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The traditional power generation mix and the geographical distribution of units

have faced structural reform with the increasing renewables. The existing

scheduling schemes confront the optimization challenges of multi-source

collaborative and multi-temporal coordination. This paper reviews the

optimization of generation scheduling in power systems with renewables

integration in different time scales, which are medium- and long-term,

short-term and real-time, respectively. First, the scheduling model and

method are summarized. The connections and differences of the multi-

source mathematic model with uncertainty, as well as the market

mechanism, including thermal power, hydroelectric power, wind power,

solar energy, and energy storage, are also indicated. Second, the scheduling

algorithm and approach are sorted out from the two dimensions of certainty

and uncertainty. The innovation and difference in algorithm between the

traditional scheduling and the scheduling problem with renewables are

presented. Meanwhile, the interaction and coupling relationship among the

different time scales are pointed out in each section. The challenges and

shortcomings of current research and references future directions are also

provided for dispatchers.
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1 Introduction

The traditional power system in which thermal units account for the vast majority will

face structural reform with the increasing penetration of renewables (Chen et al., 2021a).

According to the “Renewable Energy Installed Capacity Statistics 2022” report released by

the International Energy Agency, the world in 2021 added almost 257 GW of renewables,

increasing the stock of renewable power by 9.1 per cent and contributing to an

unprecedented 81 per cent of global power additions. Furthermore, renewables are

predicted to reach around 40 per cent in total energy generation across all sectors by
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2030. Thus, the original power balance will be changed due to the

more complex generation mix and more dispersed geography

distribution of power units (Wang et al., 2021). New challenges

are proposed to be confronted for the traditional generation

scheduling schemes.

However, existing generation scheduling schemes will

experience shortfalls with the increasing proportion of

renewables in the future. A comprehensive optimal solution

under the new power system will be hard to be obtained,

resulting in curtailment of wind and solar, frequent

congestion of power flow, and even power outages. Two main

reasons cause the problem. First, the output characteristics of

various power generation entities require scheduling schemes to

achieve multi-temporal coordinated optimization. The actual

output of hydropower is often determined in medium- and

long-term scheduling, while the output of wind power and

solar energy can only be accurately considered in short-term

and real-time scheduling. Second, higher requirements are put

forward for the optimization and coordination of comprehensive

energy including thermal power, hydroelectric power, wind

power, solar energy, and energy storage (Tiwari et al., 2021).

The optimization of generation scheduling is realized efficiently

by the complementarity coordination of comprehensive energy.

Several overviews have been conducted on the optimization

of generation scheduling (Boqiang and Chuanwen, 2009),

(Howlader et al., 2019). On one hand, generation scheduling

schemes have been extensively summarized. Reference (Boqiang

and Chuanwen, 2009) reviewed the traditional economic

dispatch method considering wind power integration. The

optimization problem was reviewed based on unit

commitment (UC) (Abdi, 2021), and the impact of the

renewable energy injection system on UC was also analyzed

(Abujarad et al., 2017). However, all the reviews only analyzed

the scheduling optimization problem of a single time period in a

fragmentedmanner, and cannot effectively integrate the methods

in each part, revealing the correlation among different scheduling

schemes. On the other hand, the multi-temporal generation

models of power sources were summarized. Reference (Liu

et al., 2022) summarized photovoltaic output models and

prediction methods at multiple temporal and spatial scales.

Wind power generation forecasting methods were reviewed in

reference (Jiang et al., 2019). Energy storage applications in

various scenarios were also summarized (Ai and Dong, 2015);

(Howlader et al., 2019). However, such studies only analyzed the

multi-temporal output of a single power source. The applications

in scheduling optimization methods were barely summarized.

Meanwhile, no existing literature comprehensively integrated all

power sources including wind power, photovoltaics,

hydropower, thermal power, and energy storage, revealing

their optimized coordination methods.

This paper reviews the optimization of multi-temporal

generating scheduling in power system with renewables

integration. The traditional scheduling optimization scheme

and the scheme based on the integrated energy dispatch are

sorted out in detail from the perspective of multiple time scales,

and the connections and differences between the two schemes are

also indicated. In the context of the previous research, our paper

provides the following contributions.

1) We summarize the traditional scheduling optimization

methods and the methods in the new power system with

renewables integration. The mathematic models of multiple

power sources, including thermal power, hydroelectric power,

wind power, solar energy, and energy storage, are also

reviewed, revealing their inherent connections and

differences with consideration of uncertainty.

2) We summarize the optimization of scheduling algorithm and

approach from the two dimensions of certainty and

uncertainty. The innovation and difference of algorithm

between the traditional scheduling and the scheduling

problem with injection of renewables are indicated.

3) We sort out the similarities and differences of scheduling

schemes from the perspective of multiple time scales, which

are medium- and long-term, short-term and real-time,

respectively, and point out the coordination and

relationship in scheduling optimization among three terms.

The structure of the paper is the following: Section 2 reviews

the optimization of multi-temporal scheduling method with

multiple power sources mathematic models. Section 3 reviews

the optimization of multi-temporal scheduling algorithm and

approach. The summary of current works and corresponding

suggestions for future research are analyzed in Section 4.

Conclusions are presented in Section 5.

2 Scheduling model and method

In this section, common methods and recent developments

of scheduling models in medium- and long-term, short-term and

real-time scales are concluded in sequence, including

mathematical optimization models for each power source as

well. Then the interaction and coupling relationship among

the different time scales are summarized. What’s more,

market mechanism to promote renewables integration is also

reviewed. The difference in time dimension such as the

scheduling cycle, time resolution between multi-temporal

dispatches, as well as the input data and the output results

connecting these dispatches are presented in Table 1.

2.1 Medium- and long-term scheduling

Medium and long-term power generation scheduling focus

on system operation for several weeks, months or a year. Long-

term scheduling is generally considered with investment
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planning and medium-term scheduling gives correction to short-

term scheduling instructions based on long-term scheduling

results (Flatabø et al., 1998). With the difference in system

scale, spatial and temporal resolution, and optimization target,

there exist multiple modelling methods with different degrees of

accuracy and technological properties.

2.1.1 Model for large-scale power systems with
high temporal resolution

The model involves various generation sources and

numerous operational constraints, which are simulated from

months to a year with hourly resolution. These scheduling

models are generally designed to be deterministic and linear

for the purpose to reduce the computational burden, such as

several representative European electricity system

models―IDILES (Iterative Optimization of Investment in

Large Energy Systems), JMM (Joint Market Model) and

ELTRAMOD (Electricity Transshipment Model) (Misconel

et al., 2022).

For large-scale systems, the total system costs, including

operational costs, investment costs and environmental costs,

are commonly used as the optimization targets (Schmid and

Knopf, 2015), (Schinko et al., 2019). With high renewable

penetration in future power system, how to model wind and

solar generation more accurately is important for power

balance. To obtain time series of potential wind and solar

generation with an hourly resolution, meteorological

reanalysis is a popular method in many studies. Liam et al.

modelled long-term offshore wind generation by using

ERA5 reanalysis, the results indicated that ERA5 (European

Centre for Medium-Range Weather Forecasts Reanalysis v5)

reanalysis can effectively reduce prediction error of capacity

factor compared to MERRA2 (Modern-Era Retrospective

Analysis for Research and Applications, version 2)

reanalysis (Hayes et al., 2021). Luis et al. generated hourly

time series of solar generation by ERA5 reanalysis and validate

the result using actual data (Camargo and Schmidt, 2020).

Moreover, flexible resources like fast responding thermal

units, hydropower and energy storage are critical to

reducing system costs with renewable penetration elevated

(Yang et al., 2018). For thermal units, the traditional unit

commitment model is inapplicable in long-term scheduling

problems due to amounts of binary variables. Hence, Han et al.

(2019) proposed a fast unit commitment model (FUC) to

reconstruct traditional chronological constraints with a

linear formulation based on unit grouping techniques, and

linear relaxation was considered for the simplification in

reference (Palmintier and Webster, 2015). Due to the highly

non-convex and nonlinear structure in output characteristics

(Taktak and D’Ambrosio, 2017), hydropower generation is

generally linearized in these problems (Namely fixed hydraulic

head and turbine efficiency) (Liu et al., 2019a). As for storage,

charge-discharge characteristics are the main constraint for

long-term scheduling which is commonly considered a linear

model (Chen et al., 2021a). Besides, Sonja et al. introduced a

novel system-states framework to optimize storage operation

in medium- and long-term power scheduling (Wogrin et al.,

2015) and combined it with Net-constraints in a subsequent

study (Tejada-Arango et al., 2017).

2.1.2 Model for specific optimization strategy
with diverse resolution

Themodels in the previous section are aimed to minimize the

total system costs, however, there exist many studies focusing on

other specific optimization strategies, such as renewable

curtailment, energy generation and output fluctuation.

Scheduling for hybrid power system with reservoirs has

gradually become a hot topic. Considering the impact of

uncertainty caused by wind and solar power generation, such

problems are generally presented as multi-objective and multi-

stage optimization models with small-scale systems and daily or

monthly resolution (Liu et al., 2019b), (Shen et al., 2020). In some

hydro-dominated systems like Norway and Brazil power system,

the optimization scheduling of hydropower is a critical

component in power dispatch. Linear programming (LP),

decomposition techniques and energy equivalent reservoir

(ERR) methods have been proposed to model the scheduling

of large-scale reservoirs (Brandao, 2010). Stochastic dynamic

programming (SDP) and stochastic dual dynamic

programming (SDDP) are available for systems with few

reservoirs (Zambelli et al., 2006), (Helseth et al., 2017).

Meanwhile, a novel econometric model based on water value

model has been applied in the deregulation system for reservoir

operation (Jahns et al., 2020).

TABLE 1 The difference in three time dimensions.

Time dimension Scheduling cycle Time
resolution

Input Output

Medium- and Long-term
scheduling (MLS)

several weeks, months or
a year

1 h Power demand, solar and wind forecast
data, physical constraints

Generator output and maintenance plan,
cost and benefit

Short-term scheduling (STS) 1 day or a week 1 h or 15 min Constraints given by MLS, power demand Generator output and up/down plans,
detail cost and benefit

Real-time scheduling (RTS) 1 day 15 or 5 min Constraints given by STS, power demand Generator output, detail cost and benefit
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From the aspect of the electricity market, reference (Yao

et al., 2020) analyzed renewable energy integration in the Ningxia

electricity market while the ancillary service market is yet to be

established. The generation contract transfer trading (GCTT) is

adopted to ensure the cost recovering of thermal generators.

Reference (McPherson and Bryan, 2014) analyzes the new law

aiming to promote wind energy by mandating long term power

purchase tenders in Panama, as well as the power generation and

system marginal cost.

2.2 Short-term scheduling

The total optimization horizon for short-term scheduling

ranges from 1 day to 1 week with an hourly interval. Unit

commitment (UC) and Economic dispatch (ED) models are

universally applied in power system to determine on-off states

and production plans of units. Classical UC and ED model has

been widely discussed in many reviews (Saravanan et al., 2013)-

(Bhardwaj et al., 2012), while this paper focuses on the latest

development in modelling techniques. Matija et al. compared

four clustering methods in Dispa-SET UC model and their

results indicated that the differences between the methods and

the traditional UC model are acceptable (Pavičević et al., 2019).

Luis et al. proposed a frequency-constrained stochastic UC

model to efficiently schedule diverse frequency services

(Badesa et al., 2019). Brito et al. developed seven piecewise

linear generation models for hydro UC problems and

compared the corresponding performance in Brazil’s hydro

system (Brito et al., 2020). Furthermore, some studies

improved traditional ED under the rapid development of

distributed energy (Velasquez et al., 2019), (Jian et al., 2020)

and combined ED with environmental dispatch (Razeghi et al.,

2016).

Uncertainty is becoming an inevitable factor for short-

term power scheduling with the increasing share of

intermittent resources. As the main source of uncertainty,

wind and solar power output should be built more carefully in

short-term scheduling, instead of being considered as time

series in medium- and long-term models. One of the ways is to

approximate power output by probability distribution

function which is based on historical data and large

amounts of scenarios generated by Monte Carlo simulation

(MCS) and other mathematical methods (Zakaria et al., 2020).

Another way is to define the uncertainty set by a set of

parameters, which includes all possible scenarios (Yi et al.,

2018). The two ways mentioned above are universally applied

in uncertainty methods such as stochastic optimization and

robust optimization. Reference (Kuznia et al., 2013) presents a

stochastic mixed integer programming model for a hybrid

power system, which consists of thermal units, renewables,

storage considering network constraints, for remote areas.

Reference (Madaeni and Sioshansi, 2013) combines

stochastic optimization and demand response to mitigate

the uncertainty of wind power. Li et al. (2020) proposed a

stochastic programming for power system with renewables

integration. It reduces energy costs with electric heaters and

effectively manages renewables with fluctuating output. The

two-stage robust optimization solved by the column-and-

constraint generation is first proposed in reference (Zeng

and Zhao, 2013), which greatly improve the scheduling

speed. Based on that, An and Zeng. (2014) further present

the expanded robust unit commitment and the risk

constrained robust unit commitment model. What’s more,

to cope with the wind power penetration, the uncertain sets

based on multi-band uncertainty set considering the temporal

correlation (MBUSCTC) can be added to the modeling of

multi-power units. The method can rigorously and realistically

describe the output of wind power sources (Chen et al., 2020).

Meanwhile, the outage probability of units and transmission

lines can be considered in solving unit commitment problems,

which effectively reduce the conservatism of traditional

robust contingency constrained unit commitment (Chen

et al., 2019).

Moreover, the influence of load uncertainty is reckless to

ignore in short-term scheduling problems (Dey et al., 2020).

Batteries, pumped-hydro and other energy storage techniques

are generally used to deal with these uncertainties. Wai et al.

analyzed the advantages and disadvantages of storage

operation based on daily cycles and weekly cycles

respectively, the results showed that storage operated in

daily mode is more advisable for renewables intermittency

(Ho et al., 2016). Toubeau et al. (2020) presented a two-stage

mixed-integer linear programming (MILP) model by data-

driven methodology to optimize the day-ahead dispatch of

storage systems. In addition, the data-driven robust state

estimation (DDSE) method through off-line learning and

on-line matching can be used to simplify the calculation of

network parameters and effectively improve the scheduling

efficiency (Chen et al., 2021b). At the same time, to cope with

the uncertainty of renewables, it is possible to further consider

the data-driven PF (DDPF) method based on historical/

simulated data that includes an offline learning stage and

an online computing stage in scheduling optimization

(Chen et al., 2021c). Furthermore, multi-type demand

response resources are gradually becoming a new direction

for tackling uncertainty (Baek and Shin, 2022). For short-term

hydro scheduling, MILP is one of the most effective

approaches to accurately model the operation of

hydropower stations with head-dependent prohibited

operation zones (Su et al., 2020), while the uncertainty of

reservoir inflow data is commonly handled with the stochastic

programming (SP) model (Fleten and Bjørdal, 2020).

From the aspect of the electricity market, in order to cope

with the elevated renewable penetrations of wind power,

reference (Liu and Xu, 2021) increases corporate profits by
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analyzing bidding regulations and imbalance pricing mechanism,

thereby promoting renewable accommodation. Reference

(Zhang et al., 2022a) further using the Stackelberg game

model analyze the relationship between renewable energy

generation companies (GENCOs) and the day-ahead

electricity market. The renewable accommodation in the day-

ahead market can be effectively promoted by adjusting the

bidding strategy.

2.3 Real-time scheduling

Real-time generation scheduling mainly focuses on intraday

dispatch problems with 15 min, 5 min or shorter temporal

resolution. Accurate prediction information is a critical input

for reasonable results in real-time scheduling. Thus, an ultra-

short-term forecast is necessary for the violent fluctuation of

wind and solar power output. Time series regression models,

machine learning techniques, and other approaches such as

image-based methods and decomposition methods are

practicable to obtain the forecast information of minutes and

hours ahead (Tawn and Browell, 2022). Recently, the

combination of different methods called hybrid prediction

model has been widely used in renewable forecast (Wang

et al., 2020). For dynamically updating real-time prediction

information, rolling dispatch based on model prediction

control (MPC) has been widely used in many studies. Zhang

et al. (2021) proposed a multi-objective rolling dispatch model to

handle the intermittency of renewable resources in the

optimization of active distribution network scheduling. Sheng

et al. (2021) developed a mixed-integer second-order cone model

with rolling optimization to eliminate the impact of renewable

fluctuation on transmission networks. Meanwhile, uncertainty

methods such as distributionally robust optimization and

stochastic optimization in real-time scheduling has some

novel developments. Distributionally robust optimization

(DRO) is used to ensure security constrained economic

dispatch and assess operating cost expectations affected by

renewable energy sources (RES) uncertainty (Lu et al., 2018).

Reference (Yang andWu, 2018) improves the conservativeness in

real-time scheduling by the distributionally robust optimization,

where the uncertainty of distributed generation output is

characterized with the first-order and second-order moments.

Overvoltage problems can be eliminated effectively through the

combination of ED and corrective control strategies. Based on

DRO, reference (Liu et al., 2021) further considers automatic

generation control (AGC) in SCED, which reduces the total cost

of power generation and frequency regulation. Lin et al. (2020)

took a mean-tracking model into stochastic ED to get optimal

dispatch solutions with minimal tracking errors. Morteza

proposed a two-stage stochastic model to optimize the

operation of a hybrid system with the target of maximizing

the system owner’s profit (Li et al., 2019).

Real-time scheduling of energy storage is usually determined

by markets price and uncertainties. Fang et al. (2018) developed a

mean-variance optimization method for the scheduling of

storage system, which modelled the uncertainty of day-ahead

and real-time price with a Gaussian distribution and aimed at

reducing revenue volatility. Gao et al. (2018) introduced a MILP

model which considered the impact of battery wear-cost and

demand uncertainty based on rolling dispatch. With an intensive

coupling relationship between upstream and downstream

reservoirs, hydropower system is rarely dispatched at intervals

of less than a quarter of an hour. While MILP is the universal

approach to model the operation of hydropower system in real-

time scheduling (Zhang et al., 2022b).

From the aspect of the electricity market, an integrated

dynamic market mechanism (DMM) was proposed combining

real-time market and frequency regulation. Renewable

generators and flexible consumers can negotiate electricity

prices to maximize the profitability of unit output (Shiltz

et al., 2015). Reference (Yuan et al., 2021) further proposes a

real-time pricing mechanism based on demand-response. The

upper and lower models are aimed at maximizing the profit and

welfare of suppliers respectively. The scheduling results can

effectively reduce the peak-to-valley difference and optimize

the output data of each unit.

To sum up, we have sorted out the commonly used

methods and recent developments of multi-temporal power

generation scheduling models. Power scheduling is generally

ordered from longer time scales to shorter time scales. For

instance, medium- and long-term model determines the

annual scheduling plan for large reservoirs and takes it as

the boundary of short-termmodel, while units on/off states are

obtained from the output of short-term model and then

directly applied in real-time model. The scheduling models

of multiple time scales are closely coupled, where they have

commonalities but are different from each other. They are

interdependent and complementary to realize the smooth and

safe operation of the power system.

3 Scheduling algorithm and approach

Here, we sort out common solution algorithms and

approaches for various models at multiple time scales, which

are medium- and long-term, short-term and real-time,

respectively. Each part the mainstream algorithms based on

deterministic schemes in traditional generation scheduling are

introduced first. Then the improvement and optimization of the

uncertainty algorithm for the renewables integration are

presented. The approaches to coordinate with other time

scales are introduced at last. We note that optimizers

including GUROBI, CPLEX, MINOS, GSOMP and so on are

widely used to address the optimization issues. These approaches

will not be repeated here.
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3.1 Medium- and long-term scheduling

The power generation scheduling in the medium- and long-

term scales mainly focuses on the output schemes of the

hydropower system. Meanwhile, relatively less uncertainty will

be considered for renewable sources due to the long time scales.

Hence, the medium- and long-term scheduling algorithms are

mainly deterministic.

Reference (Nolde et al., 2008) proposed a multistage

stochastic programming formulation solved via Nested

Benders Decomposition. Model predictive control was setup

to obtain the solution during the solving program. Horizon

length and shape of the event tree were identified to optimize

the computational power, and improved the performance and

robustness by adjusting parameters.

In terms of co-optimization with other time scales,

considering the randomness brought by inflow and varying

temperatures, risk management and portfolio analysis were

studied to face uncertainties in the Norwegian hydro system

(Flatabø et al., 1998). Reference (Xinli et al., 2011) proposed a

mixed numerical integral algorithm to simulate dynamically in

scheduling. Multi-temporal phenomena were also united and

coordinated to minimize the cost.

3.2 Short-term scheduling

The short-term generation scheduling algorithms further

solve the optimization in the hydro-thermal system. Different

from medium- and long-term scheduling, the algorithms in

short-term scheduling need more randomness and robustness

due to the uncertain impacts of wind and solar energy. Hence, the

short-term algorithms are innovated to adapt to the uncertainty

due to the injection of renewables.

Reference (Ma et al., 2017) proposed a method to enhance

the ability to accommodate wind power based on reciprocal

peak-regulation trading of inter-regional grids. The uncertainty

of wind power in day-ahead scheduling was reduced by the

information gap decision algorithm. Reference (Liaquat et al.,

2020) took into account the effects of photovoltaic energy in

traditional power system. Auto-Regressive Integrated Moving

Average (ARIMA) model was applied to solar energy forecasting.

Non-linear problems could be addressed effectively by the

accelerated particle swarm optimization and the Rey algorithm.

Meanwhile, as the essential hub of multi-temporal

scheduling, short-term strategies have more interaction with

other time scales. Several researches have been conducted on

interaction with medium- and long-term scheduling. Reference

(Marwali and Shahidehpour, 2000) proposed a coordination

approach based on Monte Carlo simulation. The behavior of

power system and potential forced outage scenarios in long-term

scheduling were submitted to short-term scheduling, making

sure the short-term scheduling and network constraints were

satisfied. Three approaches, which are the primal-information

approach, the dual-information approach and the marginal

resource-valuation functions approach, respectively, were

proposed to coordinate the medium-term planning and short-

term scheduling. Profitability was increased by the combination

of different decision levels (Reneses et al., 2006).

3.3 Real-time scheduling

Real-time scheduling algorithms demand higher precision in

a shorter scheduling time period. Multiple power sources and

inter-regional coordination are important issues that real-time

scheduling algorithms need to address. Meanwhile, the greater

randomness brought by renewables also puts forward higher

requirements on the robustness of the algorithm.

First, deterministic algorithms have been reviewed.

Traditionally, real-time scheduling based on security

constrained economic dispatch (SCED) was solved by

deterministic algorithms. Reference (Kang et al., 2018)

proposed deferrable loads control scheduling algorithm, where

the power resource utilization was improved. The difference

between the total load curve and the supply curve was also

reduced. Reference (Huang and Wang, 2007) proposed an

approach to optimized real-time generation scheduling

combining orthogonal least-squares (OLS) and enhanced

particle swarm optimization (EPSO) algorithms. The three-

layer network structure has been simplified. The fast response

and precise scheduling could be obtained when the inputs of

system load with the weight of cost were submitted.

Second, optimization algorithms for the uncertainty have

been reviewed. The researches on real-time scheduling

algorithms to improve robustness have also been conducted

due to the higher uncertainty of real-time renewables.

Reference (Patrinos et al., 2011) formulated a real-time

optimal generation scheduling problem containing

intermittent generation and storage energy system. Then a

novel scenario-based stochastic model predictive control

(SMPC) algorithm was proposed for the solution of the

real-time scheduling problem. Reference (Wei et al., 2015)

proposed the concept of real-time dispatch ability (RTDA) of

power systems with variable energy resources. A polyhedral

representation of RTDA was defined and an efficient Ad-CG

algorithm generated its boundaries. Linear characteristics

make the method easy to implement. A continuous-time

modelling based robust unit commitment was presented to

address beyond-the-resolution (BtR) wind power

uncertainties (Zhou et al., 2021). The optimization

scheduling problem was solved by the column-and-

constraint generation algorithm in the function space. Then

the results were recovered to algebraic space. Robustness was

enhanced at the expense of economic costs. Uncertainties were

further reduced by a two-level optimization structure by a
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policy iteration algorithm based on the Perturbed Markov

decision process. The optimal real-time scheduling strategy

combined with storage energy was also described (Huo et al.,

2015).

In terms of co-optimization with other time scales,

coordination strategies between real-time and short-term

scales were also applied to improve the robustness of

scheduling. Reference (Yu et al., 2018) proposed an improved

two-stage robust optimization with recourse method considering

the rolling trading of inner-day electricity market based on the

analysis of time-varying prediction uncertainty of wind power.

Day-ahead scheduling results had been combined with real-time

scheduling to both reduce the reserve capacity and the

imprecision.

To sum up, the optimization algorithm in medium- and

long-term scheduling is mainly deterministic, which solves

TABLE 2 Comparison of typical cited papers.

References Main
power
source
model

Modelling method Solving approach Uncertainty Temporal scale

Chen et al. (2018) Thermal, wind,
solar

Linear programming Optimizer (GUROBI) — Medium- and long-
term

Wogrin et al. (2015) Storage Methodology of System states approximation Optimizer (CPLEX) — Medium- and long-
term

Liu et al. (2019b) Wind, solar,
hydro, batteries

Two-stage model with an proposed optimal
operation strategy

— Wind, solar Medium- and long-
term

Brandao. (2010) Hydro ERR model for hydropower Optimizer (MINOS) — Medium- and long-
term

Zambelli et al. (2006) Hydro SDP model with independent probability
distribution function

— inflows Medium- and long-
term

Jahns et al. (2020) Hydro Econometric approaches based on supply
curves and water value

— — Medium- and long-
term

Badesa et al. (2019) Thermal Stochastic UC model with clustering and a
linear inner approximation

Optimizer (FICO Xpress) Renewable Short-term

Brito et al. (2020) Hydro MILP model with several piecewise linear
approaches

Optimizer (GUROBI) — Short-term

Yi et al. (2018) Wind, solar Multi-objective robust model NSGA-II algorithm Wind, solar, demand
response

Short-term, real-time

Toubeau et al. (2020) Storage Two-stage MILP model with data-driven
methodology

Optimizer (GUROBI) Energy storage Short-term

Zhang et al. (2021) Wind, solar,
gas, storage

Rolling multi-objective model MOEA/D-TSA algorithm Wind, solar Real-time

Sheng et al. (2021) Storage, wind,
solar

Mixed integer second-order cone
programming based on MPC

Convex relaxation and solved
with Optimizer

— Short-term, real-time

Lin et al. (2020) wind Multi-objective stochastic ED model based on
Mean-tracking

Optimizer (GSOMP) Wind Real-time

Li et al. (2019) Storage Dynamic constraints model with
deterministic linear conversion

Optimizer (CPLEX) Load, Power regulation Real-time

Zhang et al. (2022b) Hydro MINLP model and linear approximation by
improved special ordered sets

Optimizer (GUROBI) — Real-time

Nolde et al. (2008) Hydro, thermal Multistage stochastic programming based
on MPC

Nested Benders
Decomposition

Inflows, load Medium- and long-
term

Xinli et al. (2011) Thermal MINLP model with hybrid techniques LR together with EA — Short-term

Marwali and
Shahidehpour, (2000)

Thermal Dynamic programming and two-state
continuous-time Markov model

LA and Monte Carlo
sampling algorithm

Lines and generating
units availability

Medium- and long-
term, Short-term

Reneses et al. (2006) Thermal Three approaches: the primal-information,
the dual-information and the marginal
resource-valuation functions

— — Medium- and long-
term, Short-term

Patrinos et al. (2011) Thermal,
storage

Stochastic model based on MPC SMPC algorithm Load, market price,
renewable

Real-time

Huo et al. (2015) Storage ED model with greedy control strategy Iteration algorithm with
Perturbed Markov decision
process

Wind, storage Real-time
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multi-level planning, and calculates revenue precisely. In short-

term scheduling, algorithms with uncertain models are widely

used, such as Benders decomposition algorithm, Monte Carlo

algorithm and so on. The real-time scheduling algorithms are

similar to the short-term ones. However, due to its short

scheduling period, iteration algorithms such as SMPC are

proposed innovatively. In addition, various integrated

optimization solvers are applicable to all time scales.

4 Discussion

We have sorted out the typical scheduling methods and

their algorithms with consideration of uncertainty in multiple

time scales as shown in Table 2. The optimization of main

power source models is also listed in detail. The review results

show that the existing multi-temporal generating scheduling

will confront the challenges under elevated renewable

penetrations in the future. A comprehensive optimal

solution will be difficult to be obtained, resulting in

insufficient accommodation of renewables, frequent

congestion of power flow, and even power outages. Two

main reasons cause the problem. First, it is hard to achieve

a unified scheduling scheme under multiple time scales due to

the different physical characteristics of each power source. The

actual output of hydropower is often determined in medium-

and long-term scheduling, while the output of wind power and

solar energy can only be accurately considered in short-term

and real-time scheduling. Second, higher requirements are put

forward for the optimization and coordination of

comprehensive energy under elevated renewable

penetrations. In order to ensure the balance of electricity,

the comprehensive power abandonment rate of renewables

will be very small, where some places require the full

accommodation.

Meanwhile, we further found that the existing researches

have the following shortcomings through the above review. In

terms of scheduling models, no practical modelling method

was proposed to ensure computing efficiency for large-scale

systems in medium- and long-term scheduling when taking

into account the uncertainty of renewable. Meanwhile, the

participation of hydroelectric units, especially pumped storage

plants, and energy storage were hard to be considered in real-

time scheduling. From the perspective of scheduling algorithm

and approach, the lack of effective algorithms to efficiently

solve the medium- and long-term scheduling problem with

consideration of renewables is also worth studying.

Furthermore, current studies mainly focus on the coupling

relationship between short-term and real-time scheduling

models while few studies are concerned about the linkage

between medium- and long-term and short-term scheduling.

The above problems are demanded to be addressed in future

research.

Therefore, future researches can focus on the following

directions:

1. Themedium- and long-term scheduling optimization problem in

large-scale systems considering the hydro-thermal system should

be investigated, where the large-scale cascade hydropower can be

mainly considered. In particular, the optimization of output

curves of various hydropower stations considering constraints

such as maintenance plans is worthy of further study.

2. The optimization of scheduling strategies from medium- and

long-term to short-term is worth studying. The coordinated

operation of hydro-thermal and renewables can effectively

improve the accommodation. Meanwhile, the connection of

dispatch results including constraints and generator output

between medium- and long-term dispatching and short-term

dispatch is the focus of research.

3. The multi-source optimization model and cooperating strategy

in real-time scheduling demand further improvement. The

participation of pumped hydro and energy storage is an

essential issue to be addressed. In addition, researchers can

conduct the research on electricity market mechanism to

address the problem of uncertainty under elevated

renewables penetrations considering network constraints.

4. The trading mechanism of the electricity market can be further

improved. The mechanism design of agency power purchase in

themedium- and long-term scale, the renewables bidding strategy

and the clearing model in the spot market are all worth studying.

5 Conclusion

The original power generation mix and the geographical

distribution of units have changed with the increasing

transition of power generation structure from fossil energy to

renewable energy. Therefore, traditional optimization of

scheduling methods based on the deterministic model has

experienced shortfalls, while coordinated operation of hybrid

system considering various uncertainties has gradually become

concerned. This paper first introduces generation scheduling

models and the latest improvement of mathematical modelling

methods systematically, including wind power, photovoltaic,

hydropower, thermal units and energy storage, from the

perspective of multiple time scales. The coupling relationship

and coordinated operation mechanism in different scheduling

time scales are also indicated. The scheduling algorithms and

approaches to problems at different time scales are reviewed then.

The deterministic algorithms and the improved optimization

algorithms for the uncertainty brought by renewables are

introduced in detail. The medium- and long-term to short-

term, short-term to real-time scheduling coupling algorithms

and approaches are summarized as well. Furthermore, this

review also points out the shortcomings of current research on

large-scale systems in medium and long-term scheduling, as well
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as the lack of a strategic mechanism for the coordination between

medium and long-term and short-term scheduling. Three

references are presented for future research directions.

This review summarizes detailed multi-temporal generation

scheduling schemes and corresponding algorithms with the

purpose of providing assistance for dispatchers. The basis can

be referenced for corresponding scheduling to face the increasing

proportion of renewables injection.
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