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In recent years, sub-synchronous oscillation incidents have been reported to

happen globally, which seriously threatens the safe and stable operation of the

power system. It is difficult to locate the oscillation source in practice using the

parameterized model of open-loop modal resonance. Therefore, this paper

aims at the problem of oscillation instability caused by the interaction between

themultiple voltage source converters in thewind farm grid-connected system,

proposes a method for locating the oscillation source of a wind farm using

measurement data based on the transfer learning algorithm of transfer

component analysis. At the same time, in order to solve the problem of the

lack of oscillation data and the inability to label in the real system, a simplified

simulation system was proposed to generate large batches of labeled training

samples. Then, the common features of the samples from simulation system

and the real system were learned through the transfer component analysis

algorithm. Afterward, a classifier was trained to classify samples with common

features. Finally, two grid-connected wind farms with VSC access are used to

verify that the proposed method has good locating performance. This has

important reference value for the practical application of power grid

dispatching and operation using measurement to identify oscillation sources.
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1 Introduction

In recent years, as renewable energy has become more and

more dominant in the power grid, various new Flexible

Alternative Current Transmission Systems (FACTS) devices

including Voltage Sourced Converter (VSC) have been

continuously connected. Through flexible power flow, voltage

regulation and reactive power compensation technology, the

optimal allocation of resources in a wider range can be

realized (CHEN and JIANG, 2017; GAO et al., 2020; MA

et al., 2020).

However, some studies have shown that the interaction

between VSCs or between VSCs and the synchronous

generator shafting is easy to cause oscillation instability

(SONG et al., 2017; Chen et al., 2018). For example, in

(ZHOU et al., 2018), the static synchronous compensator

(STATCOM) is prone to strong dynamic interactions with the

control loop of the wind generator. (REN et al., 2020). discusses

the possible interaction between the Unified Power Flow

Controller (UPFC) and the synchronous generator shafting. It

can be found that the internal structures of UPFC and

STATCOM are both VSC-controlled devices. Therefore, when

wind farms use such VSC-controlled power conversion devices to

connect to the power grid, there is a risk of oscillation and

instability due to dynamic interaction. It has become a hot

research issue to locate the wind farm with improper control

parameters (the accidental wind farm, also known as the

oscillation source) and take targeted suppression measures

in time.

The research on the localization of oscillation sources mainly

based onmechanism analysis and damping control has been fully

developed in the past 10 years, but most of them are aimed at the

localization of low-frequency oscillation sources (WANG and

SUN, 2017;WU et al., 2018). However, in recent years, there have

beenmany reports on sub-synchronous oscillation (SSO) of wind

farms (WANG et al., 2020; XUE et al., 2020). In order to quickly

locate the SSO oscillation source, measurement-based methods

led by the energy method and the impedance method have

emerged (ZHENG et al., 2016; XU, 2018). Calculate the total

energy and amplitude of the system, and then judge the

contribution of the energy-consuming components to the

oscillation attenuation, so as to realize the method of locating

the SSO oscillation source; (Ma et al., 2021); adopts the method of

combining real-time monitoring data and aggregated impedance

model, and proposes sub-synchronization Oscillation stability

evaluation index and oscillation traceability method. Obviously,

the above methods are either numerical algorithms based on

parametric models, or nested numerical methods based on signal

parameter identification algorithms. The common point is that

they all need to derive numerical calculation models for specific

problems. Therefore, there will inevitably be time delays when

these methods are applied online. In addition, because the

concept of energy is not clearly defined in many components,

and the impedance method is greatly affected by noise, if the

resonant frequency point is inaccurate, the equivalent impedance

calculation will be inaccurate, which will further affect the

positioning accuracy of the model.

In recent years, artificial intelligence technology has become

an emerging effective method by virtue of the advantages of data

sample-based and weakened mechanism modeling (Zhu et al.,

2017; HUANG et al., 2019; YANG B et al., 2020), but the research

on the localization method of sub-synchronous oscillation

sources in wind farms is still insufficient (Yao et al., 2021).

For example, (Shuang et al., 2020), once proposed the method

of model transfer to transfer the VGG16 grid to the localization

of the forced power oscillation source, and obtained high

localization accuracy. Limited to the VGG16 model and

training samples, this model is not necessarily more suitable

for the SSO sub-synchronous oscillation source localization

problem. Therefore, the adaptability of the proposed method

and the generalization from the training system to the actual

system are still insufficient. However, based on the feature

transfer method in (CHEN et al., 2021), the characteristics of

the simulation system are transferred to the actual system, and

the sub-synchronous oscillation source induced by the resonance

of a single synchronous machine and a single fan in the wind-fire

baling system is located. However, considering that this method

requires measurement at the port of each wind turbine, and the

actual wind farm has hundreds or thousands of wind turbines,

the coverage of the measurement points is very high, and the

possibility of practical application needs to be further verified. In

addition, in engineering practice, the computer used for

computing usually does not have a computing GPU, so it is

difficult to meet the hardware conditions required for building a

complex deep learning grid.

In order to solve the above problems based on deep learning

methods, this paper proposes a method for locating sub-

synchronous oscillation sources of wind farms based on

transfer component analysis (TCA) based on the engineering

practice of wind farms. In this method, TCA is used to extract the

features of the measurement data, and a simple classifier is used

to locate the oscillation source. Compared with other deep

learning methods, this method has fast calculation speed, high

positioning accuracy, and low requirements on computer

hardware, which is more suitable for practical applications in

wind farm engineering.

2 Principle of interaction between
wind farm and FACTS

FACTS devices are often installed in the grid-connected

system of wind farms to adjust the system power flow or

provide reactive power compensation. However, studies have

demonstrated (ZHOU et al., 2018; REN et al., 2020) that such

VSC-type FACTS devices can interact dynamically with wind
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farms. In order to study the oscillation source in the actual wind

farm, as shown in Figure 1, two typical wind farm grid-connected

systems equipped with FACTS devices are given. Among them,

Figure 1A is a system equipped with a series-parallel combined

UPFC; Figure 1B is a system equipped with STATCOM, its

structure contains a single-ended VSC, so the connectionmethod

is usually connected in parallel; among them, the system of wind

farm is formed by the aggregation of N1 wind farms, through the

bus W Assemble and send.

The open-loop mode resonance modeling method (REN

et al., 2020) is to take the output power of the wind farm as a

node at a certain operating point, and divide the system in

Figure 1 into the open-loop subsystem of the wind farm to be

studied and the remaining systems (including other VSC-type

devices and All components of the AC main grid) are two parts,

and the transfer function can be expressed as:

ΔVθ � H s( )ΔEPQ (1)
ΔEPQ � G s( )ΔVθ (2)

Among them, H2×2(s) represents the feedforward subsystem

transfer function of the wind farm, G2×2(s) represents the

feedback subsystem transfer function matrix of the remaining

system, EPQ � [Pp, ΔQp]T represents the exchange power

between the wind farm and the system; Vθ � [Vw, θw]T
represents the node voltage amplitude and phase angle at the

connection point between the wind farm and the system. The

grid-connected system of the wind farm is represented as a

closed-loop interconnection model, as shown in Figure 2.

The wind farm system and the remaining system constitute

an interconnected system. According to the open-loop mode

resonance theory (WANG et al., 2019), the influence of the wind

farm on the system is mainly caused by the interaction between

its control system and the remaining control system, which

causes the mode change of the closed-loop system, that is,

The mode of H(s) interacts with the mode of G(s), which will

affect the changes of input and output variables EPQ and Vθ . At

the same time, since EPQ and Vθ can be measured, the above-

mentioned system state equation can be fitted by quantitative

measurement, and the relationship can be expressed as:

ΔEPQ,ΔVθ( ) ↔ H,G( ) ↔ AS (3)

The steps of calculating the system oscillation source

according to the parametric model can be summarized as

follows: first, calculate the oscillation mode li of the state

matrix As of the system, and the corresponding participation

factor PFki; secondly, calculate the element corresponding to the

mode with the largest participation factor |PFki|, which is the

participation interaction element to determine the element as an

oscillation source. Due to engineering practice, it is difficult to

measure at the grid-connected location of each wind turbine.

Usually, monitoring is performed in units of a line or a wind

farm. Therefore, the wind farm is used as a unit here, and a wind

farm is regarded as an element. Denote the oscillation source yn
as the number of the wind farm participating in the dynamic

interaction of the system, then there is a function g between the

oscillation source yn and the state matrixAs of the system, that is,

Eq. 3 can be further expressed as:

ΔEPQ,ΔVθ( ) ↔ H,G( ) ↔ AS → g yn( ) (4)

From this, it can be seen that the relationship between the

measurable measurement ΔEPQ and ΔVθ and the label of the

oscillation source can be expressed as:

FIGURE 1
Schematic of hybrid power system with VSC. (A) System
structure with UPFC access .(B) System structure with STATCOM
access

FIGURE 2
Closed-loop interconnected linearized models of multi-
wind-turbine power system with VSC.
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ΔEPQ,ΔVθ( ) → g yn( ) (5)

Therefore, the relational modeling of Eq. 5 can be extended to

machine learning problems, where the function g (·) is the

relational expression of the oscillation source localization

model, the input of the machine learning function g (·) is the
measurement data sample, and the output is the oscillation

source tag.

At the same time, based on the open-loop mode resonance

theory, it is easy to obtain the measurement data of the grid-

connected port of the wind farm under different operating

conditions by offline simulation. The nth sample measurement

data obtained is recorded as Xn � (EPQ,V∅) � (P,Q,V,V∅),
and calculate the participation factor and oscillation source label

of the sample according to the parametric model, recorded as Y =

{yn}, where yn = 0 indicates that the nth sample system is stable, and

yn = 1 indicates that wind farm one is an oscillation source, thus

constructing a labeled sample.

3 Oscillation source localization
method based on TCA

3.1 Introduction to TCA

The TCAmethod belongs to a feature-based transfer learning

method (Yang Q et al., 2020), which learns a pair of mapping

functions from the source domain and the target domain. The

classifier is retrained, and finally the prediction of the classifier is

performed. Therefore, measures of data distribution can be used

to narrow the distribution differences between different data

domains, enabling transfer learning, as shown in Figure 3.

In the power system, the data samples obtained by the simulated

system and the actual system are quite different because their

distributions are not the same. Therefore, the most critical step

in transfer learning is to reduce the distribution difference of the data

samples obtained by the simulated system and the actual system. Let

the simulation systembe the source domain and the actual system be

the target domain, where the source domain is a labeled system,

denoted as Ds = {(X1, Y1),. . ., (Xn, Yn)}; and the target domain is an

unlabeled system, Denoted asDt = {Xn+1, . . . , Xn+m}. Currently, the

most widely used measure of domain distribution discrepancy is the

Maximum Mean Discrepancy (MMD) (Yang Q et al., 2020)

measure. MMD is a non-parametric measure used to measure

the distance between distributions based on kernel embeddings

in the regenerated kernel HilBert space, the MMD distance formula

is as follows:

MMD Ps, Pt( ) � 1
ns
∑
n

i�1
ϕ xi( ) − 1

nt
∑
ns+nt

j�1
ϕ xj( )

����������

����������

2

H
(6)

Where, ϕ: x→H represents the infinite order non-linear feature map

in the kernel space, ns and nt represent the sample length

respectively; By using the kernel function, Eq. 6 can be simplified as:

MMD � tr KL( ) (7)

Among them, K is a composite kernel matrix composed of

kernel matrices in the source domain, target domain and

intersection domain, and k in each domain is the kernel function

corresponding to ϕ, satisfying< ϕ xi), ϕ (xj) ≥ k (xi, xj),<·> represents

the inner product of two functions. L represents the sample size

matrix, see (Yang B et al., 2020) for the detailed definition.

Since the kernel function k in Eq. 7 may be a highly non-

linear form of the mapping function, and the function ϕ x) is also
unknown, the TCA method decomposes the kernel matrix in the

equation to obtain the following optimization problem:

min
w tr ~KWWT ~KL( ) + λtr WT W( )

s.t.WT ~KH ~KW � I (8)

FIGURE 3
Schematic of feature-based transfer learning.
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Among them, H is a centering matrix, the first term of the

objective function is to minimize the MMD distance between the

mapped source and target domain data, the second term is the

regularization term for W, and the constraint is to maximize the

variance of the data after mapping.

TheW obtained by the final calculation contains the m main

feature vectors of ( ~KL ~K + λI)−1, that is, the extracted public

domain feature space. The above process can be obtained by

direct numerical calculation.

3.2 Oscillation source localization model
and implementation process based
on TCA

According to the above TCA algorithm, the data-driven wind

farm sub-synchronous oscillation source localization model in

the actual system is established, that is, the relationship between

the common features and the classification labels is fitted.

In this paper, the Softmax classifier is combinedwith the transfer

learning algorithm to construct a deep transfer learning framework

to establish a sub-synchronous oscillation source localizationmodel.

Applying the Softmax classifier on the obtained new source domain

feature space realizes the relational modeling of Eq. 5. To sum up,

the transfer model learning framework form based on TCA metric

can be expressed as:

gsoft � arg min
fϵH ∑

n

i�1
L gsoft Wi( ), yi( ) (9)

where gsoft = wTϕ represents the predicted output classifier

function. In order to facilitate the function training, the CNN

structure is used for the classification and identification of the

common feature space, that is, the above gsoft representation

FIGURE 4
Single-machine equivalent model of the grid-connected wind farm.
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function is replaced by a CNN grid with weight parameters, and

the final location model of the wind farm sub-synchronous

oscillation source is a CNN grid model.

The specific scheme of model construction is mainly divided

into three parts: system construction and data sample

acquisition, offline model training, and online application

testing, as shown in Figure 4.

The details are as follows:

1) Simulation system construction and data sample generation:

The source domain training data required for offline learning

can be obtained from the following two aspects: First, based on the

power system equivalence theory (DONG et al., 2021), a simulation

system is built (the equivalent system is used to generate source

domain training samples). According to the open-loop mode

resonance theory, the control parameters of the open-loop

subsystem are set so that the system may have open-loop mode

resonance in the target range. Combined with various possible

topological structures, operation modes, fault types, fault

locations and disturbance accidents of the system, time-domain

simulation is carried out, and the power on the grid-connected

connection lines of all wind farms and the node voltage composition

data of the grid-connected ports of the wind farm are collected as

sample Xs, and according to the system parameterized state matrix,

the label set Ys is constructed by calculating the participation factor

labeling samples, and finally the source domain training sampleDs is

formed. Since the transfer learning training data not only comes

from the source domain, but also includes part of the data in the

target domain. Therefore, the measured data Xt of the actual

operation case records of the system in the past period of time

are widely collected from the historical operation records of the

system, and the data target domain is constructed as training

sample Dt.

2) Feature extraction and localization learning of sub-

synchronous oscillation source:

The obtained time series datasets Xs and Xt of the source and

target domains are used as input, and the aforementioned TCA-

based transfer learning method is used to extract the common

features of the source and target domains. On this basis, a simple

CNN with Softmax classifier is built. The grid is trained to perform

classification learning on the extracted common features. Among

them, the dimension of the input layer of the CNN model is

determined by the number of columns of common features, the

convolution pooling layer is set with two modules, the size of the

convolution kernel is 5 × 5, and the size of the pooling kernel is set to

2 × 2. Connected to the Softmax classifier, the dimension of the

output layer is determined by the label type. Themodel can combine

the comprehensive statistical characteristics of the representative

data samples to quickly establish a practical model for the location of

oscillation sources through CNN.

3) Online application test:

During the online monitoring process, when the system has

the risk of sub-synchronous oscillation, the measurement

information in the 2s time window is collected in real time by

the wind farm port of the system to form the target domain test

sample. The sub-synchronous oscillation source location model

is obtained through the above learning, and the feature extraction

and corresponding oscillation source location are performed on

the sample, and the current possible oscillation source wind farm

number is quickly given. If the number is 0, it is determined that

the system is stable, and the next monitoring is performed

through the sliding time window; otherwise, an early warning

signal is issued to facilitate the dispatcher to take control

measures in time to prevent further deterioration of the

oscillation. Considering that when the actual system is

running, the operating state of the system is constantly

changing. In order to improve the reliability of the model, in

practical application, new target domain samples can be collected

and constructed periodically, so as to repeat the above two steps

of offline learning, so as to update Maintain a sub-synchronous

oscillator source localization model.

4 Example 1—UPFC and wind turbine
resonance

This example analyzes the rationality of the training process

of the method in this paper by designing a simulation case of

open-loop mode resonance between the fan and the UPFC. The

computer hardware configuration used in the experiment is: Intel

core-i5-4570 CPU, 128G memory. Among them, the simulation

system construction and data preprocessing were completed on

Matlab 2019a, and the TCA and classifier models were built in

the CPU version of Python 3.7 using the CNN architecture.

FIGURE 5
Real system structure of numerical example one.
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4.1 Example system and test scenarios

A wind farm grid-connected system with UPFC, its system

structure is shown in Figure 5. Two of the wind farms each

contain 20 direct-drive fans of the same type, which are collected

through the bus W, and the power of the adjacent thermal power

units is collected on the PCC bus. A 3-machine 9-node system is

used to replace the AC main grid).

As shown in Figure 5, take the wind farm grid connected

system with UPFC system as an example, in which the

SG4 model of direct drive wind turbine and the model of

synchronous machine adopts the 15th order model and six

mass block model given in document (Ren, 2019), and the 3-

machine 9-node system adopts IEEE typical parameter settings.

Assuming that the wind turbine s in the wind farm 1 may

interact dynamically with the UPFC, according to the open-loop

mode resonance theory, the control parameters of the UPFC and

the wind farm one in the actual system are adjusted to a state that

is prone to interaction. Considering that different operating point

conditions will affect the stability of the system, set the rated

output of the wind farm and 80%–110% load to simulate the

typical power flow mode of steady-state operation; simulate the

disturbance with the sudden change of the wind turbine output

and load, and set the disturbance amount to the rated value 80%–

110% of the value/initial value, the duration of the disturbance is

100 m. The sampling window length and frequency are 2s and

1,000 Hz, respectively. Record the U/P/Q on the wind farm one

and wind farm two port lines. On the basis of these simulation

settings, Matlab is used for batch simulation, 200 cases are

generated, and unlabeled training samples in the target

domain are formed.

4.2 Training sample generation and model
training process

4.2.1 Training sample generation
According to the implementation process of the sub-

synchronous oscillation source location method introduced in

1.2, for the actual system in Figure 5, based on the system

equivalence theory, the wind farm is equivalent to a wind

turbine, and the AC power grid is equivalent to a single-

machine infinite system, and then a simulation system is built.

The open-loop mode resonance theory is used to analyze

the stability of the system under actual operating conditions in

the simulation system. The specific method is: according to

the operation mode in the actual system, set the operation

point in the simulation system as ± 20% of the actual system

operation point: The rated power of each unit is increased or

decreased by 0–20%, and the load on the line is 80%–120% of

the actual system operation. Then, according to the

disturbance and frequency settings in the actual system, the

time domain simulation is performed, and the measurement

data Xs of the wind farm port is recorded. The state space

equation of the parametric model of the simulation system is

used to calculate the participation factor, and the sample data

obtained by each simulation is marked to form the real label

set Ys of the simulation system. Thus, training samples with

labels are generated in large batches in the simulation system.

Therefore, some unlabeled samples obtained in the above-

mentioned actual system and the labeled samples obtained in

the simulation system are unified to form training samples,

and finally, 2,464 training samples of calculation example one

are obtained. Figure 6 presents the system training sample

feature representation obtained by t-SNE dimensionality

reduction.

From the characteristic roots of the system generated under

different oscillation sources in the example of Figure 6, the

different oscillation sources are non-linear, and it is difficult

to distinguish them by traditional methods.

4.2.2 Model training process
In order to establish a localization model with better

performance, it is hoped to clearly distinguish different

oscillation source samples in the same domain. The source

domain and the target domain are as similar as possible.

Therefore, the TCA algorithm is used to perform feature

learning on the training samples, so as to learn the common

features of the source domain and the target domain. Figure 7

presents the t-SNE feature representation of the training samples

after training using the TCA algorithm.

By comparing with Figure 6, it can be seen that the original

training sample source domain and target domain are clearly

demarcated, and different oscillation sources in the same domain

are non-linear and inseparable. After TCA transformation, the

source domain and the target domain appear common feature

FIGURE 6
Features representation of training samples.
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areas, and the boundaries of different oscillation sources in the

same domain are gradually clear. This shows that TCA can

realize feature learning for the training samples of oscillation

source localization.

Considering that the TCA-transformed training samples are

separable between different oscillation sources, as shown by the

purple dotted line (the periphery of oscillation source in wind

farm 2, shown as red dot in Figure 6) in Figure 7, the classification

boundary line shows that the relationship between different

oscillation sources is still non-linear, and the traditional linear

Classifiers are still intractable. Therefore, a simple CNN grid with

Softmax classifier needs to be adopted to achieve non-linear

classification.

In the training process, in order to evaluate the performance

of the model, the method of cross-validation is adopted, the

training data is divided into training set and validation set for

training, and the positioning accuracy index LAI is defined to

evaluate the oscillating source positioning performance of the

model:

LAI � TN1 + TN2 +/ + TNn

TO + TS + FO + FS
(10)

Among them, the number of samples of the true prediction of

wind farm 1 as an oscillation source is denoted as TN1; similarly,

the number of samples of true prediction of wind farm n as an

oscillation source is denoted as TNn. TO,FO,TS, FS represent the

number of samples in the classification confusion matrix,

respectively.

For the oscillation stability of the power system, both

“misjudgment stability” and “missing judgment instability”

will have a serious impact on the system. Therefore, this

paper defines the precision rate (PR) and recall rate (RR)

from the perspective of sample stability and instability. The

classification discriminant index SCAI expressed

comprehensively to evaluate the classification performance of

the model for unstable samples:

SCAI � 2PR · RR
PR + RR

(11)

PRrate � TN1 + TN2
TO + FO

, RRrate � TO

TO + FS
(12)

Taking the above positioning accuracy index and

classification discrimination index as the statistical indexes of

model performance, Table.1 summarizes the training results of

the model in the training process.

It can be seen from the results in Table.1 that because the

model is relatively simple, high positioning accuracy can be

achieved after 100 times of training. If the number of training

times is increased, the accuracy index of the model does not

change much, which indicates that the model is stable and can be

used for model migration testing. After 500 times of training, the

accuracy index of the model has reached about 95%. When the

training times continue to increase, the model accuracy index

does not increase but decreases, which indicates that the model

training has already reached saturation. Increasing the training

times may make the model over fit. Therefore, a model trained

500 times is selected for saving.

5 Example 2 - Wind farm system with
STATCOM

The computer hardware and software configuration used in

example one are the same. This example is simplified and

generated by an actual offshore wind power system, and is

mainly used to test the applicability of the method in this

paper in different scenarios.

5.1 Example system and test scenario

The structure of the example system is shown in Figure 8,

which includes 30 direct drive fans belonging to two wind

farms. Wind farm one is collected through bus B, and wind

farm two is collected through bus A. finally, it is connected to

the AC main grid with STATCOM through PCC bus. It is

assumed that in the system shown in Figure 8, there is a risk of

dynamic interaction between the wind turbines in the wind

farm two and STATCOM.

5.2 Simulation setup and training sample
generation

Same as Example 1, in the actual system shown in

Figure 8, the possible operating conditions in the system

FIGURE 7
Membership function of each variable.
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are comprehensively considered, and the output and load

level of the wind farm under typical power flow mode are

used as the basis for steady-state operation according to the

operation mode provided by the system operator. Data; take

the sudden change of the fan output and load as the

disturbance, also set the duration of the small disturbance

to 100 m, the sampling window length and frequency are 2s

and 1000 Hz respectively. Based on the above simulation

settings, time-domain simulations were performed at

different operating points, and measurements were made

at the grid-connected ports of two wind farms to generate

200 cases, which were recorded as unlabeled training

samples.

Then, according to the training process in 3.2, the simplified

simulation system of Figure 8 is used to generate a large batch of

labeled training samples, and TCA is used to extract and

transform the training samples, and train the classifier.

Finally, save the positioning model of Example 2.

5.3 Model comparison test analysis

In order to verify the generalization of the model

established by the method proposed in this paper, two sets

of scenarios are designed according to the following rules in

the actual system of the two examples to generate test

samples:

Scenario 1: Simulate the measurement samples with noise in

the actual system. The measurement data sampled in the actual

system randomly increases the noise with the signal-to-noise

ratio SNR = 10dB, and generates 200 samples for testing.

Scenario 2: Using the open-loop mode resonance theory,

adjust the control parameters of the wind farm in the two

examples (different from the parameters in the target domain

training sample generation process), so that the system resonates

between the wind farm and the UPFC (or STATCOM). A total of

200 samples are also obtained for testing.

In order to facilitate the calculation of the test accuracy of the

model, the linearization equation of the actual system is used to

label the samples in the process of generating the above test set.

During the test, the measurement data of the grid-connected port

of the wind farm is collected from each case by the method of

active time window to simulate the online evaluation. For the

models saved in the two examples, four groups of test sets were

used for testing, and the test results are shown in Table.2.

It can be seen from Table.2 that the trained model can still

achieve high positioning accuracy in different scenarios in the

same system, indicating that the model has a certain

generalization. However, from the perspective of the

positioning accuracy of the model for different systems,

although the model has a certain generalization ability, the

extracted common features cannot be well applied between

different systems, indicating that there are still differences in

the characteristics of wind farm oscillation sources between

different systems.

The test accuracy of samples containing noise decreases slightly,

but the positioning accuracy can also be above 95% in the same

system. It can be seen that even in the serious measurement error,

the method in this paper still has strong robustness. Judging from

the test time, the use of TCA algorithm for preprocessing does not

have a great impact on the test time. The computing speed under the

TABLE 1 Training results with different epochs.

Training times LAI (%) SCAI (%) Total training time/s

50 86.97 89.54 96.74

100 90.45 92.37 229.14

500 96.36 97.74 961.57

1,000 95.32 96.69 1928.15

FIGURE 8
Real system structure of numerical example two.
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CPU can complete the discriminative positioning of any sample

within 0.5 m, which proves that the method meets the requirements

of online applications.

6 Conclusion and outlook

Quickly locating the sub-synchronous oscillation source of

wind farm is very important to ensure the stability of wind farm

grid-connected system. Compared with the traditional

positioning method, the wind farm sub-synchronous

oscillation source positioning method has higher requirements

for rapidity and adaptability to different induced scenarios, and

for the positioning accuracy, positioning to the wind farm is

easier to operate in engineering practice. It can also meet the

control requirements of the load during operation. Therefore,

this paper presents a method for locating the oscillation source of

wind farms under open-loop mode resonance conditions based

on TCA transfer learning.

In this paper, the detailed implementation process of

applying the method in a practical system is given, and the

feasibility and applicability of the proposed method are

analyzed from the aspects of training process and

comparative test using two simplified wind farm system

examples. The results show that the method in this paper

can realize feature extraction and classification according to

the measurement of wind farm ports, and shows high

positioning accuracy and anti-noise ability when locating

the oscillation source of the grid-connected system of

multiple wind farms.

With the widespread access of new energy sources to the

power grid and the large-scale application of power electronic

devices in the power grid, the problem of sub-synchronous

oscillation of wind farms has been paid more and more

attention. The research results of this paper will lay the

foundation for the grid monitoring and location analysis

technology adapted to the stability of wind farms.
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TABLE 2 Test results with two models.

Model Test scenario LAI (%) SCAI (%) Test time/s

Example1 Example 1—scenario 1 95.78 96.45 12

Example 1—scenario 2 96.22 96.67 12

Example2—scenario 1 86.38 87.50 13

Example 2—scenario 1 89.26 90.86 12

Example2 Example 1—scenario 1 81.08 84.47 12

Example 1—scenario 2 83.54 85.32 12

Example 2—scenario 1 96.66 96.88 11

Example 2—scenario 2 98.24 98.63 11
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