The calculation of the

kurtosis coefficient when the fourth power is used, the influence

of noise can be reduced and the signal-to-noise ratio can be

improved.

TABLE 1 Time-domain waveform characteristics table.

Type Mean Variance

UA/kV UB/kV UC/kV U0/kV UA UB UC U0

Arc grounding −0.449 0.039 −0.409 −0.819 113.749 6.261 82.247 238.297

Ferromagnetic resonance −0.223 0.212 0.268 0.256 39.791 40.559 46.308 62.438

Normal 0.287 −0.061 −0.234 −0.008 36.239 35.824 36.580 7.351

Type Kurtosis Peak to peak

UA UB UC U0 UA/kV UB/kV UC/kV U0/kV

Arc grounding −1.647 0.089 −1.169 −1.851 29.359 12.632 29.067 44.765

Ferromagnetic resonance −1.026 −1.023 −1.153 −0.472 23.541 24.665 25.018 35.469

Normal −1.385 −1.450 −1.453 1.855 16.096 16.057 16.267 2.795

TABLE 2 Frequency domain waveform characteristics table.

Type Odd harmonic content of zero
sequence voltage

Center frequency Frequency standard
deviation

Root mean square
frequency

3 times
(%)

5 times
(%)

7 times
(%)

Fault
phase
voltage

Zero
sequence
voltage

Fault
phase
voltage

Zero
sequence
voltage

Fault
phase
voltage

Zero
sequence
voltage

Arc grounding 6.937 2.503 2.266 213.947 143.786 234.466 204.445 317.408 476.532

Ferromagnetic
resonance

2.547 0.765 0.194 183.792 93.655 357.686 260.193 402.143 208.420

Normal 24.514 1.244 1.217 — 312.341 — 384.744 — 495.566
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Through the time domain feature extraction of arc ground

fault, ferromagnetic resonance fault and normal conditions, the

time domain eigenvalues of the three types of data shown in

Table 1 are obtained. In the table, the zero-sequence voltage

variance of arc ground fault is obviously larger than that of

ferromagnetic resonance fault and normal condition. And the

mean value of the normal situation is closer to zero, the zero-

sequence voltage kurtosis value of the normal situation is the

largest, and it is distinguished from the other two faults. The

peak-to-peak value of the normal case is close to zero, and the

peak-to-peak value of the three-phase voltage of the arc ground

fault is larger than the other two cases except for the faulty

phase.

The variances and peak-to-peak values of zero sequence

voltages and three-phase voltages of the four characteristics

can distinguish arc grounding faults, ferromagnetic resonance

faults and normal conditions.

2.2.2 Frequency domain waveform
characteristics

Frequency domain analysis is a method of evaluating system

performance using graphical analysis in the frequency domain. It

can not only reflect the steady-state performance of the system,

but also can be used to study the stability and transient

performance of the system. For the arc grounding system,

frequency domain time scales such as odd harmonic content,

spectral gravity center frequency, spectral frequency standard

deviation, and spectral root mean square frequency are selected

for analysis. The harmonic content is the amount obtained by

subtracting the fundamental wave component from the

alternating current. The voltage in the power grid is mainly

50 Hz. In some cases, a higher frequency signal will appear.

When the frequency of the harmonic signal is the fundamental

wave signal when the frequency is an odd multiple, the harmonic

is called an odd harmonic. The center of gravity frequency can

describe the frequency of the signal component with larger

components in the frequency spectrum of the signal, and

reflects the situation of the signal power spectrum. The

frequency standard deviation describes the spread of the

power spectrum energy distribution. The root mean square

frequency is the arithmetic square root of the mean square

frequency, which can be regarded as the radius of inertia.

The frequency domain eigenvalues of the three types of data

shown in Table 2 are obtained by extracting the frequency

domain features for arc ground fault, ferromagnetic resonance

fault and normal conditions. The third harmonic content of the

normal condition in the table is significantly higher than the

other two fault conditions. Under normal conditions, the

centroid frequency of zero-sequence voltage, the standard

deviation of spectral frequency and the frequency of spectral

root mean square are the largest. The frequency of the spectral

center of gravity of the arc ground fault is slightly larger than that

of the ferromagnetic resonance fault.

The spectral centroid frequency, spectral frequency standard

deviation, and spectral root mean square frequency of the

frequency domain waveform feature can clearly distinguish

the three cases. The arc ground fault, ferromagnetic resonance

fault and the normal zero-sequence voltage odd harmonic

content can also distinguish the three cases.

In Algorithm 1, input the recorder data CFG file, and the

sliding step. After initialization, the t index is calculated. When

the t index exceeds the significant interval, it is saved in A, and

then the fault points in A are merged and subsequences are

divided. Finally, the time domain and frequency domain

eigenvalues of each subsequence are extracted, and the

subsequence and the eigenvalue matrix are output.

FIGURE 3
Physical experiment platform. (A) Power Subsystem and Line Subsystem. (B) Fault simulation subsystem.
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FIGURE 4
Typical failure diagram of the test sample. (A) Three-phase voltage and zero-sequence voltage waveform of arc ground fault. (B) Three-phase
voltage and zero-sequence voltage waveform of ferromagnetic resonance fault. (C) Three-phase voltage and zero-sequence voltage waveform of
general ground fault.
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Algorithm 1. Subsequence segmentation and feature extraction.

3 Arc ground fault identification
algorithm based on segmentation-
clustering

3.1 Feature dimensionality reduction
based on principal component analysis

The extraction of key feature indicators is an effectivemethod for

dimensionality reduction of high-dimensional feature vectors, that is,

through data correlation analysis, the original data is converted into

effective parameters that are independent of each other and contain

the main information. The principal component analysis method

uses the knowledge of linear algebra to reduce the dimensionality of

the data, and converts multiple variables into a few irrelevant

comprehensive variables to more comprehensively reflect the

entire data set. The comprehensive variables are called principal

components, and the principal components are not correlated with

each other, that is, the information they represent does not

overlap. This method can effectively reduce the parameter

redundancy and improve the efficiency of fault diagnosis (Wang

et al., 2015). The steps of principal component analysis are as follows:

1) Input m pieces of n-dimensional data, and form the original

data into a matrix X � x1, x2, x3, . . . , xn{ } of n rows and m

columns, where xi is an m-dimensional vector.

2) Zero-means each row of matrix X, that is, subtracts the mean

of that row.

3) Calculate the covariance matrix C.

C �
Cov x1, x1( ) / Cov x1, xn( )

..

.
1 ..

.

Cov xn, x1( ) / Cov xn, xn( )
⎛⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎠ (2)

In the formula: Cov(xi, yj) represents the covariance of xi

and yj.

4) Calculate the eigenvalues and eigenvectors of the covariance

matrix, sort the eigenvalues from large to small, select the

largest N, and then use the corresponding N eigenvectors as

row vectors to form the eigenvector matrix P.

5) Transform the data into a new space constructed by N feature

vectors, that is, Y � PX.

3.2 Cluster analysis model based on
K-means

The K-means algorithm is a typical distance-based clustering

algorithm, and the distance is used as an evaluation index for

similarity, that is, the closer the distance between two samples,

the greater the similarity.

First determine the value of k, which means the number of

aggregated classes.

Second, randomly select k initial cluster centers. Randomly

select k centroid vectors μ1, μ2, . . . , μk{ } from the data set

D � x1, x2, . . .xm{ }, and the coordinates of the centroid

vectors are selected by the formula:

TABLE 3 Variance explanation rate table.

Element Variance explained rate

Characteristic root Percent variance Accumulation %

1 13446.99 92.34 92.34

2 1051.66 7.22 99.56

3 40.07 0.28 99.84

4 14.30 0.10 99.93

5 8.22 0.06 99.99

6 1.23 0.01 100.00

7 0.07 0.00 100.00

8 0.00 0.00 100.00

9 0.00 0.00 100.00

10 0.00 0.00 100.00
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C x[ ] � min x + rangex*rand( )( )
C y[ ] � min y + rangey*rand( )( )
C z[ ] � min z + rangey*rand( )( )

⎧⎪⎪⎨⎪⎪⎩ (3)

In the formula:min x represents the smallest value in theX coordinate,

rangex represents the difference between themaximum value and the

minimumvalue of theX coordinate, and rand( ) represents a random
number between (0,1). Y and Z are the same.

Then assign sample points. Calculate the distance between

the sample xi(i � 1, 2, . . .m) and each centroid vector dij:

dij � xi − μj
����� �����22 (4)

In the formula: μj is the mean vector of the cluster.

Assuming that the cluster is divided into (C1, C2, . . .Ck),
the xi is credited to the class Cj with the smallest distance.

At this point, the centroid of μj is recalculated and updated,

and the expression is:

μj �
1

Cj

∣∣∣∣ ∣∣∣∣ ∑
x∈Cj

x (5)

Repeat the steps of allocating sample points and updating the

cluster center until all the sample points are allocated, the

category of all the sample points does not change or the

number of iterations reaches the specified maximum value,

the clustering is stopped. Output the clusters where clustering

is done.

In Algorithm 2, the eigenmatrix is input first, then the mean

value is removed, and the covariance matrix, eigenvalues, and

eigenvectors are calculated. Then reduce the dimension of the

original feature matrix. Then initialize the centroid, and when

there are still cluster assignment results that change, calculate the

distance between the centroid and the sample point, assign the

sample point, and update the centroid. Finally, output the

dimension reduction matrix, each cluster data and the cluster

center.

Algorithm 2. Feature dimensionality reduction and clustering.

3.3 A fault identification algorithm based
on segmentation and clustering of
waveform subsequences

Combined with the above analysis, this paper proposes an

arc-ground fault identification algorithm for distribution

network based on waveform subsequence segmentation-

clustering. The fault identification process is as follows:

1) Step 1: Valid segment data extraction.

After the data is input, the data needs to be preprocessed to extract

the data at the moment of failure, that is, the valid segment data.

2) Step 2: Segment and extract the waveform subsequence

sequence.

Using the method proposed in Section 1.1, the waveform

subsequences are segmented.

3) Step 3: Feature value and feature vector extraction.

The sub-waveform sequence is analyzed in time domain and

frequency domain, and the characteristic index proposed in

Section 1.2 is calculated and combined into a characteristic

vector.

4) Step 4: Feature dimensionality reduction.

For the eigenvalues and eigenvectors extracted in the third

step, the dimension is high, and most of the information is

redundant, so the principal component analysis method

proposed in Section 2.1 is used to reduce the dimension of

the data, and the original ten-dimensional data is reduced to

three-dimensional.

5) Step 5: K-means clustering.

The clustering algorithm proposed in Section 2.2 is used to

perform cluster analysis on the dimensionally reduced 3D data.

In this paper, the value of k is selected as 3, that is, the data is

clustered into three categories.

6) Step 6: Cluster data output.

7) Step 7: Identify the fault category.

3.4 Arc ground fault safe boundary model

The arc ground fault safety boundary refers to the arc ground

fault data: If the fault data falls within the safety boundary, the
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fault data can be accurately identified as the fault category; if the

fault data falls on the safety boundary or outside the safety

boundary, there are the fault data may be identified as other

types of faults. And the arc ground fault safety boundary can be

effectively distinguished from other types of faults.

The center of the arc ground fault safety boundary is the

cluster center of the arc ground fault type data after clustering,

and the equatorial radius and polar radius of the safety boundary

are shown in Eq. 6.

a �
�
2

√
2
* max x( ) −min x( )( )

b �
�
2

√
2
* max y( ) −min y( )( )

c �
�
2

√
2
* max z( ) −min z( )( )

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
(6)

In the formula, a, b, and c are the radius of one equator and the

radius of two poles, respectively, max(x/y/z) is the maximum

value of the clustered arc ground fault type data along the x/y/z

direction, min(x/y/z) is the minimum value along the x/y/z

direction.

In Algorithm 3, the safety boundary model is established by

formula Eq. 6 and the arc ground fault clustering center μ

through the arc ground fault data.

Algorithm 3. Security Boundary Model.

4 Case study

4.1 Experimental conditions

The experimental data comes from the arc grounding physics

experiment platform, which includes power supply subsystem,

circuit subsystem, fault simulation subsystem and measurement

subsystem. Figure 3A shows the power supply subsystem and the

circuit subsystem.

In the training samples selected in the experiment: 540 data

of arc ground fault (including high resistance ground fault) and

18 data of ferromagnetic resonance fault; in the test sample:

75 data of arc ground fault (including high resistance ground

fault), ferromagnetic resonance two fault data. As shown in

Figures 4A–C are several typical arc ground faults,

ferromagnetic resonance faults and general ground faults of

the test samples, respectively.

4.2 Analysis of waveform feature
parameter distribution results

Combined with the waveform feature analysis proposed in

Section 1.2, the time domain features and frequency domain

features are accumulated to obtain ten eigenvalues, and a large

number of features have redundancy, so feature dimension

reduction is performed. The variance explanation rate of each

feature index obtained by the principal component analysis

method is shown in Table 3.

According to the cumulative variance contribution rate

shown in Table 1, the cumulative explanation rate of the first

three principal components is 99.84%, so the first three principal

components can be considered to represent the original variables.

TABLE 4 Feature vector table.

Index Factor load factor

Principal component 1
(92.34%)

Principal
component 2 (7.22%)

Principal
component 3 (0.28%)

Variance 0.93 0.35 −0.06

Kurtosis −0.01 0.01 0.09

Peak-to-Peak 0.11 0.09 0.20

Mean −4.55E-4 0.01 0.04

Center frequency −0.15 0.45 −0.76

Frequency standard deviation −0.21 0.49 0.60

Rms frequency −0.26 −0.65 −0.07

5th harmonic −2.64E-5 −6.71E-5 1.22E-4

5th harmonic −1.94E-5 −4.72E-5 6.83E-5

7th harmonic −1.67E-5 −3.88E-5 5.43E-5
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Table 4 is the eigenvector table. The indicators in the table are

the standardized variance, kurtosis, peak-to-peak value, mean

value, barycentric frequency, frequency standard deviation, root

mean square frequency, third harmonic, fifth harmonic, and

seventh harmonic. It can be seen from the table that the principal

component 1 has a large positive correlation with the variance;

the principal component 2 has a large negative correlation with

the root mean square frequency, and has a large positive

correlation with the frequency standard deviation and the

center of gravity frequency; There is a negative correlation

with the frequency standard deviation and a large positive

correlation with the frequency standard deviation.

The waveform characteristic parameter distribution of the

training samples is shown in Figure 5. In the figure, the arc

ground fault data is concentrated in the vicinity of (−50, 15, 0),

while the ferromagnetic resonance fault data and normal data are

scattered in (125, 50, 0), respectively. 15) and (200,-75,-10).

Therefore, the data after dimensionality reduction can better

describe the arc ground fault, and can effectively distinguish the

arc ground fault from the other two faults.

FIGURE 5
Distribution map of arc grounding, ferromagnetic resonance, and normal conditions.

TABLE 5 Distance table between training samples and cluster centers.

Training data Distance
from class 1

Distance
from class 2

Distance
from class 3

Judgment

1 10.22 112.46 243.55 Class 1

2 9.83 113.51 242.40 Class 1

3 13.02 114.86 242.28 Class 1

4 14.85 116.37 241.49 Class 1

5 130.36 59.65 349.47 Class 2

6 212.92 321.10 35.78 Class 3

7 276.04 386.51 35.85 Class 3

8 202.56 312.47 38.31 Class 3

9 219.14 330.72 29.11 Class 3

10 195.82 308.16 59.08 Class 3
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4.3 Model identification verification

1) After the model is trained with training samples, the distance

from each sample to each cluster center is shown in Table 5,

and the last column is the fault type discrimination. Type 1 is

arc ground fault, type 2 is ferromagnetic resonance fault, and

type 3 is normal condition. Calculate the distance between the

training data and each cluster center, and divide the data into

the closest classes.

2) After the test sample data is identified by the model, the

distance and attribution type of each test sample from each

cluster center are shown in Table 6. It can be concluded from

the table that the sample points are always closer to one of the

cluster centers, and farther away from the other two types of

sample centers. Type 1 is arc ground fault, type 2 is normal,

and type 3 is ferromagnetic resonance fault.

3) Combined with the safety boundary proposed by Eq. 6, the

equatorial radius and polar radius of the safety boundary are

calculated. After calculation, the equatorial radius of the

safety boundary is 111.0 and 119.5, and the polar radius is

29.7. The cyan spherical area in Figure 6 is the safety

boundary of arc ground fault, and the red sample points

are the data classified as arc ground fault after clustering. It

can be seen from the figure that most of the arc ground fault

data falls within the safety boundary, that is, the safety

boundary can more accurately distinguish arc ground

faults from other faults.

4) For the arc grounding system of the distribution network, the

identification of high resistance grounding faults is a difficult

point (Kavaskar and Mohanty, 2019). The arc high-resistance

fault has obvious intermittent, the phase voltage is basically

unchanged, the zero-off time is long, and it lasts for several

cycles intermittently. At the same time, the zero-sequence voltage

has nonlinear distortion (Zhang et al., 2021). The identification of

single-phase ground fault is mainly realized by detecting the zero-

sequence voltage. When the zero-sequence voltage suddenly

increases, it is judged that a ground fault occurs.

For arc high-resistance grounding faults, the method

proposed in this paper is used to segment the fault waveform

sub-sequence, extract features, and reduce the dimension to

obtain the principal component components of four types of

samples after dimension reduction as shown in Table 7. Among

them, the high-resistance grounding samples And the low

resistance ground samples are within the safety boundary,

while the normal case and ferromagnetic resonance fault

samples are outside the safety boundary. Combining with

Figure 7, it is obvious that the method proposed in this paper

can also accurately identify the arc high-resistance ground fault.

TABLE 6 Distance table between test sample and cluster center

Test data Distance
from class 1

Distance
from class 2

Distance
from class 3

Judgment

1 42.81 226.33 238.69 Class 1

2 254.80 14.58 79.18 Class 2

3 282.92 26.26 62.33 Class 2

4 275.28 18.04 62.24 Class 2

5 264.57 14.12 78.47 Class 2

6 268.78 12.14 72.73 Class 2

7 283.49 27.20 61.63 Class 2

8 180.39 79.03 95.43 Class 2

9 201.62 67.54 64.52 Class 3

10 243.36 88.53 31.89 Class 3

FIGURE 6
Arc grounding safety boundary.
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4.4 Algorithm comparison

4.4.1 Segmentation accuracy comparison
Through the above analysis, the algorithm proposed in this

paper is compared with the wavelet transform algorithm and the

variational mode decomposition algorithm. The waveform

subsequence segmentation algorithm proposed in this paper

only needs to determine the sliding step size L and the 95%

significant interval range when selecting parameters. Since the

fault recorder data has strong periodicity, and the period is 80,

L = 80 is selected. For the selection of L, the detection effects

corresponding to different L values are shown in Figure 8. The

figure shows the detection effect of the sliding t-test when L = 40,

80, and 120, respectively. When L = 40 and L = 120, the entire

recorded wave data is judged as fault, when L = 80, the fault data

can be detected accurately.

Wavelet transform can decompose the signal into a series of

signal sub-sequences, which has the characteristics of multi-

resolution analysis. In practical applications, discrete wavelet

transform with less computational complexity and higher

accuracy is often used. The Symlet wavelet function is an

approximately symmetrical wavelet function after the

improvement of the db function. The support range of the

symN wavelet is 2N-1, the vanishing moment is N, and it also

has good regularity. Compared with the dbN wavelet, the wavelet

is consistent with the dbN wavelet in terms of continuity, support

length, filter length, etc., but the symN wavelet has better

symmetry, that is, it can reduce the time to analyze and

reconstruct the signal to a certain extent. Phase distortion. For

the fault recorder data, this paper selects the wavelet function

sym8 as the fundamental wave function, and the number of

decomposition layers is 9. The decomposition results are shown

in Figure 9. The figure is the approximate coefficient CA9 and the

detail coefficient CD9-CD1 after wavelet transformation. The

threshold detection is performed on the five detail coefficients

CD1 and CD2 with obvious fault characteristics. As the threshold

increases, the arc ground fault detection is more obvious, but only

the start time of the fault can be found. When the waveform

subsequence is divided, the end time of the fault needs to be set as

the start time of the next fault. In CD7, the fault detection is more

accurate, but the arc ground fault and ferromagnetic resonance

fault between the sampling points (60, 80) cannot be accurately

divided, and it needs to be handled manually. If the threshold is

increased, some arc ground faults cannot be accurate detection.

The variational modal decomposition method is an adaptive,

completely non-recursive modal variation and signal processing

method, which is suitable for non-stationary sequences, and

decomposes to obtain relatively stable subsequences

containing multiple different frequency scales. The VMD

algorithm decomposes the original non-stationary signal f

into k relatively stationary sub-signals with different center

frequencies wk and priority bandwidths. Each sub-signal, as a

modal component of the original signal, can reflect the original

signal at different time scales Structure. As shown in Figure 10,

IMF2 and IMF3 are more accurate in detecting faults. Although

IMF3 can detect the fault segment, it is greatly affected by the

threshold value. If the threshold value increases, although the arc

ground fault can be distinguished from the ferromagnetic

resonance fault, But the fault end-point detection of

Ferromagnetic resonance faults becomes inaccurate. No

matter whether the threshold of IMF4 is increased or

decreased, the fault point cannot be accurately detected. For

TABLE 7 Principal component components after dimension reduction for four types of samples.

Type Principal component 1 Principal component 2 Principal component 3 Relative position

Low resistance ground fault −45.08 101.58 −17.82 Inside

High resistance ground fault 20.62 −9.30 −1.81 Inside

Ferromagnetic resonance −60.90 59.21 73.66 Outside

Normal −249.37 9.80 −40.94 Outside

FIGURE 7
The relative positions of the four types of sample data and the
security boundary.
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the fault detection of IMF5-IMF7, although the fault location can

be detected, the fault detection cannot be completed, and the

detection of arc ground fault is invalid.

Table 8 compares the detection and segmentation of faults by

the method proposed in this paper, wavelet transform and

variational modal decomposition for different experimental

samples. Variational modal decomposition can only detect

ferromagnetic resonance faults, and wavelet transform cannot

accurately detect general ground faults. The main reason is that

the end point of arc ground fault cannot be accurately detected

during wavelet transform detection. Arc ground faults start as an

end point, resulting in general ground faults being divided into

arc ground faults.

4.4.2 Comparison of recognition accuracy
After the fault data is segmented and eigenvalue extracted,

the fault type needs to be identified. Comparing the algorithm

proposed in this paper with WT-CNN and VMD-SVM, the

CNN model structure consists of input layer, convolution

layer, pooling layer, activation function layer, fully connected

layer and output layer group layer. For the processed data, the

output layer is the final result, and the convolution layer,

pooling layer and activation function layer together form a

hidden layer of CNN. The structure and parameters of the

CNN models introduced in this paper for comparison are

shown in Table 9.

SVM is a shared supervised learning method suitable for

small sample, nonlinear and high-dimensional data. For a

given collinear classifiable training dataset, a kernel function

is used to map the data from the original feature space to a

high-dimensional feature space, so that the linear inner

product is nonlinear, and then the classification interval is

maximized in the high-dimensional feature space. Optimal

hyperplane. Penalty factor C and RBF kernel function

parameters are two important parameters in SVM. Penalty

factor C> 0, the larger C is, the greater the penalty for

misclassification, but overfitting is easy; the smaller C is,

the less the penalty for misclassification is, the complexity of

FIGURE 8
Detection results of different sliding steps.
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FIGURE 9
Wavelet analysis components of each layer.

FIGURE 10
Variational modal decomposition of components at each layer.
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the model is reduced, and underfitting is prone to occur. γ

determines the distribution of the data mapped to the new

feature space. The smaller γ, the more support vectors, the

greater the smoothing effect of the model, and the easier it is

to underfit; easy to overfit.

For the problem that the arc ground fault sub-sequence

cannot be accurately segmented in the methods WT-CNN and

VMD-SVM, the fault merging method proposed in this paper

is used to determine the fault end point. For ferromagnetic

resonance faults, the waveform sub-sequence is manually

segmented segmentation. It can be seen from Table 10 that

the identification accuracy rates of several algorithms listed in

the table are all greater than 90%. The recognition accuracy of

the algorithm model proposed in this paper is 97.12%, and the

recognition accuracy ratio is 3.31% and 2.38% higher than that

of WT-CNN and VMD-SVM, respectively.

5 Conclusion

Aiming at the problems of inaccurate fault detection and

redundant feature extraction in traditional detection based on

electrical parameters and thresholds, this paper proposes a

segmentation-clustering-based arc-ground fault identification

method for distribution networks. First, a sliding t-test was

used to segment the waveform subsequences, considering the

presence of developing faults in the recorder data. Secondly,

extract eigenvalues in time domain and frequency domain for

the segmented waveform subsequences, and reduce the

dimension of the eigenmatrix by using principal

component analysis method. Then, cluster analysis is

carried out on the characteristic parameter distribution

after dimension reduction, and the identification accuracy

of the algorithm is verified by using the safety boundary

model. Finally, compared with the traditional arc ground

fault identification method, the following conclusions are

drawn:

(1) Compared with the traditional arc ground fault identification

method, the segmentation-clustering algorithm proposed in

this paper can more accurately segment the fault. The

influence of different types of fault data on waveform

characteristic values is reduced.

(2) The combined three-phase voltage and zero-sequence

voltage waveform eigenvalue extraction and principal

component analysis dimensionality reduction established

in this paper reduce the problem of insufficient feature

extraction based on traditional electrical parameter

analysis, and reduce the redundancy of feature data.

(3) Compared with WT-CNN and VMD-SVM, the identification

accuracy of the identification method proposed in this paper is

improved by 3.31% and 2.38%, respectively.

TABLE 8 Comparison of fault segmentation accuracy of different methods.

Sample number Actual number of
failures (ferromagnetic resonance/arc
light/general ground)

Ours WT VMD

Sample 1 1/6/5 1/6/5 0/6/1 0/6/5

Sample 2 1/4/3 1/4/3 1/3/2 0/4/3

Sample 3 0/2/1 0/2/1 0/2/1 0/2/1

Sample 4 0/4/3 0/4/3 0/4/1 0/4/3

Sample 5 0/1/1 0/1/1 0/1/1 0/1/1

Segmentation accuracy — 100% 71.875% 93.75%

TABLE 9 CNN model structure and parameters.

Layers Structural layer Parameter

1 Input layer —

2 Convolutional layer 1 3 × 3,8

3 Pooling layer 1 2 × 2

4 Convolutional layer 2 3 × 3,16

5 Pooling layer 2 2 × 2

6 Fully connected layer 3 nodes

7 Output layer 3 classes

TABLE 10 Identification performance of different algorithm models.

Algorithm model Recognition accuracy (%)

WT-CNN 93.81

VMD-SVM 94.74

Ours 97.12
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