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In recent years, with the development of new energy technology and the

country’s strong support for electric vehicles, there is a lack of effective

electric vehicle charging fault analysis and diagnosis methods at this stage.

A comprehensive analysis of the working principle of the charging process

of electric vehicles, based on the clarification of the failure mechanism of

the power battery and charging equipment, analyzes the fault-related

factors affecting the power battery and charging equipment from

multiple angles, and summarizes the relationship between the power

battery and charging equipment. The feature parameters related to

equipment failure are discretized by the k-means clustering algorithm.

Using the optimized FP-Growth algorithm based on weights, the

association rules between the power battery and charging equipment

failures and the characteristic parameters of the failure factors are

mined, and the correlation of the failures is analyzed based on the

association rules, and the correlation between the failure factors and

the failures is obtained relevant level.
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1 Introduction

1.1 Motivation and incitement

With the rapid development of social economy and science

and technology, China has done a lot of work in the construction

of transportation infrastructure. The developed transportation

industry and the increasing living standards of residents have led

to a gradual increase in residents’ demand for automobiles as a

means of transportation. However, the increasing number of

motor vehicles means an increase in energy consumption, and at

the same time it will cause continued environmental degradation.

In this context, the country vigorously promotes the use of clean

energy electric vehicles to replace traditional fuel vehicles in the

field of transportation. At the same time, it has also issued a large

number of preferential policies for electric vehicles to encourage

residents to purchase and use electric vehicles as a means of

family transportation (Zhu et al., 2021). In the charging process

of electric vehicles, due to the operation of a large number of

power electronic devices, various failures will occur, and in

serious cases, safety accidents may even occur, threatening the

personal and property safety of users (Tang and Cao, 2020).

1.2 Literature review

Research on the charging failure of electric vehicles is still in

the preliminary stage, and the standards issued by the state and

enterprises for the safety of electric vehicle charging also need to

be improved. Wu Chao (Wu, 2019) designed an abuse

experiment for lithium iron phosphate power batteries,

summarized the failure mechanism of each component of the

lithium battery, and proposed diagnostic methods and diagnostic

strategies for typical failures of lithium iron phosphate batteries.

However, the impact of charging facilities is not taken into

consideration. Ma et al. (2020) constructed characteristic

parameters that can characterize the characteristics of power

batteries, and extracted the characteristic parameter thresholds

for safe charging of power batteries by analyzing the changes of

characteristic parameters, providing a basis for power battery

failure mode identification. In this paper, the characteristic

parameters of power battery characteristics and the

characteristic parameters of charging facility operation

characteristics are combined and analyzed to study their fault

correlation and dig out the causes of charging faults of electric

vehicles. Wilhelmiina Hämäläinen (Hämäläinen., 2016) used

Fisher’s exact test method to solve the problem of unreliable

results in dependency rule mining. At the same time, the new

solution-Fisher’s exact test, has lower time complexity and higher

accuracy. V. J. Rayward-Smith (Rayward-Smith, 2007) proposed

a new technology to measure the correlation between real value

data and nominal data, which relies on the definition of assigning

nominal value to actual value. The proposed assignment is

defined to be the most favourable of all such assignments and

can be efficiently computed. Wu et al. (2020) applied the time

series model to the fault diagnosis of the power battery of electric

vehicles, using the principle of moving window deviation as an

evaluation index for monitoring battery faults, and established a

battery fault model on the MATLAB platform to conduct

experiments. In order to adapt to the rapid increase in the

number of electric vehicles, Western countries have begun to

establish electric vehicle charging networks in the form of

cooperation between traditional car companies and energy

companies. At present, a series of standards have been

formulated for the safety of charging equipment (IEC 62196-

1-2014, 2014), which stipulate electric vehicles. Equipment

related parameters and safety features involved in the process

of car charging and discharging. Ru et al. (2017) conducted a

safety evaluation on the electrical safety protection measures of

electric vehicle charging equipment, established an evaluation

index system for electrical safety, and verified the effectiveness of

the evaluation method through experiments. Meng Jianzhong

(Meng, 2018) designed the DC charging device and AC charging

device of electric vehicles, and formulated the fault diagnosis

strategy of the charging equipment using the finite state machine

method, and verified the charging equipment’s charging

overvoltage fault, insulation fault, and insulation fault through

experimental tests. Successfully realize fault diagnosis when

communication faults and emergency stop faults occur.

However, the correlation between faults is not deeply explored

and the internal factors of faults cannot be accurately identified.

Yu Chang (Yu, 2020) analyzed the safety influencing factors of

electric vehicle charging equipment, developed an index system

for evaluating the health of charging equipment from two

aspects: electrical performance and safety performance, and

designed the health of charging equipment based on the

uncertainty analytic hierarchy process. Comprehensive

evaluation method of state. In terms of artificial intelligence,

the main idea is to make intelligent machines think and react in

an artificial manner. In the field of equipment failure analysis,

artificial intelligence technologies such as expert systems, neural

networks, and data mining have also begun to have a large

number of applications. It provides a thought for the analysis of

fault correlation factors in this paper, but does not investigate the

fault cause and mechanism. Zhao et al. (Zhao and Jiang, 2020)

designed a fault diagnosis method for vehicle electronic

accelerator pedal based on PNN and BP neural network

methods, and verified the effectiveness of the method through

experiments. Hu Jun (Hu et al., 2017) and others discovered the

law of the state recording data of power transmission and

transformation equipment through big data mining

technology, and realized the fault diagnosis of power

transmission and transformation equipment based on this.

Qiu. (2020) analyzed EMU fault alarm data through data

mining technology, and obtained the knowledge of EMU fault

alarm correlation, which provided a basis for EMU fault location.

Frontiers in Energy Research frontiersin.org02

Zhu et al. 10.3389/fenrg.2022.1044379

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2022.1044379


Zhang X C et al. proposed a fault analysis method for power

distribution terminal units based on association rule mining

algorithms, which can objectively and comprehensively

analyze and diagnose faults (Zhang et al., 2021). Zhang Y L

et al. (Zhang et al., 2020) proposed a Right-Hand Side Expanding

Algorithm suitable for association rule mining, which can quickly

and accurately process frequent itemsets and accurately find all

maximal frequent itemsets. However, this method has some

limitations. Inspired by this, we propose an FP-growth

algorithm based on weighted optimization, which solves the

problem that high-level faults may be missed if the minimum

support is set too small.

1.3 Contribution and paper organization

In summary, it is important to make full use of the

advantages of artificial intelligence technology, improve the

research on the correlation analysis of electric vehicle charging

faults, and obtain the correlation knowledge between different

faults in the charging process of electric vehicles. This article first

analyzes the working principles of power batteries and DC

charging piles. Based on this, the fault-related factors are

analyzed and the fault-related characteristic parameters are

designed. The clustering method is used to discretize the

fault-related characteristic parameter data, and the application

is obtained. Transaction data set for mining association rules.

Finally, the weighted optimized FP-Growth algorithm is used to

mine the association rules between the power battery and

charging equipment faults and their characteristic parameters,

and the correlation between the power battery and charging

equipment faults is analyzed based on the association rules, and

the optimization is verified by experiments. Compared with the

original FP-Growth algorithm, the method has superiority in

algorithm performance.

The rest of this article is arranged as follows. Section 2

discusses the working principle of electric vehicle charging.

Section 3 discusses the fault factor correlation model and

proposes the FP-growth algorithm based on weighting, and

then establishes the charging fault data mining model. Section

4 tests the data mining model and shows some fault association

rules mined by the algorithm. Section 5 is the conclusion.

2Working principle of electric vehicle
charging

2.1 Working principle of power battery

2.1.1 Analysis of the working principle of lithium
iron phosphate battery

The lithium iron phosphate battery relies on the transfer of

lithium ions inside the battery to form current in the external

circuit. Figure 1 shows the internal structure of the lithium iron

phosphate battery. The internal structure of the lithium iron

phosphate battery mainly has the following parts (Chang et al.,

2020): First is the positive and negative electrodes of the battery.

The lithium-ions inside the battery complete the deintercalation

and intercalation reactions on the positive and negative

electrodes. The main material of the positive electrode of the

lithium-iron phosphate battery is lithium iron phosphate, and

the negative electrode material is often graphite. Second is the

FIGURE 1
Internal structure of lithium iron phosphate battery.
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positive and negative current collectors. The function of the

positive and negative electrode current collectors of the battery is

mainly to collect the current generated by the active material of

the battery and output it to the outside. The positive electrode

current collector material often uses aluminium foil, and the

negative electrode current collector often uses copper foil. Third

is the electrolyte. The migration of lithium ions inside a lithium

iron phosphate battery requires electrolyte as a medium. Fourth

is the diaphragm. In the lithium iron phosphate battery, it plays a

role of isolating the positive and negative electrodes to prevent

the internal short circuit of the battery.

When a lithium iron phosphate battery is charged, positively

charged lithium ions are extracted from the positive electrode

material of the battery into the electrolyte inside the battery, and

are inserted into the negative electrode after passing through the

diaphragm. Negatively charged electrons flow from the positive

pole of the battery to the negative pole through an external

circuit, so that the charge state of the positive and negative poles

of the battery reaches a balance.

2.1.2 The working principle of ternary lithium
battery

The composition structure of the ternary lithium battery is

basically the same as that of the lithium iron phosphate battery. It

is mainly composed of positive and negative electrodes, current

collectors, separators, and electrolyte. The positive electrode

material of the lithium battery is composed of three materials

of lithium nickelate, lithium-cobaltate, and lithium manganate

mixed in a certain proportion. The ternary lithium battery has a

higher energy density, and more car companies apply it to their

flagship models to obtain a higher cruising range.

When a ternary lithium battery is charged, positively charged

lithium ions are extracted from the positive electrode material of

the battery into the electrolyte inside the battery, and are inserted

into the negative electrode after passing through the diaphragm.

Negatively charged electrons flow from the positive pole of the

battery to the negative pole through an external circuit, so that

the charge state of the positive and negative poles of the battery

reaches a balance.

2.1.3 Power battery charging characteristics
The electric vehicle power battery pack is composed of a

certain number of single cells combined in series and parallel.

The main performance parameters of the single power battery

include nominal capacity, nominal voltage, internal resistance,

charging voltage range, etc. The performance parameters of

single power batteries produced by different manufacturers

also have certain differences. This article selects a single

battery with a nominal voltage of 3.2 V and a charging voltage

range of 2.5V–3.65 V to show its own parameter changes and

charging characteristics during charging.

Generally, the charging of lithium-ion batteries is a dynamic

process of constant current, then constant voltage and then constant

current (Guo, 2020). At the beginning of the charging process, the

voltage of the battery is quickly raised to the cut-off voltage with a

constant current, and then the battery is chargedwith a constant cut-

off voltage until the charging current drops to a certain level (Li,

2015). After this process is completed, the battery has completed

most of the charge, and then keeps a small current constant current

charge to continue to replenish the power (Tan, 2020). Figure 2

shows the change curve of battery voltage with time during the

charging process of a single lithium-ion battery at different charging

rates.

2.1.4 Working principle of DC charger
The DC charger can output DC power to directly charge

the power battery of the electric vehicle. Its charging power is

large, also called a fast-charging pile. Since the fast-charging

speed of DC chargers can meet the charging needs of more

users, DC chargers have begun to become the mainstream of

electric vehicle charging methods. The National Energy

Administration has formulated an industry standard for

DC chargers (NB/T 33001-2010, 2010), which stipulates

that the DC charger is composed of the following parts.

Figure 3 shows the composition and electrical structure of

the DC charger.

The DC charging pile includes four modules: power unit,

control unit, metering unit and human-computer interaction

interface. Among them, the power unit realizes the rectification

and power factor correction of the AC power of the grid and then

converts it into charging DC. The control unit can receive the user’s

operation instructions to control the power unit, and then complete

the charging start and stop control of the charging pile, power unit

output control and other functions. The metering unit can record

the electrical energy output by the DC charger to the power battery.

The human-computer interaction interface can monitor the

operating data of the charging process in real time and display

FIGURE 2
Changes in battery voltage and charging current under
different charging rates.
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the information on the screen to the user. At the same time, it

supports the user’s operation instruction input and parameter

setting, and informs the control. The unit completes the control

of the start and stop of the charging process and the charging state.

The most critical part of the structure of the DC charger is the

power unit, which can realize the rectification function from

alternating current to direct current. The basic structure of the

power unit is shown in Figure 4. The front part of the power unit

has a rectification function to rectify the AC power of the grid

into a direct current. The latter part has a DC

conversion function to achieve electrical isolation and voltage

conversion.

At present, the pre-stage circuit of the DC charger power

unit is mainly selected as the VIENNA rectifier circuit. The

FIGURE 3
Electrical structure diagram of DC charger.

FIGURE 4
Basic structure diagram of DC charger power unit.
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voltage stress of the switch tube is half of the DC side bus

voltage, which is suitable for high-voltage environments. The

topological structure of VIENNA rectifier circuit of the front

stage circuit is shown as in Figure 5.

The back-stage circuit of the DC charger power unit

mainly adopts a phase-shifted full-bridge converter, which

can realize electrical isolation and voltage conversion at the

same time to realize soft switching of the circuit, thereby

improving the transmission efficiency of electric energy.

The circuit topological structure of the phase-shifted full-

bridge converter of the latter stage circuit is shown as in

Figure 6.

2.2 Analysis of failure mechanism and
correlation factors of electric vehicle
charging process

2.2.1 Analysis of power battery failure
mechanism and related factors

Lithium-ion battery cathode material is lithium alloy metal

oxide. The temperature at which the positive electrode of the

lithium iron phosphate battery reacts with the electrolyte is

around 230°C, and the temperature at which the other

positive electrode materials react with the electrolyte is lower

than this level. Therefore, the lithium iron phosphate battery has

FIGURE 5
Topological structure of VIENNA rectifier circuit of front-end circuit.

FIGURE 6
The circuit topology structure of the phase-shifted full-bridge converter of the back-stage circuit.
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a higher temperature and thermal stability than other types of

lithium-ion batteries. The excessive intercalation and

deintercalation of lithium ions in the positive electrode, that

is, overcharge will damage the lattice of the positive electrode

material to accommodate the lithium ions, thereby reducing the

capacity of the lithium-ion battery.

The anode material of lithium-ion battery is mainly

graphite. In the pre-charging stage of the lithium-ion

battery, the graphite of the negative electrode of the battery

can react with the electrolyte to form a solid electrolyte interface

(SEI) film on the surface. The SEI film can prevent the battery

performance due to the continuous decomposition of the

electrolyte in the battery. Decreases, but the formation of the

SEI film consumes lithium-ions. During the charging process of

a lithium-ion battery, the negative electrode of the battery will

continuously insert lithium ions. If the speed of lithium-ion

insertion into the negative electrode material is lower than the

speed at which the negative electrode receives lithium-ions, this

part of the lithium metal will be permanently withdrawn from

the lithium cycle inside the battery, and decrease lithium-ion

battery capacity.

The speed at which lithium ions are inserted into the negative

electrode material is lower than the speed at which the negative

electrode receives lithium-ions, which often occurs in the low-

temperature charging and overcurrent charging conditions of

lithium-ion batteries. It is necessary to strictly control the

charging rate of lithium-ion batteries and reduce the charging

current. Table 1 shows the phenomena and causes of power

battery failure.

In summary, the factors related to the failure of the power

battery pack can be summarized as battery overcharge, ambient

temperature, and charge rate.

2.2.2 Analysis of DC charger failure mechanism
and related factors

Under the strong power input of the power distribution

system, the insulating material of the charging equipment may

break down, which will lead to the loss of insulation of the

charging equipment. The insulation fault of the charging

equipment is a serious fault, which may endanger personal

safety. Once the insulation fault of the charging pile occurs,

the charging pile will be shut down immediately and wait for

professional maintenance personnel to repair.

The same environment will have different effects on the

working conditions of the charging equipment such as excessive

ambient temperature may cause over-temperature failure of

charging equipment under normal use, higher humidity can

affect the electrical insulation of charging equipment, the

smoke and dust environment will affect the heat dissipation

function of the charging and discharging equipment, etc. During

the working process of the charging equipment, it is inevitable

that abnormality will occur. For example, the failure of the

temperature sensor may cause the charging and discharging

equipment to generate an over-temperature false alarm. If the

output current threshold of the charging and discharging

equipment is set too small, it may cause an output over-

current alarm. The circuit breaker of the charging and

discharging equipment, contactor and other devices will

trigger the protection of charging and discharging equipment

to stop working when there is a failure.

The protection measures of charging equipment include

equipment detection function, which can monitor the real-

time operation status of the pile during the charging and

discharging process, and also need to have protection against

problems such as over-temperature of the pile, abnormal

input and output, and short circuit. Insufficient protection

measures for charging and discharging equipment will lead to

equipment failures of different severity. Table 2 shows the

fault phenomena and causes of DC charger.

In summary, the fault factors related to charging equipment

are summarized as electrical insulation of charging and

discharging equipment, environmental factors Charging and

discharging equipment itself factors and pile protection

measures.

TABLE 1 Failure phenomena and causes of power battery.

Fault phenomenon Cause of failure

Battery pack capacity reduced Inconsistent voltage of single battery

Battery pack temperature protection

High energy consumption load in peripheral circuit

Long term shallow charging and discharging of battery, with memory effect

Charging voltage is too high Battery cell overcharged

Low battery or charging ambient temperature

At the end of battery life, the internal resistance increases

Charging at the original rate after capacity attenuation

The charge of the battery pack is already very high

Charger fault, high charging current
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3 Data mining model of electric
vehicle charging failure

3.1 Page layout

In the field of electric vehicle charging, my country has

initially formed a systematic standard and system. With

reference to various national standards, industry standards,

and related engineering and scientific research materials, we

determine the temperature change rate of power battery

packs, ambient temperature, battery charging overvoltage rate.

The parameters of battery internal resistance, battery pack

historical failure times, battery state of charge SOC, battery

internal resistance change rate, charging voltage error rate and

charging current error rate are used as characteristic parameters

to characterize the correlation factors of charging equipment

failures. Among them, the calculation formulas for battery

charging overvoltage rate, charging voltage error rate and

charging current error rate are expressed as follows:

3.1.1 Battery charging overvoltage rate
The normal power battery charging process has a specified

charging voltage. Charging the power battery with a voltage

exceeding the specified charging voltage will affect the battery.

The charging overvoltage rate is calculated by the following

formula.

ξBU � UB − UB0

UB0
× 100% (1)

3.1.2 Charge voltage error rate
The charging output error rate reflects the electrical

performance of the charging equipment. Normal charging

equipment requires that the charging output voltage error

should not exceed ± 5%, and it indicates that the charging

equipment may be abnormal. The charging output error rate

is calculated by the following formula.

ξZU � |UZ − UZ0|
UZ0

(2)

UZ >UZ0 indicates that the charging output of the charging

device is over-voltage, and UZ <UZ0 indicates that the charging

output of the charging device is under-voltage.

3.1.3 Charging current error rate
The charging output current error rate also reflects the

electrical performance of the charging equipment. Normal

charging equipment requires that the charging output current

error should not exceed ± 5%, and it indicates that the charging

equipment may be abnormal. The charge output current error

rate is calculated by the following formula.

ξZI � |IZ − IZ0|
IZ0

(3)

IZ > IZ0 indicates that the charging output of the charging device
is overcurrent, and IZ < IZ0 indicates that the charging output of
the charging device is undercurrent.

Electric vehicle charging data is measured by sensor

equipment, and various abnormalities will inevitably occur

during the actual operation of the sensor. In view of this

situation, this article deals with the data in consideration of

the integrity and accuracy of the data.

First of all, from the perspective of data integrity, we

should focus on checking for data lack of value. For

missing data, calculate the mean of the two data points

before and after the missing data point, and replace the

missing data with the mean. Secondly, considering the

accuracy of the data, selectively find out the wrong data

points in the original data. This paper uses the calculation

of the forward and backward third-order difference of the

TABLE 2 Fault phenomenon and cause of DC charger.

Fault phenomenon Cause of failure

Charging output overvoltage Low control accuracy of charging module

Damaged charging module

Charge output undervoltage Overload

Damaged charging module

Charge output overcurrent Abnormal battery

Damaged charging and discharging module

Insulation monitoring failure The insulation of the charging output circuit to the ground is damaged

Damaged insulation monitoring module

Charge input overvoltage Power distribution system failure

Charge input undervoltage Power distribution system failure

Charging module over temperature Too much dirt inside the charger pile

The charger runs at high power for a long time
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power battery SOC to determine whether the current data is

wrong. The specific process is as follows:

Calculate the forward and backward third-order differences

of all SOC data in turn:

SOCdb1(t) � SOC(t) − SOC(t − 1) (4)
SOCdb2(t) � SOC(t) − SOC(t − 2) (5)
SOCdb3(t) � SOC(t) − SOC(t − 3) (6)
SOCda1(t) � SOC(t) − SOC(t + 1) (7)
SOCda2(t) � SOC(t) − SOC(t + 2) (8)
SOCda3(t) � SOC(t) − SOC(t + 3) (9)

The SOCda1(t), SOCda2(t), and SOCda3(t) respectively

represent the backward one of the tth value in the battery

SOC data sequence, second and third order difference.

For the data of the charging process, the following judgments

are made:

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

SOCdb1(t)≥ 0
SOCda1(t)≤ 0
SOCdb2(t)≥ 0
SOCda2(t)≤ 0
SOCdb3(t)≥ 0
SOCda3(t)≤ 0

(10)

If the current SOC data meets this condition, it is judged to be

normal data, otherwise it is wrong data. For the SOC data judged

to be wrong, the average value method is used for all the data

collected this time, that is, the average value of the preceding and

following items replaces this data point.

3.2 Association rule model

Life Science Identifiers (LSIDs) for ZOOBANK registered

names or nomenclatural acts should be listed

in the manuscript before the keywords with the following

format:

Association rule mining is based on a large amount of data.

By analyzing which data items appear together frequently, a

collection of data items with many frequent items appearing

together can be obtained (Nalini, 2016). In a transaction set, the

frequency of the data item set can be represented by the concept

of support. Suppose there is an item set X in the transaction set T.

Define the number of occurrences of the item set X in the

transaction set T as σ(X). Suppose the total number of

transactions in transaction set T is N, then the support of

item set X is defined as:

sup(X) � σ(X)
N

(11)

With the definition of support, we can show how frequently the

itemset X appears in the transaction set T. Here we introduce a

definition of minimum support min sup. The criterion for item

set X as a frequent item set is that its support is not less than

min sup.

Use expressions A → B to represent association rules.

Support for association rules:

sup(A → B) � σ(A ∪ B)
N

(12)

Both non-empty subsets A ⊂ X and B � X − A of frequent

itemset X constitute association rule A → B, and then the

association rule of interest is determined based on the

confidence of another index that measures the association rule.

con(A → B) � σ(A ∪ B)
σ(A) (13)

FIGURE 7
Process of discretizing feature data using K-means clustering
algorithm.

Frontiers in Energy Research frontiersin.org09

Zhu et al. 10.3389/fenrg.2022.1044379

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2022.1044379


After setting a minimum degree of confidence, the

association rules can be filtered through the minimum

support and minimum confidence. When applying the

association rule model to fault correlation analysis, you

can choose the preceding item of the association rule as a

symptom, and the latter item of the association rule as the

failure phenomenon. Such an association rule can reflect the

correlation between the symptom and the failure

phenomenon, and the confidence level reflects. The

credibility of fault association rules (Peng et al., 2019;

Wang, 2020; Zhao and Su, 2021). In this paper, the

association rule model is used in the analysis of the

relevance of electric vehicle charging failures. The first

item of the association rule is the characteristic parameter

obtained after the K-means clustering algorithm is used to

discretize the characteristic parameter data. It can be reflected

by using the association rule mining algorithm. Fault

association rules for the correlation between characteristic

parameters and fault phenomena in the charging process of

electric vehicles. The specific process of discretization is

shown in Figure 7.

3.3 Optimized FP-growth algorithm
model based on weight

3.3.1 FP-growth algorithm model
FP-Growth uses frequent itemset growth to conduct

correlation mining. By recursively searching for frequent

patterns on the FP tree, add a suffix to each frequently mined

pattern to obtain all frequent patterns suffixed with a frequent

item (Zeng et al., 2019). FP-Growth algorithm has better

efficiency when mining a large amount of data, so it is

suitable for complex charging fault data mining. The flow of

the FP-Growth algorithm is shown in Figure 8.

Take the transaction set in Table 3 as an example to introduce

the principle of the FP-Growth algorithm.

Set the minimum support to 3, the first step of the algorithm

is to scan the transaction set to obtain frequent 1-itemsets, and

arrange the itemsets according to the support to form the item

header table F = {{F:5}, {H:5}, {D:4}, {E:4}, {A:4}, {C:3}, {I:3}}.

Scan all transactions in the transaction set T, access each item in

the order in F, and do not deal with infrequent items. The sorted

transaction set is shown in Table 4.

The root node of FP-Tree is marked as Null, and each sorted

transaction record is scanned in turn to form each branch of FP-

Tree. The final FP-Tree is shown in Figure 9. It can be seen that

FP-Tree contains all the information needed to mine frequent

itemsets in the transaction set T.

The item header table has been arranged according to item

support, so in each frequent pattern, the item with high support

FIGURE 8
FP-Growth algorithm flow chart.

TABLE 3 Example table.

Transaction ID Item set

1 A, B, C, D, E, F

2 D, E, F, G, H, C

3 I, H, J, D, F, K

4 I, H, A, B, D, F

5 I, H, A, C

6 A, H, K, D, E, F

TABLE 4 Transaction set in descending order of support.

Transaction ID Item set

1 F, D, E, A, C

2 F, H, D, E, C

3 F, H, D, I

4 F, H, E, A, I

5 H, A, C, I

6 F, H, D, E, A
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must be in front of the item with low support, so that the divide and

conquer strategy can be used to mine all frequent items. First, mine

the frequent patterns suffixedwith I to obtain the conditional pattern

library of I. After removing the infrequent items from the

conditional pattern library, the database and its corresponding

conditional FP-Tree are shown in Table 5; Figure 10.

FP-Tree is composed of a path. The combination mode of all

nodes on the path is only {H:3}. After adding the conditional

FIGURE 9
Complete FP-Tree.

TABLE 5 Conditional pattern library.

Transaction ID Conditional mode Conditional mode for
removing infrequent items

1 F, H, D:1 H:1

2 F, H, E, A:1 H:1

3 H, A, C:1 H:1

FIGURE 10
I’s condition FP-Tree.
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FIGURE 11
Cluster structure diagram.

TABLE 6 Power battery failure association rules.

Pre-rule Rule post Weighted support (%) Weighted confidence (%)

The internal resistance change rate is greater than 0.2 mΩ/s Battery pack is over
temperature

2.7 94

The temperature change rate is greater than 0.2 ℃/s Battery pack is over
temperature

3.1 88

Battery charging overvoltage rate is greater than 12% Battery pack is over
temperature

1.7 74

The battery charging overvoltage rate is greater than 12%, and the ambient
temperature is greater than 38.5°C

Battery pack is over
temperature

1.5 81

The ambient temperature is less than −5°C High charging voltage 1.2 62

The internal resistance of the battery is greater than 5 mΩ High charging voltage 2.3 79

The internal resistance of the battery is greater than 5 mΩ Reduced battery pack
capacity

2.3 91

The ambient temperature is less than −5°C, and the number of historical
failures of the battery pack is greater than 3

Reduced battery pack
capacity

2.5 81
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suffix I and outputting, all frequent patterns {H, I:3} with I as the

suffix can be obtained, which is the association rule H → I.

Continue to mine frequent patterns with the remaining items

as suffixes, and finally get all the association rules H → I,

F, E → A, F → A, H → A, E → A, F,D → E, F,H → E,

F → E, D → E, H → E, F,H → D, F → D, H → D, F → H.

3.3.2 Optimization of FP-growth algorithm
based on weight

Electric vehicle charging faults are divided into levels. The

national standard divides electric vehicle charging faults into

three levels: personal safety level faults, equipment safety level

faults, alarm prompt level faults (GB/T 27930, 2015), the higher

the level of faults charging electric vehicles, the greater the impact

of normal progress. In the actual working conditions of the

equipment, the number of high-level faults is often very small,

which will lead to the failure of the FP-Growth algorithm to mine

fault association rules. If the minimum support is set too small,

high-level faults may be missed. To solve this problem, this paper

uses the idea of weighting to optimize the FP growth algorithm,

comprehensively considering the weight of the characteristic data

of fault correlation factors, which can increase the support of

fault factors with large weight to a certain extent, avoid the

omission of association rules, and reduce the support of fault

factors with low weight. In this way, some useless feature data

with high degree of occurrence may be deleted, so as to reduce the

useless association rules mined by the algorithm.

Aiming at the shortcomings of the original FP-Growth

algorithm, this paper uses the weighting idea to optimize the

algorithm. With feature parameter data set D � {x1, x2,/, xn},
and all discretized feature parameter transaction item sets

I � {i1, i2,/, im}, the feature parameter types contained in

each fault correlation factor feature data xn belong to I, that

is, each fault factor characteristic data xn is a subset of I.

Define the discretized feature parameter type. All feature

parameter types in the transaction item set I have a

TABLE 7 Correlation level of power battery failure factors.

Failure related factors Correlation level (%)

Temperature change rate in battery 86

Ambient temperature 67

Battery charging overvoltage rate 83

Battery internal resistance 81

Change rate of battery internal resistance 89

Battery state of charge SOC 73

The number of historical failures of the battery pack 84

FIGURE 12
Correlation level of power battery failure factors.
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corresponding weight, and the weight set corresponding to I is

W � {ω1,ω2,/,ωm}.
Each piece of feature data is composed of k-dimensional feature

parameters, and the weight of each piece of feature data is defined as

the average value of all parameter weights under that piece of data:

ω(xn) � 1
k

∑
Im∈xn

ωIm (14)

Define the weighted support degree of the characteristic

parameter transaction item:

Wsup(im) � sup(im) × ωim (15)

Define the weighted support of feature parameter data xn:

Wsup(xn) � sup(xn) × 1
k

∑
Im∈xn

ωIm (16)

Define the weighted support of association rule A → B,

suppose A contains a feature parameter type, B contains b

feature parameter types, and the weighted support of

association rule A → B is:

Wsup(A → B) � sup(A ∪ B) × 1
a + b

∑
Im∈A∪B

ωIm (17)

Define the weighted confidence of association rule A → B as:

Wcon(A → B) � Wsup(A ∪ B)
Wsup(A) (18)

After defining the weighted support and weighted

confidence, replace all support and confidence calculations

with weighted support and weighted confidence in FP growth

algorithm, so as to increase the support of fault correlation factor

characteristic data with large weight to a certain extent and avoid

the omission of association rules due to too small minimum

support setting. At the same time, it can reduce the support of

feature data with low weight, which may delete some feature data

with high degree of occurrence but useless, so as to reduce the

useless association rules mined by the algorithm.

4 Example analysis

4.1 Examples

This paper uses the Hadoop distributed computing

platform as the basic platform of this experiment to build

an experimental environment for the correlation analysis of

electric vehicle charging failures. Hadoop is a distributed

system infrastructure, which is currently widely used in

various academic research and industrial applications

(Ragaventhiran and Kavithadevi, 2020). Its core

components are the Hadoop Distributed File System

(HDFS) and the MapReduce engine. Using the operating

TABLE 8 DC charger fault association rules.

Pre-rule Rule post Weighted support (%) Weighted confidence (%)

The ambient temperature is greater than 38°C, and the continuous
working time exceeds 300 min

Charger over temperature
fault

1.9 79

The number of historical failures exceeds 4 Charger over temperature
fault

1.5 66

The charging voltage error rate is greater than 4.3% DC output overvoltage fault 1.7 83

BMS response rate is less than 94% DC output overvoltage fault 1.2 76

The charging voltage error rate is less than −4.5% DC output undervoltage
fault

1.6 82

The number of historical failures exceeds 4 DC output undervoltage
fault

1.5 62

Charging current error rate is greater than 4.1% DC output overcurrent fault 1.5 77

BMS response rate is less than 94% DC output overcurrent fault 1.4 83

The number of historical failures exceeds 4 The charging module is
damaged

1.1 61

The ambient temperature is greater than 38°C, and the continuous
working time exceeds 300 min

Charging module over
temperature

2.1 74

TABLE 9 Correlation level of DC charger failure factors.

Failure related factors Correlation level (%)

Charging current error rate 84

Charge voltage error rate 85

Ambient temperature 68

Charger and BMS response rate 91

Continuous working time of charger 74

The number of historical failures of the charger 66
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data provided by a company in Nanjing, Jiangsu Province

when the charging of electric vehicles failed, the characteristic

data was extracted and processed to obtain characteristic data

that can reflect the factors related to the failure of the power

battery and the charging equipment.

This experiment uses three computers to form a cluster to

build a three-node distributed computing environment. One

of the master nodes is used as the name node, the NameNode

is responsible for cluster scheduling and data storage and

calculation, and the two slave nodes are used as the data nodes,

and the DataNode is responsible for data storage. And

computing, the cluster structure is shown in Figure 11.

4.1.1 Fault association rules and correlation
analysis

The weighted optimized FP growth algorithm is applied to

mine association rules for the characteristic data of power battery

fault correlation factors of electric vehicles. The minimum

weighted support is set to minWsup � 1% and the minimum

weighted confidence is set to minWcon � 60% to obtain power

battery fault association rules. Some representative association

rules are selected, as shown in Table 6, and the correlation

analysis of power battery fault is carried out.

Table 6 shows some strong association rules based on power

battery charging fault data mining. They describe the relationship

FIGURE 13
Correlation level of DC charger failure factors.

FIGURE 14
Variation of algorithm running time with minimum support.

FIGURE 15
The number of association rules changes with the minimum
support.
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between power battery fault related factors and fault forms. For

example, the first association rule indicates that when the internal

resistance conversion rate of the battery is greater than 0.2 mΩ/s,

there is a 94% chance that the battery pack may cause over-

temperature failure. The second association rule indicates that

when the temperature change rate in the battery is greater than

0.2 ℃/s, there is an 88% chance that the battery pack may cause

over-temperature failure, and so on.

These association rules are only a small part of the mining

results. All the association rules obtained are counted, and the

temperature change rate in the battery, the ambient temperature,

the battery charging overvoltage rate, the battery charging

overcurrent rate, and the battery internal resistance, battery

internal resistance change rate, battery state of charge SOC,

battery pack failure history related to the average level of

confidence in association rules to evaluate the correlation level

of factors and failures. The results are shown in Table 7, and the

radar chart of the correlation level is shown in Figure 12.

The weighted optimized FP growth algorithm is applied to mine

the association rules of the characteristic data of DC charger fault

correlation factors, and the minimum weighted support is set to

minWsup � 1% and the minimum weighted confidence is set to

minWcon � 60% to obtain theDC charger fault association rules. In

this section, some representative association rules are selected as

shown in Table 8 below, and the DC charger fault correlation analysis

is carried out.

Table 8 shows some strong association rules based on DC

charger charging fault data mining, which describe the association

relationship between DC charger fault correlation factors and fault

forms. For example, the first association rule indicates that when the

ambient temperature is greater than 38 °C and the continuous

working time of the charging pile exceeds 300 min, 79%may lead to

the over temperature fault of the charger. The second association

rule indicates that when the number of historical faults exceeds 4,

66% may lead to over temperature fault of charger, and so on.

All the obtained association rules are counted, and the correlation

level between factors and faults is evaluated by calculating the average

confidence level of association rules related to DC charger fault

related factors, such as charging voltage error rate, charging current

error rate, ambient temperature, charger and BMS response rate,

charger continuous working time and charger historical fault times.

The results are shown in Table 9, and the correlation level values are

drawn into the radar diagram, as shown in Figure 13.

In order to verify the optimization effect of the proposed

weighted FP-Growth algorithm, this paper conducts experiments

on both the optimized FP-Growth algorithm and the original FP-

Growth algorithm.

Figure 14 shows the changes in the running time of the

original FP-Growth algorithm and the optimized FP-Growth

algorithm under different minimum support degrees. It can be

seen that when the minimum support setting is small, the

running time of the algorithm is relatively long due to the

large number of transactions that need to be calculated. With

the increase of the minimum support degree, the running time of

the two algorithms is decreasing. However, when the minimum

support is the same, the weighted optimized FP-Growth

algorithm has a significant computational time advantage

compared to the original FP-Growth algorithm, which shows

that the weighted optimized FP-Growth algorithm improves the

efficiency of association rule mining.

Figure 15 shows the changes in the number of association rules

mined by the original FP-Growth algorithm and the optimized FP-

Growth algorithm under different minimum support degrees. It can

be seen that when theminimum support setting is small, the number

of association rules mined by the algorithm is relatively large, and

there may bemore invalid rules and duplicate rules among them. As

the minimum support increases, the number of association rules

mined by the two algorithms is decreasing. However, when the

minimum support is the same, the number of association rules

mined by the weighted optimized FP-Growth algorithm is

significantly smaller than that of the original FP-Growth

algorithm, which shows that the weighted optimized FP-Growth

algorithm has achieved the expected reduction. The support of

feature data with lower weight can reduce the useless association

rules mined by the algorithm and avoid the omission of association

rules due to the too small minimum support setting.

5 Conclusion

Aiming at the problems that the failure forms of power battery

and charging and discharging equipment involved in the charging

process of electric vehicles are diverse, and the failure mechanism

load is difficult to analyze and diagnose, this paper analyzes and

summarizes the common failure forms and failure mechanisms of

power battery and charging equipment based on the working

principle and failure mechanism of power battery and charging

equipment, The correlation factors thatmay affect the failure of EV

charging are analyzed at the two levels of EV power battery and

charging equipment, and the characteristic parameters that can

reflect the failure correlation of EV power battery and charging

equipment are extracted. Discretize the characteristic parameter

data of the K-means clustering algorithm, and then use the weight-

based optimized FP-growth algorithm to mine the association

rules of the discretized data, and obtain the fault association rules

for the charging process of electric vehicles. The association rule

analysis obtains the correlation level of the correlation factor to the

failure, which provides certain technical support for realizing the

intelligent diagnosis of the charging process of electric vehicles.
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