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Gross error interference or noise statistical deviation is the main factor that

leads to the accuracy deterioration of extended Kalman filter (EKF) in estimating

the speed and rotor position of ship propulsion permanent magnet

synchronous motor (PMSM). In this paper, an adaptive extended Kalman

filter (AEKF) algorithm based on innovation sequence is proposed. In the

proposed method, gross error interference is first added to EKF to analyze

its influence on the observation accuracy. Then, the weighting coefficient is set

in the calculation of innovation covariance. By adjusting the weight of the

innovation covariance matrix at the adjacent time, the innovation covariance

difference is calculated and then used in the calculation of Kalman gain. The

observation performance comparison between AEKF and EKF strategies is

conducted with subject to gross error interference and noise statistics

deviate. Simulation and experimental results demonstrate that the proposed

AEKF has stronger robustness and higher prediction accuracy of speed and

rotor position.
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1 Introduction

The propulsionmotor is the hard-core components of ship electric propulsion system,

high power permanent magnet synchronous motor, with the advantages of high

efficiency, high power density, good control performance, is widely used in compact

podded propeller. Traditional PMSM control systems typically use mechanical sensors to

obtain the rotor position and speed of the motor. However, the use of sensors not only

increases the cost, but also brings the problem of reliability deterioration. Therefore,

sensorless control has become an important research direction of PMSM control system.

The sensorless control methods of PMSM can be classified into model reference adaptive

(Lin et al., 2017), sliding mode observer (Liang et al., 2017; He et al., 2020), Lomberg

observer (Wu et al., 2016), full order observer (Wang et al., 2019), extended Kalman filter,

etc. (Luo and Luo 2019; Shi and Qi, 2020; Li and Kennel, 2021).
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Extended Kalman filter (EKF) is an iterative algorithm based

on minimum variance. In recent years, the development of high-

speed processors has solved the problem of the large amount of

EKF calculation, and is widely used in sensorless vector control

systems. As an iterative discrete calculationmethod, EKF uses the

state prior estimation and measurement feedback of the system,

and then adjusts the Kalman gain matrix in real time to obtain

the posterior estimation value of the infinite approximation

system state truth value at this time. Compared with other

observation algorithms, EKF has the advantages of wide speed

range and strong immunity, so it has become a hot spot in the

research of motor state estimation.

The estimation accuracy of EKF is related to the selection of

Kalman gain matrix, system and measurement noise covariance

matrix. In recent years, many methods have been proposed to

improve the estimation accuracy and immunity of EKF. References

(Wang et al., 2019; Li and Kennel, 2021) improve the observation

performance of EKF by establishing dead time compensation or

nonlinear compensation system at the output of inverter to

eliminate the influence of current harmonic and voltage loss on

the input of EKF. The experimental results show that the compensated

EKF has stronger state estimation performance. References (Luo and

Liu, 2019) optimizes the calculation process of the covariance matrix

of the system and measurement noise based on genetic algorithm,

which reduces the calculation difficulty of the covariance matrix value

and the anti-interference ability of the system. References (Yin et al.,

2016; Yi et al., 2014; Lu and Xu, 2009) reduced the parallel price of

EKF to reduce the complexity of the algorithm while maintaining the

performance of EKF. References (Zerdali, 2019; Özkurt and Zerdali,

2022) established an adaptive mechanism to compensate for the

influence of the changing system noise covariance matrix on the

observation performance. Reference (Deng et al., 2019; Miguel-

Espinar et al., 2021) proposed a robust EKF algorithm, which

makes adjustment rules for the ratio of estimation error to external

interference under interference. The results show that this kind of

method has stronger anti-interference performance than the

unmodified EKF under disturbance.

In order to improve the prediction accuracy of EKF in the

case of noise statistics bias and gross error interference, in this

paper, an adaptive Kalman filter algorithm based on innovation

sequence is proposed. In the proposed method, the influence of

gross error on system observation is first analyzed, and then the

weighting factor is introduced to formulate the calculation rules

of innovation covariance matrix, which is also used in the

calculation of Kalman gain. The simulation results show that

the adaptive EKF has higher robustness and observation accuracy

for speed observation under gross error interference.

The reminder of this paper is organized as follows: Section 2

introduces the mathematical model of PMSM and the principle

of extended Kalman filter. Section 3 presents the design details of

adaptive extended Kalman filter (AEKF) algorithm based on

innovation sequence. The feasibility simulation and physical

verification of AEKF algorithm based on permanent magnet

synchronous motor are carried out in Sections 4, 5. A conclusion

is given in Section 6.

2 Extended Kalman filter

2.1 Mathematical model of permanent
magnet synchronous motor

Ignoring core saturation, eddy current and hysteresis losses,

the PMSM current equation can be expressed as:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

diα
dt

� −Rs

Ls
iα + uα

Ls
+ ωe

ψf

Ls
sin θ

diβ
dt

� −Rs

Ls
iβ + uβ

Ls
− ωe

ψf

Ls
cos θ

dωe

dt
� 3
2

np
J
ψf(iβ cos θ − iα sin θ) − TL

J

(1)

where Rs is the stator resistance; Ls is stator inductance; ωe is the

electrical angular speed of the rotor; ψf is permanent magnet flux

linkage; iα and iβ respectively stator current α, β axial component;

uα and uβ stator voltage respectively α, β axis component, θ is the

rotor position angle.

Combining Eq. 1, establish the PMSM state equation and

observation equation as follows:

{ x̂ � f(x) + Bu + w
y � Hx + v

(2)

Where,

B �

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
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0
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0
]T,

f(x) �

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
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iα + 1

Ls
ωeψf sin θ

−R

Ls
iβ − 1

Ls
ωeψf cos θ

3
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np
J
ψf(iβ cos θ − iα sin θ) − TL
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,

x � [iα, iβ,ωe, θ]T, B is the system input matrix; H is the

output matrix; w, v are the system error and measurement error

respectively, and they are uncorrelated Gaussian white noise.

Their statistical characteristics are w ~ N (0,Q), v ~ N (0,R).

2.2 Extended Kalman filter principle

EKF is the application of Kalman filter in nonlinear systems.

It is an optimal state estimation method in the sense of minimum
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variance. In the vector control system based on EKF, it is

necessary to linearize and discretize the motor equation of

PMSM. Combined with Eq. 1, the extended Kalman state

equation is established as follows.

{ x̂k � x̂k|k−1 + [f(x̂k|k−1) + Bu]Ts

ŷk|k−1 � Hx̂k|k−1 + vk
(3)

where Ts is the sampling time, the superscript “̂” represents the

estimated value, and k|k − 1 represents the state transition from

time k − 1 to time k.

The specific implementation steps of EKF algorithm are as follows:

1) State predictive value estimation

x
∧
k|k � x

∧
k|k−1 + Ts[f(x∧k|k−1) + Bu] (4)

2) Error covariance matrix estimation

Pk|k−1 � ϕk|k−1Pk−1|k−1ϕT
k|k−1 + Q

ϕ � I + TsFk|k−1
(5)

where,

Fk|k−1 �

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−R
Ls

0 A sin θ B cos θ

0 −R
Ls

−A cos θ B sin θ

−C sin θ C cos θ 0 CD

0 0 1 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

3) Kalman gain matrix calculation

Kk|k−1 � Pk|k−1HT[HPk|k−1HT + R]−1 (6)

4) State estimation correction

x
∧
k|k � x

∧
k|k−1 +Kk|k−1(yk −Hx

∧
k|k−1) (7)

5) Update error covariance matrix

Pk|k � (I −Kk|k−1H)Pk|k−1 (8)

where I is the unit matrix, Kk|k-1 is the Kalman gain matrix, Fk|k-1
is the Jacobian matrix of the state matrix

f(x), ϕ � I + TsF(k|k−1), A � ψf/Ls, B � (ψfωe)/Ls,
C � (3ψfnp)/(2J), D � −iβ sin θ − iα cos θ.

3 Adaptive extended Kalman filter
strategy

3.1 Influence of gross error on adaptive
extended Kalman filter

EKF is an optimal observation algorithm based on the

accurate system modeling. In the actual operation process, the

observation module is often disturbed by external variables of

non-Gaussian white noise. When there is interference in the

observation, the observation equation of the system can be

expressed as:

y
∧
k|k−1 � Hx

∧
k|k−1 + vk + gk (9)

where gk is the gross error interference matrix.

On the basis of EKF, AEKF adjusts the weight of innovation

sequence to eliminate the influence of gross error on parameter

estimation. In this process, innovation sequence is introduced to

improve EKF. The innovation sequence with gross error

interference is expressed as:

εk � yk − y
∧
k|k−1 � Hk(xk − x

∧
k) + vk + gk (10)

where εk is the innovation sequence. From Eq. 10, it can be seen

that the existence of gross error directly affects the calculation of

innovation sequence of the system. Assuming that C is the

covariance matrix of innovation estimation, it can be deduced

that:

C � E(εkεTk ) � HkPkH
T
k + R + g (11)

In the observation interval with a time length of K, record Ĉ

as the optimal estimate in the interval, and it is obtained:

C
∧ � 1

k
∑k
i�1
[εiεTi ] � (1 − 1

k
)C∧ k−1 + 1

k
εkε

T
k (12)

The observation equation of the system obeys Gaussian

distribution, and the optimal estimation value of Eq. 12 is

verified based on the maximum likelihood estimation method

hypothesis δ. To include the noise statistics of the nonlinear

system, the likelihood function is established at time k with

parameter δ as follows:

p(y/δ)k � 1���������(2π)m|cεk|
√ e−

1
2ε
Tc−1

εk
ε (13)

Taking logarithms of Eq. 13 respectively to obtain the

following equation:

ln(y/δ)k � ln( 1�������(2π)m|c|√ e−ε cε) (14)

wherem is the dimension of the measurement matrix. If Eq. 14 is

accumulated, the maximum value based on the maximum

likelihood estimation can be converted into:

J(δ) � ∑k
j�k−N+1

(ln ∣∣∣∣Cj

∣∣∣∣ + εTj C
−1
j εj) (15)

Taking the derivative of pair δ for J(δ), yielding following

formula:

zJ(δ)
zδ

� 0 (16)
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Find the partial derivative of Eq. 16 with respect to parameter

δ, and it is obtained:

∑k
j�1
[C−1

j (Cj − εjε
T
j )C−1

j ] � 0 (17)

From Eq. 17, it can be seen that Eq. 12 is the optimal estimate

of the information covariance matrix C in the interval with a

length of K. Considering the influence of gross error interference

on Kalman gain calculation, re-integrate Eq. 12 and Eq. 6 and re-

derive the Kalman gain matrix Kk as follows:

Kk � PkH
TC
∧

k
−1 (18)

According to Eq. 18, in the process of speed observation,

gross error affects the Kalman gain matrix by changing the

innovation process, which affects the state estimation of the

whole system, but this method fails to improve the utilization

weight of recent data. In order to improve the observation

performance in the case of gross error and statistical

information deviation, an adaptive extended Kalman

algorithm is designed to weaken the influence of the above

interference on the observer performance by increasing the

proportion of the covariance matrix of the innovation

sequence at the latest time.

3.2 Establishment of adaptive extended
Kalman filter algorithm

First, the gross error is introduced into the observation

equation, and the equation is established as follows:

{x
∧
k � x

∧
k|k−1 + [f(x∧k|k−1) + Bu]Ts

y
∧
k|k−1 � Hx

∧
k|k−1 + vk + gk

(19)

Then, the innovation estimation covariance sequence with

length N is selected. When k>N, the weighting coefficient at

time k is selected as }i, and satisfying the following conditions.

γi �
1 − l

1 − lN
lk−1

∑k
i�k−N+1

γi � 1, 0< l< 1

(20)

For the innovation estimation covariance matrix at time k,

the weighting coefficient of Eq. 20 is introduced to obtain:

C
∧
k−1 � 1 − l

1 − lN
[εk−1εTk−1 + lεk−2εTk−2 +/ + lN−1εk−NεTk−N] (21)

Similarly, at time k − 1, the innovation covariance estimate of

Ck−1 is:

C
∧
k � 1 − l

1 − lN
[εkεTk + lεk−1εTk−1 +/ + lN−1εk−NεTk−N] (22)

From Eqs 16, 17, we can get the recursive form of the

exponentially weighted innovation covariance matrix as:

C
∧
k � lC

∧
εk−1 +

1 − l

1 − lN
[εkεTk − lNεk−NεTk−N] (23)

A new calculation method of Kalman gain matrix is obtained

by substituting Eq. 23 into Eq. 18. This method formulates

exponential weighting rules on the selection of innovation

covariance matrix, and improves the weight of recent data in

the calculation of Kalman gain matrix. Compared with the

calculation method of taking the average value of Eq. 12, it

has the advantage of high estimation accuracy. AEKF based on

exponential weighting rules can be expressed as follows:

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

x
∧
k|k � x

∧
k|k−1 + Ts[f(x∧k|k−1) + Bu]

Pk|k−1 � ϕk|k−1Pk−1|k−1ϕT
k|k−1 + Q

Kk|k−1 � Pk|k−1HTε−1k
x
∧
k|k � x

∧
k|k−1 +Kk|k−1(yk −Hx

∧
k|k−1)

Pk|k � (I − Kk|k−1H)Pk|k−1
εk � yk − y

∧
k|k−1 � Hk(xk − x

∧
k) + vk + gk

(24)

Based on Eq. 24, a PMSM sensorless vector control

system based on AEKF is built, and the system structure

is shown in Figure 1. The control loop is composed of an

outer speed loop and an inner current loop, in which the

speed error is taken as the given value of the q-axis current

FIGURE 1
Control block diagram of AEKF.

TABLE 1 The parameters of PMSM.

Parameters Numerical value

Rated power P/w 150

Rated torque Te/N•m 0.5

Rated speed n/(r/min) 1,500

Stator resistance Rs/Ω 0.15

Stator inductance Ls/mH 0.22

Polar logarithm nP 2
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through the sliding mode controller; The error signal

between the current and the given current in the static

coordinate system is modulated by PI as the given value

of d-axis and q-axis voltage. The input of AEKF is the current

and voltage in the static coordinate system, and the output

speed and rotor position.

FIGURE 2
Speed error under sudden load change.

FIGURE 3
Comparison of rotor position under load change. (A) Rotor position based on EKF. (B) Rotor position based on AEKF. (C) Rotor position error
based on EKF. (D) Rotor position error based on AEKF.

FIGURE 4
Speed error with external disturbance.
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FIGURE 5
Comparison of rotor position under external interference. (A) Based on EKF rotor position. (B) Based on AEKF rotor position. (C) Rotor position
error based on EKF. (D) Rotor position error based on AEKF.

FIGURE 6
Speed error with internal disturbance.

FIGURE 7
Comparison of rotor position under internal interference. (A) Based on EKF rotor position. (B) Based on AEKF rotor position. (C) Rotor position
error based on EKF. (D) Rotor position error based on AEKF.
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4 Simulation results

Parameters of PMSM used in simulations and experiments

are shown in Table 1. The simulation speed is n = 1,200 r/min

and the simulation interval is 1 s.

In order to verify the feasibility of AEKF algorithm,

simulation experiments are as follows. The current regulator

adopts the form of PI regulator, with a proportional coefficient of

0.3 and an integral coefficient of 10. Considering that the change

of load torque will have an impact on the whole control system,

the motor speed will change significantly when the load is

suddenly increased or decreased, and it will take some time to

recover to the given speed, in order tomaintain the stability of the

ship’s traveling process, the impact of the change of load torque

on the ship’s electric propulsion control system should be

reduced. The speed regulator adopts sliding mode controller

(SMC), the sliding mode surface is the angular velocity error of

the motor, and the control law adopts the improved constant

speed approach law. Through experimental comparison, the PI

controllers of both sides have the same parameter settings as

FIGURE 8
Experimental platform.

FIGURE 9
Speed waveform of torque step response. (A) EKF load test. (B) AEKF Load test.
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SMC, and the system adopts the vector control strategy

with id = 0.

In the motor loading experiment, 0.5 N•m load was suddenly

applied at the time of t = 0.2 s. Figure 2 shows the speed error

waveform of the two control strategies in response to the sudden

load change, and Figure 3 shows the rotor position and position

error waveform. It can be seen from the simulation waveform

that when the load changes suddenly, the error of speed

estimation of AEKF is lower, and the rotor position

observation has stronger stability.

When t = 0.6 s, suddenly add 1 A current to iα The external

gross error interference in speed estimation is simulated. Figure 4

shows the speed error comparison curve of the two strategies

under gross error interference, and Figure 5 shows the rotor

position and position error comparison diagram of the two

strategies. It can be seen from above figures that both

strategies will have speed error waveform when encountering

interference, but the fluctuation of AEKF encountering external

interference is lower, and the rotor position observation

performance is more stable and has stronger immunity.

In order to verify the anti-interference performance of the

algorithm to the internal error disturbance, the error signal of x =

[0 1 0 0]T is added to the input of the observer at the time of t = 0.6 s.

The experimental results are shown in Figure 6 and Figure 7. Under

the interference of internal error signal, the fluctuation amplitude of

AEKF is smaller than that of EKF, there is no obviouswaveform in the

rotor position error curve, and the speed and rotor position tracking

performance of AEKF is better.

The following figure shows the rotor position curve of the

two control strategies under internal interference. It can be seen

FIGURE 10
Rotor position waveform of torque step response. (A) Based on EKF rotor position. (B) Based on AEKF rotor position. (C) Rotor position error
based on EKF. (D) Rotor position error based on AEKF.

FIGURE 11
Speed waveform of unload torque. (A) EKF unloading test (B) AEKF unloading test.

Frontiers in Energy Research frontiersin.org08

Chen and Liu 10.3389/fenrg.2022.1037595

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2022.1037595


from the enlarged diagram of rotor position error in Figures 7A,C

and Figures 7B,D that the rotor position observation disturbance

of AEKF is lower.

5 Experimental verification

The EKF and AEKF strategies are compared and verified on the

experimental platform shown in Figure 8. The STM32F446 chip of

Italian semiconductor is used in the main control board, and the hall

encoder is used to obtain the actual speed. The observed speed, actual

speed and motor current of the motor are monitored through the

upper computer and oscilloscope. The experimental speed is set at

1,200 r/min, and the anti-interference performance and load

performance of the algorithm are compared and analyzed for two

different control algorithms.

5.1 Loading dynamic performance
experiment

Figure 9 and Figure 10 show the experimental comparison of

two algorithms of sudden load on the motor when the motor

speed is 1,200 rpm. As shown in above figures, under loading, the

FIGURE 12
Rotor position waveform of unload torque. (A) Based on EKF rotor position. (B) Based on AEKF rotor position. (C) Rotor position error based on
EKF. (D) Rotor position error based on AEKF.

FIGURE 13
Speed waveform under external interference. (A) EKF anti external interference experiment (B) AEKF anti external interference experiment.
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phase current variation of AEKF is lower, the error between the

observed speed and the actual speed of the observer is smaller,

and the speed tracking performance is stronger. In terms of rotor

position observation, both control strategies can accurately

follow the actual rotor position.

5.2 Dynamic performance test of
unloading

Figure 11 and Figure 12 show the data after unloading the load

when themotor is loaded and operates stably at 1,200 r/min. It can be

seen from above figures that under the condition of sudden unloading

of the motor, the overshoot of the speed reference actual value

observed by AEKF is lower, and the following performance of

the actual speed is stronger. In terms of rotor position

estimation, both have the same performance, and can

accurately follow the actual position.

5.3 External interference experiment

The current sampling resistance of the motor control board

shown in Figure 8 is 0.02 Ω. In the external interference

FIGURE 14
Rotor position waveform under external interference. (A) Based on EKF rotor position. (B) Based on AEKF rotor position. (C) Rotor position error
based on EKF. (D) Rotor position error based on AEKF.

FIGURE 15
Speed waveform under internal interference. (A) EKF anti internal interference experiment. (B) AEKF anti internal interference experiment.
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experiment, adding 1 A interference signal to the input of the

observer can be equivalent to superimposing 0.02 v voltage

on both ends of the sampling resistance of the control board

to simulate the influence of 1 A current interference on the

Clark transform input. Figure 13 and Figure 14 show the

comparison of the observer performance of the two

algorithms after external interference. It can be seen from

above figures that AEKF has smaller offset of observed speed,

lower current ripple and stronger immunity in the face of

external interference. In rotor position observation, both

algorithms can track the actual position signal when

interference occurs, but the position error of AEKF is

smaller than that of EKF.

5.4 Internal interference experiment

Similar to the external interference experiment, in the program

operation, set the time when the interference variable is added to

EKF through the internal timer TIM2 of STM32, by adding [1,1]

disturbances to the inputs iα, iβ of the observer, Conduct internal

interference experiment, and set the timer duration to 1s. It can be

seen from Figures 15, 16 that when the input of the two observers

encounters interference, the observed speed is deviated from the

actual speed to a certain extent. However, compared with EKF,

AEKF has a lower degree of separation in the face of interference,

and the current recovers faster after encountering interference. Both

of them have the same performance in estimating the rotor position,

and can follow the actual position information under internal

interference.

6 Conclusion

This paper proposes a sensorless control method of PMSM

based on adaptive extended Kalman filter. Firstly, the principles

of AEKF and EKF are introduced, and the differences between

them are analyzed. Compared with EKF, AEKF has higher

observation accuracy of speed and stronger anti-interference

ability in the case of gross error interference and noise

statistical deviation. In terms of rotor position estimation, the

performance of the two control strategies is the same. Finally, the

dynamic and static performances of the two are compared and

analyzed through simulation and experiment. The simulation

and experimental results demonstrate that AEKF can

significantly reduces the speed estimation error and has

stronger anti-interference ability in the case of sudden load

change, gross error interference and noise statistical deviation,

and which can meet the needs of ship electric propulsion system

in complex environment.
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