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Quantifying awind turbine’s holistic, system-level power production efficiency

in its commercial operating condition is one of the keys to reducing the

levelized cost for energy of wind energy and thus contributing significantly

to the Sustainable Development Goal 7.2: “By 2030, increase substantially the

share of renewable energy in the global energymix.” It is so important because

designers and operators need an effective baseline quantification in order to be

able to identify best practices or make operation and maintenance decisions

that produce actual improvements. However, this task is highly challenging

due to the stochastic nature of the wind and the complexity of wind turbine

systems. It is imperative to carry out accurate, trust-worthy performance

assessment and uncertainty quantification of wind turbine generators. This

article provides a concise overview of the existing schools of thought in

terms of wind turbine performance assessment and highlights a few important

technical considerations for future research pursuit.
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1 Introduction

Wind energy is one of the fastest-growing clean energy sources and plays a significant
role in reducing global carbon emissions and combating climate change (GWEC, 2022).
But in order to help the global community achieve carbon net zero, the global wind power
growth needs to be doubled now, or to be tripled after 2030 if on the current trajectory
(GWEC, 2021). Further reducing the cost is still of paramount importance. Improving
turbine performance and efficiency of existing turbine fleets is one way to do this. Even
a one percent net increase in the annual energy production (AEP) translates to over one
billion euro extra revenue (assuming five euro cents per kilowatt-hour and on average
one megawatt power capacity per turbine).

One fundamental issue for any performance improvement is the need for an
accurate performance assessment method that quantifies uncertainty and can work
with a sufficient degree of robustness in the actual operating environments of
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commercial-sized wind turbines. While it is highly
important to develop new technologies for better
designs/configurations/controls or materials/manufacturing of
wind turbine blades and drive trains, an equally critical question
is how one can be certain that a newly proposed technology
could deliver the proposed/promised improvement in energy
capture in a real-world, commercial operation environment,
measured in terms of the percentage change in AEP. To the
authors’ knowledge, this problem is unfortunately still unsettled.

When a new design, a new manufacturing technology,
or a retrofit, is proposed, it will understandably go through
theoretical ormodeling justification and laboratory experimental
tests. But the lab tests can only be conducted on small turbines,
due to the limitation in the size of a wind tunnel, which is
generally one order ofmagnitude smaller than the rotor diameter
of the commercial turbines.When the same technology is applied
to the actual commercial turbines, the sheer size of the turbines
make a controlled experiment impractical. By “controlled” we
mean that the wind and environmental conditions are controlled
to the level like they are controlled in a wind tunnel.

The uncontrolled, stochastic wind input to a turbine causes
a huge problem when it comes to accurately assessing and
quantifying the change in AEP for commercially operated
turbines, something wind owners/operators ultimately care
about. The small-scaled lab test does not extrapolate well, and
there are historical instances that earlier estimates missed by a
large margin (Øye, 1995; Ding et al., 2015; Lee et al., 2020). This
is due to challengeswith up-scaling, such as the effect of Reynolds
number and rotational speed on performance as well as the
changing stress-to-weight ratio. Partially due to the lack of a
credible and universally agreed-upon verification method, the
wind industry is currently flooded by a large number of service
options, turbine redesigns, and control logic upgrades, all of
which promise to improve the efficiency of wind energy capture
but nobody knows for sure whether the promise can be delivered
and how much is to be delivered. It is long overdue to settle on
this crucial, yet somewhat overlooked, question.This is precisely
what we would like to share our thoughts on.

To summarize the settings under which we consider the
question of turbine performance assessment, we would like to
articulate the following characteristics:

• The turbines are operated in their commercial operating
environments.
• The performance of concern is the system-level, holistic
power production performance of the entire wind turbine
generators, not that of any turbine components or
subsystems. This is the primary concern of operators,
although it should be noted that the performance of the
entire wind farm is becomingmore interesting (as discussed
further in Section 4).
• The change in turbine performance is quantified by the
change in its AEP.

• The data used to assess and quantify such change should
be readily available in the commercial operations of the
turbines, and therefore, by and large, should be limited to
the use of SCADA data and the wind farm environmental
measurements.

Apparently our focus in this perspective article is on
performance assessment and quantification. Whilst we recognize
that a review of the literature on performance improving
strategies, such as retrofit devices, yaw error analysis, and pitch
systemhealthmonitoring, would be beneficial to the community,
this is beyond the scope of the current paper.

The rest of the paper unfolds as follows. Section 2 presents
a number of existing turbine performance quantification
methods or metrics. Section 3 shares our thoughts on
important considerations and technical needs for fulfilling such
performance quantification objective. Section 4 summarizes our
discussions and makes a few concluding remarks.

2 Existing turbine performance
assessment methods

We review several schools of thought concerning turbine
performance assessment. We note that there have been some
earlier discussions along this line; for instance, Niu et al. (2018).
Our review here captures some of the new development
emerging in the more recent years.

2.1 Power coefficient

Thephysical law behind wind power production is expressed
as (Ackermann, 2005)

y = 1
2
CpρAV

3, (1)

where y denotes the turbine power output, ρ denotes the air
density,A denotes the swept area of the rotor,V is thewind speed,
and Cp is the power coefficient. Given the turbine design (so that
we know A) and the field measurements of y, ρ, and V, one can
compute the power coefficient as

Cp =
2y

ρAV3 . (2)

The power coefficient is commonly used as a performancemetric
for wind turbines (Kjellin et al., 2011; Xia et al., 2013). There are
variants of power coefficient-based performance comparison
methods. For example, Mathew et al. (2022) introduce an
efficiency index based on the power coefficient model, in
which they employ a deep neural network model and Shapley
Additive explanations (Lundberg and Lee, 2017) for evaluating
the long-term turbine performance degradation.
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Please note that the power coefficient is not a constant, but
rather a function of air density, blade pitch angle and tip speed
ratio (which is the ratio between the tangential speed of the tip of
a blade and the wind speed), and is often depicted as a functional
curve against the tip speed ratio; for an example, please take a
look at Figure 1C of Hwangbo et al. (2017b). Considering the
difficulty in comparing two power coefficient curves, people
would use the peak power coefficient, which is the highest value
on a power coefficient curve, when they use power coefficients for
performance comparison. Naturally, the higher the peak power
coefficient, the better efficiency a turbine is supposed to be.

2.2 Productive efficiency metric

Hwangbo et al. (2017b) noted the limitation in the use of
peak power coefficient, especially that it is more sensitive
to changes in the wind speed range of 7.5–8.5 m/s but
may miss out the changes taking place outside that range,
even if a change is still important, say, around the rated
wind speed. Hwangbo et al. (2017b) invoke the theory of
production economics and impose a shape constraint on the
power curve of a turbine. The shape constraint says that the
power curve should start as a convex curve, followed by a
concave curve. The two curves are connected by an inflection
point. Hwangbo et al. (2017b) present the production economics
model as

y = f (V) − u (V) + ϵ,

= [f (V) − μ (V)] + [μ (V) − u (V) + ϵ] ,

= g (V) + e,

(3)

where f(V) is the shape-constrained power curve, representing
the performance frontier of a class of turbines, u(V) is the
systematic under-performance, μ(V) is the non-negative average
of u(V), ϵ is a zero-mean randomnoise. By subtracting μ(V) from
f(V), g(V) is the average power curve, or the power curve of the
typical sense but with the convexity/concavity shape constrains
imposed, and e is a redefinition of the error with a zero mean.

Hwangbo et al. (2017b) present a procedure to estimate
both the shape-constrained average power curve, g(V), and
the systematic under-performance. Then, they define a new
productive efficiency metric as

θ =
∫
Vco

Vci

g (V)dV

∫
Vco

Vci

f (V)dV
, (4)

where Vci and Vco are the cut-in and cut-out wind speed,
respectively. The above-defined productive efficiency metric, θ,
is in the range of 0 and 1. When there is no systematic under-
performance, namely μ(V) = 0, then g(V) = f(V) and thus θ = 1;
otherwise θ is smaller than 1.

Through analysis of both onshore and offshore turbine
data, Hwangbo et al. (2017b) concluded that their newly defined
productive efficiency metric has a fairly obvious positive
correlation with the power coefficient. The empirical analysis
yields a correlation of 0.70 between the power coefficient and
the productive efficiency, which suggests that the productive
efficiency measures a turbine’s performance on a broad common
ground with the power coefficient. But Hwangbo et al. (2017b)
also noted that the productive efficiency has a better sensitivity
in measuring a turbine’s performance change than the peak
power coefficient, because the productive efficiency integrates
over the entire valid wind spectrum, from the cut-in wind
speed to the cut-out wind speed. The peak power coefficient,
on the other hand, is sensitive to a much narrower range
of wind speed where the peak value of power coefficient
falls.

2.3 Nonparametric power curve
comparison and quantification

The productive efficiency metric is based on shape-
constrained power curves. There are other power curve-based
performance comparisonmethods that do not require the power
curve to satisfy any shape constraints (Astolfi et al., 2022a,b;
Lee et al., 2015b). Astolfi et al. (2022a,b) use the method of bins
and a polynomial regression applied to operation curves, whereas
(Lee et al., 2015b) propose a method known as the Kernel PLUS.
More recently, Prakash et al. (2022a) develop another method,
funGP—the acronym stands for functional Gaussian Process.
Unlike the previous methods that ultimately reduce the turbine
performance assessment into scalar values and then compare
them, funGP takes advantage of comparing two power curves
without reducing them into scalar values first. One of the benefits
is to identify the regions of difference between two power
curves, which provides better understanding on 1) whether the
difference is in the critical region affecting power production and
2) what might cause the difference between the power curves,
facilitating root cause identification. Other than identifying
the regions of difference, Prakash et al. (2022a) also provide
uncertainty quantification for the power curve comparison. The
uncertainty quantification comes in the form of a (1− α) × 100%
confidence band around the difference curve. The value outside
the confidence band is considered statistically significant at the
confidence level of (1− α) × 100%, whereas the value within the
band is deemed random fluctuation.

An example is presented in Figure 1, where α = 0.05,
meaning the confidence is at the level of 95%.The solid-line curve
is the difference curve, i.e., ̂f 1(⋅) − ̂f 2(⋅), where ̂f (⋅) represents
the power curve estimated using the field data. The left plot
shows the difference between two power curves is within the 95%
confidence band throughout the operatingwind speed spectrum.
What it implies is that there is no statistically significant
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FIGURE 1
Power functional curve comparison and uncertainty quantification.

difference between the two turbines. The right panel presents a
difference curve having a portion outside the confidence band.
The region of difference covers the wind speed from 5 m/s to
14 m/s, which is the region of high importance for wind power
production.

Prakash et al. (2022a) further quantify the difference
between the two power curves. Provided the confidence band
established for the difference curve, they define twometrics—one
is the absolute difference between the two curves, namely the area
under the difference curve summed over the entire wind speed
spectrum, and the second is the statistical difference, which is the
area corresponding to the blue shade in the right plot of Figure 1.
Prakash et al. (2022a) suggest using the statistical difference for
decision making, as it is more robust and less prone to random
fluctuation.

Prakash et al. (2022a) applied the function curve comparison
to the data used in Hwangbo et al. (2017b) and conducted
the same analysis for the four turbines over six year-by-year
comparisons. The total number of turbine-year combinations is
24.Among the 24 comparisons, Prakash et al. (2022a) found they
agree with those of Hwangbo et al. (2017b) in 23 cases but differ
in one case. When looking closer at the one case showing the
difference, Prakash et al. (2022a) concluded that funGP-based
comparison is more sensitive to the difference between the two
power curves.

2.4 Side-by-side comparison

The aforementioned methods make use of either the power
coefficient curve or the power production curve. Mindful
of modeling uncertainty, especially in the early time when
the power curve model was less capable and entailed higher

uncertainty, there were parallel efforts looking for a model-
free approach to compare the performance of turbines. The
basic idea is generally referred to as side-by-side comparison
(Albers, 2004; Antoniou et al., 2012), in which a pair of turbines
standing side by side in physical vicinity are compared with one
another. This is especially so in the context of conforming and
quantifying the performance change of a turbine after certain
technical upgrade or retrofit has been undertaken on a turbine.
The turbine that underwent the change/upgrade is referred to as
the test turbine or upgrade turbine, whereas the turbine nearby
without any change is referred to as the control turbine. As
commented in Lee et al. (2015b), “the difference in power between
two side-by-side turbines is measured in a timeline including
data before and after the upgrade. The correlation of the wind
power generated by the side-by-side turbines may remove the
uncertainty of environmentalmeasurements, leaving only the effect
resulting from the turbine upgrade.” The side-by-side comparison
has to involve two turbines that are of the same make, same
model, on the same terrain, serving at the same time, and
presumably deteriorating in the comparable fashion. Please also
note that the side-by-side comparison in and by itself does not
provide a turbine performance metric like the above-reviewed
three metrics, but rather provide a difference between the two
turbines.

While the idea sounds simple and straightforward, the
successful implementation of the side-by-side comparison
is not necessarily easy. Section 2 of Hwangbo et al. (2017a)
presents one of the most sophisticated side-by-side comparison
algorithms, referred to as power-by-power method, and
developed by Smart Blade, a German company specializing
in vortex generator installation. The Smart Blade procedure
does not use any power curve models but it entails a five-
step procedure with various actions nested in several of the
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steps. All those actions were designed to carefully control
for the environmental conditions. Even after going through
this involved procedure, the power-by-power method is only
able to detect small to moderate changes in a turbine when a
high-frequency data is used. The high-frequency data ranges
from 0.13∼1 Hz, providing 80 to 600 times more data than
the standard 10-minute SCADA data. When applying to the
SCADA data, the power-by-power method appears to be much
less effective. Astolfi et al. (2019a,b, 2020) improve upon the
power-by-power idea via automatic features selection and use it
for assessing a small energy gain observed through SCADA data
or the impact of systematic yaw error correction.

3 Important considerations and
technical needs

In this section, we would like to highlight a few important
technical issues in turbine performance assessment.

3.1 The need for better power curves

Among the performance assessment and comparison
methods, several of them make use of a turbine’s power curve,
such as the productive efficiency, Kernel PLUS, and funGP. The
power coefficient method does not directly use a power curve.
But it is nonetheless closely correlated with the power curve-
based metrics, according to the empirical study conducted by
Niu et al. (2018). It is thus fair to say that power curve modeling
plays a crucial role in turbine performance analysis.

The early power curve model follows the recommendation
of IEC-12 standard [International Electrotechnical Commission
 (IEC), 2005] and is nicknamed the binning method, as it
bins the wind speed and wind power data before forming
the power curve. The effort of building multi-dimensional
power curve started at least a decade ago when researchers
and practitioners realize that the binning power curve does
not account for many environmental measurements adequately
(Albers et al., 2007; Antoniou et al., 2009; Wagner et al., 2010).
The Power Curve Working Group (PCWG), an industry-
led consortium, was formed around 2012 and released
a study report 8 years later (Lee et al., 2020). There were
parallel developments outside PCWG; for instance, the kernel
method proposed by Bessa et al. (2012), which took three
important inputs when building a power curve model. Later
Lee et al. (2015a) extended the capability of Bessa et al. (2012),
proposing an additive-multiplicative kernel (AMK) model,
capable of taking in as many inputs as possible. AMK became
the foundation enabling the Kernel PLUS comparison in
Lee et al. (2015b). Various more machine learning methods
were attempted to build the power curve using a turbine’s

operational data, including trees (Barber and Nordborg, 2020;
Lee et al., 2015a, CART or BART), support vector machine
(Pandit and Kolios, 2020; Astolfi et al., 2021, SVM), k-
nearest neighborhood (Yesilbudak et al., 2013, kNN), gradient
boost (Barber et al., 2022b), smoothing spline (Ding, 2019,
SSANOVA), deep neural network (Karami et al., 2021, DNN),
Gaussian process (Pandit et al., 2020; Pandit et al., 2022;
Prakash et al., 2022b) and ensembles of multivariate polynomial
regressions (Cascianelli et al., 2021). Chapter 5 of Ding (2019)
provides an in-depth discussion of research challenges and data
science solution techniques in modeling wind turbine power
curves and Barber et al. (2022b) provides a comparison among
four machine learning methods (kNN, random forest, gradient
boost, and ANN).

In modeling the power curves, one particular issue,
as encountered in applying the production economics
theory, is to estimate the shape-constrained power curve
(Ding, 2019, Chapter 6) or sign-constrained power curve
(Hwangbo et al., 2018). Another issue, addressed through
a more recent development, is to remove the temporal
overfitting while building a power curve. The tempGP method
(Prakash et al., 2022b) was able to accomplish this, giving it a
considerable boost in terms of model accuracy. Using Dataset#
5 (DSWE-Datasets, 2019) associated with Ding (2019), which
houses four onshore turbine datasets and two offshore datasets,
we ran a quick numerical comparison of the various power curve
methods so far discussed; see Table 1. The last row presents the
RSME ratio relative to that of the tempGP, calculated using the
average RMSE. A ratio of 1.81, in the column of binning, means
that the binning method has an average RMSE 81% higher than
that of tempGP. The results in Table 1 showcase an impressive
progress made by the research community over the past decade
in building more accurate power curves. We believe that the
progress is still being made and additional improvement can
again be anticipated.

Due to the complex nature of the atmospheric boundary layer
and the many variables influencing the power output of wind
turbine generators another important distinction between power
curve models has to be made, namely the distinction between
deterministic and probabilistic models. Here by “deterministic,”
we mean that the model only provides a point estimate, whereas
by “probabilistic,” the model provides the full distribution
information of the estimate or prediction. Many of the machine
learning methods, such as k-nearest neighborhood, trees and
random forests, are deterministic and hence no information
about model uncertainty is available (Gonzalez et al., 2019). A
common practice is the assumption of a normal distribution
for the uncertainty. However, Gonzalez et al. (2019) have
shown that model errors are heteroskedastic and concluded
that probabilistic models, such as Gaussian processes
(Prakash et al., 2022a; Pandit et al., 2020; Pandit et al., 2022) and
AMK (Lee et al., 2015a), are more suitable in identifying the
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TABLE 1 Comparing various data science-based power curvemethods. Reported below are the RMSE values based on a randomized five-fold cross
validation. The results of AMK, KNN, BART, SSANOVA, and binning are taken directly from Table 5.7 of Ding (2019); the results of tempGP and SVM are
obtained using the DSWE R package (Kumar et al., 2020); and DNN is obtained using the DSWE Python package (Kumar et al., 2022).

Turbines tempGP AMK kNN BART DNN SSANOVA SVM Binning

WT1 0.064 0.074 0.077 0.076 0.082 0.087 0.100 0.131
WT2 0.070 0.080 0.083 0.082 0.088 0.091 0.099 0.116
WT3 0.056 0.065 0.067 0.067 0.074 0.077 0.091 0.122
WT4 0.079 0.100 0.104 0.104 0.111 0.112 0.125 0.152
WT5 0.065 0.079 0.081 0.088 0.089 0.095 0.094 0.097
WT6 0.066 0.080 0.083 0.091 0.094 0.104 0.104 0.109
Average RMSE 0.067 0.080 0.082 0.084 0.090 0.094 0.102 0.121
RMSE Ratio 1.00 1.19 1.23 1.26 1.34 1.41 1.53 1.81

normal bounds of turbine performance, allowing for uncertainty
quantification for power curve comparisons.

3.2 Causal inference to control for
environments

One branch of statistical machine learning, known as
causal inference (Pearl, 2009; Imbens and Rubin, 2015), finds
its relevance in wind turbine performance assessment. Causal
inference handles comparison data coming from the so-called
natural experiments, referring to the situations under which
one cannot control but can observe. Natural experiments are
very relevant in social sciences—unlike in medical clinical
trials, many policy actions cannot be tested in large scale using
controlled and randomized experiments. In an uncontrolled
environment, the observed outputs are affected by many
confounding factors, and researchers want to know which
portion of the observed outcome is caused by the policy action
itself and which is caused by the confounding factors. In the
problem of turbine performance assessment and quantification,
causal inference finds great relevance. At least up to now, it
is impractical, to the degree of being infeasible, to conduct
controlled experiments on commercial turbines with accurate
enough estimates of howmuchmore energy (as compared to the
current baseline) a new energy capture technology can generate.
Nonetheless, likely due to the discipline barriers, the application
of causal inference to wind energy is rare.

One of the first work was done by Shin et al. (2018),
who applied one of the classical causal inference methods,
the covariate matching (Rubin, 1973), to the wind turbine
performance problem. The idea is in fact simple—one needs
to carefully select data points for making the environmental
conditions probabilistically comparable before and after a
technical action, so much so that the treatment effect, e.g.,
the actual benefit of having vortex generators installed or
leading edges protected, can be discerned with a high degree
of confidence. Of course, this is just a starting effort; many more
challenges need to be addressed in future efforts.

The causal inference method should be used together with
the power curve model. The power curve model answers the
question which input variables should be used and how they
should be quantitatively connected with the power output.
The causal inference method answers the question of which
subset of data should be used in performance comparison.
Once the first two steps are completed, the funGP method
(Prakash et al., 2022a) can be used to conduct the functional
curve comparison and quantify the uncertainty in performance
differences through building a (1− α)100% confidence band.
Ding et al. (2021) formally propose these three steps in forming
a complete pipeline for turbine performance analysis and
demonstrate that the benefit in so doing is to control for the
effect of environmental variables as much as possible, so that
the estimated treatment effect can be attributed to the innate
turbine performance change with a high confidence. This three-
step performance assessment method is implemented in both R
(Kumar et al., 2020) and Python (Kumar et al., 2022) and ready
to use. A subsequent cross-validation (Latiffianti et al., 2022)
with detailed energy and power decomposition confirms the
robustness and accuracy of this three-step method.

3.3 The potential of additional field
measurements

Instead of just using the SCADA data, measurements on
operating wind turbines (“field measurements”) can be used to
enhance data-driven wind turbine performance assessment.

On one hand, the wind speedmeasurement can be improved
by using remote sensing technology such as lidars. The wind
speed and direction measurements from the SCADA data are
affected by the rotor, usually by an unknown amount, and are
sometimes already corrected by the wind turbine manufacturer
using a factor that might not be known to the owner/operator, or
that might change with software updates.This is therefore a large
uncertainty source in performance assessment. Independent
lidar measurements can increase the accuracy of the measured
power curve. Recent studies showed that nacelle-mounted lidars
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can provide a reasonable wind speed estimate and similar power
curve results to sonic anemometer measurements, although
the measurements had a higher scatter (Özinan et al., 2022). A
further study presents a filtering method based on modelling
the radial speed contribution generated by the wind turbine
blades to enhance the data reliability of wind-turbine-mounted
continuous-wave doppler lidars (Angelou and Sjöholm, 2022).

The wind speed can also be inferred using measurements on
the blades or from the rotor response, although this is a difficult
task and still a research topic. For example, the Blade Vision
product from SBBWind Systems claims to infer the inflow using
cameras inside the blades, but published studies related to this are
not conclusive (Deepalakshmi et al., 2017;Montano et al., 2018).
In Bertelè et al. (2018), a linear implicit model is developed
that relates the wind shear and misalignment angles to the 1P
harmonics of pitch angles and blade loads.

On the other hand, local blade measurements can help
quantify the aerodynamic performance of different blade
sections. The measurements can be aggregated to calculate
the power performance, but also to help understand—and
therefore improve—aerodynamic performance. Aerodynamic
measurements have been carried out on operating wind turbines
within research projects, e.g., Schepers and Schreck (2019),
Troldborg et al. (2013), Wu et al. (2019), Medina et al. (2011),
and Madsen et al. (2016), but these are all very expensive and
time-consuming, and therefore not applicable for industrial
use. However, recent initiatives are attempting to do this
in an easier and cheaper manner, e.g., Barber et al. (2022a),
Duthé et al. (2021), and Fischer et al. (2021).

4 Concluding remarks

Accurate and trust-worthy turbine performance assessment
methods have high impact and could fundamentally change
the landscape of how a new turbine retrofit or upgrade option
is evaluated. Innovations and progress in this regard have the
potential to change the international standards for performance
assessment and could save the wind industry the agony of
not knowing how to choose which new technologies from the
many options nowadays available on the market. A consensus
converging towards the most capable performance assessment
and evaluation tools could weed out those technologies that do
not reallywork,while promoting those that actuallywork, so as to
advance wind energy’s efficiency and market competitiveness. In
order to do this, we recommend an industry-wide benchmarking
effort that allows different tools to be compared and evaluated in
a fair way.

Recall the remark in Section 1 about the increasing interest
on the performance of the entire wind farm. The research
done for quantifying the performance of individual turbines
lays the foundation for wind farm-level performance assessment.

Additional complexities arise at the wind farm level. Turbines
situated in wind farms influence each other, referred to
as interaction losses. This interaction effect complicates the
modeling of power curves and hence the performance analysis.
To account for this a more wind farm centric approach by
means of spatio-temporal models can be taken (You et al., 2017;
Hwangbo et al., 2018; Yan et al., 2019; Ding et al., 2021). A very
recent development is the use of graph neural networks
(GNN), where turbines in a wind farm are seen as nodes
and connected through edges. With such models the influence
between neighboring turbines is described by weighting factors
of edges that are learned within the GNN. The resulting GNN
model can than predict the power output for each individual
turbine within a wind farm (Park and Park, 2019; Bleeg, 2020;
Bentsen et al., 2022).

In terms of field measurement capability and new sensor
technology, one of the current hurdles is the expense and
reliability of adding additional sensors to the wind turbine
devices. In the future, especially with the increasing uptake
of digital solutions in the wind energy sector in the digital
era (Clifton et al., 2022), such methods are expected to become
cheaper and more efficient, and have the potential to greatly
enhance wind turbine performance assessment.
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