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Batteries have enabled modernization of society through portability of

electricity. Batteries are also a crucial component to enabling clean

technologies of the future such as grid storage and electrified

transportation. Because of their ubiquity in modern society, global

organizations develop and commercialize batteries for their electrified

products. Across the field of battery development, in both commercial and

academic settings, there is broad utility in standardization of data formats

amongst disparate data sources, labs, equipment, organizations, industries,

and lifecycle phases. Due to the way the nascent industry developed, there

is a lack of standardization for how performance data is recorded, which is now

hindering the industry’s ability to learn from data and accelerate growth. Herein,

we describe the different types of data, formats, conventions, and

standardization for each phase in the battery lifecycle. Next, we provide a

standard data format and conventions for the community to either utilize in

their data collection practices or map their existing data into: the Voltaiq Data

Format (VDF). This standard data format provides the flexibility needed to

capture the variability in data formats and conventions along the battery

lifecycle. The utility of this standard format aids in collaboration within and

across organizations, accelerating innovation across the industry, and paves the

way for the battery community to start utilizing the power of machine learning

and data science.
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Introduction

Conventions and standardization in
science and engineering

Conventions enable groups of scientific researchers and

engineers to rapidly communicate concepts, experimental

results, and information with shared understanding. Some

conventions are tradition, some are explicitly developed to

further understanding or communication of concepts, while

other conventions can be arbitrary. Examples of conventions

in the field of electrochemistry are the signing of current to reflect

the movement of electrons and the signing of the transfer

coefficient in the exponential kinetic terms in the Butler-

Volmer equation(Moran and Gileadi, 1989; Guidelli et al.,

2014), the Standard Hydrogen Electrode has been chosen as

the reference standard of choice for the definition of potential

(Isse and Gennaro, 2010; Matsui et al., 2013). Another

convention is the shorthand description of a Galvanic cell,

where the anode chemistry is written out first on the left-

hand side (Garnett and Treagust, 1992).

Standardization and the battery industry

The modern lithium-ion battery was developed in the

1970s–1980s and is attributed to John B. Goodenough, Stanley

Whittingham, and Akira Yoshino (Tyutyunnik, 2021). The first

reported commercialization of the lithium-ion battery is

attributed to Sony in 1991 (Reddy et al., 2020). As such, the

consumer electronics industry was the first to rapidly adopt and

integrate the technology commercially, and was the primary

commercial driver for the early development of lithium-ion

batteries (Brodd, 1999). Other markets, such as automotive,

have had less linear pathways toward electrification, in part

due to the availability and cost of competing energy sources.

The concept of the electrified vehicle (EV) has been around since

the 1890s, however EVs have had varying degrees of commercial

success (Santini, 2011). The 1996 EV-1 from General Motors

being the most well-known recent commercialization attempt

(Johnson, 1999) prior to the present-day commercialization of

the electric vehicle that looks like it is here to stay (Global EV,

2019; Bartlett and Preston, 2022). Lithium-ion batteries did not

come into commercialization in an organized manner; the

technology is leveraged in various application spaces, and each

application space has variable testing practices, testing hardware,

and measurement practices. This has led to nascent state for

standardization in the battery lifecycle across the commercial

battery industry.

Announcements from leading automotive companies

(Bartlett and Preston, 2022), emerging government regulations

(European, 2015; Yang and Rutherford, 2019; California, 2022;

Electric Vehicle Toolkit, 2022), the decreases in cost per kWh,

and improvements to the underlying lithium-ion technology are

consolidating the dominance of the lithium-ion battery in the

ongoing electrification of the automotive industry (Berdichevsky

and Yushin, 2020). As this transition accelerates, however, legacy

OEMs and the vertical markets that support them are struggling

to keep up. To meet the demands that automotive is placing on

the battery field at large, innovations and a change in the status

quo will be necessary.

Due to the varying paths batteries have taken into the

commercial realm, and the disparate application spaces that

the technology is leveraged for, standardization is lacking

across much of the battery industry. In this publication, we

focus specifically on the standardization of data collection,

data formats, conventions for definition of data traces. For

batteries specifically, data standardization can enable

traceability of materials, cells, systems, and defects across an

entire lifecycle; data standardization can also enable meaningful

collaboration and comparisons, ultimately accelerating

innovation.

Data science, machine learning, and
battery data

Battery development accrues large volumes of data due to the

extensive testing required to bring battery technology to market

for an electrified product. In very early research stages,

experimental protocols may be one-off, but broadly across the

battery lifecycle, the experimental outcome goals and the types of

experiments are well defined and are shown in Figure 1. The

amount of testing required to realize a new battery technology in

an electrified product can span years. At the time of writing, the

industry standard is 9–18 months for consumer electronics and

3–7 years for automotive applications, as shown in Figure 2.

These realities in battery development lend to large volumes of

data from repeated tasks, a scenario where machine learning is

effective at providing insight. Machine learning is also effective

where insights are not obvious to humans or large volumes of

data prohibit human insight.

Data standardization can pave the way for the use of data

science and machine learning driven innovations in the battery

development industry. The standardization of conventions and

definitions for data are the first step to any data science or

machine learning project, where “data cleaning” as it is referred

to colloquially amongst data scientists, is known to comprise a

substantial portion of the effort in any large-scale data science

project (Chu et al., 2016; Kumar and Khosla, 2018; Petrova-

Antonova and Tancheva, 2020; Wang andWang, 2020; Ilyas and

Rekatsinas, 2022).

A prerequisite for data science and machine learning

applications is standardization and adherence to colloquial

conventions, there are realities in battery research and

development that make standardization difficult. There are
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widely varying chemistries, measurement equipment, and end use

cases for the battery that could cause a researcher to test or generate

data with varying conventions and definitions. In the case of test

protocol standardization, standards development organizations

(SDOs) have developed evolving protocol recommendations for

battery testing (United States Council for Automotive Research,

1996; Conover, 2016; Blair, 2021). Governmental standards

development organizations such as the United States National

Laboratories have produced the USABC Manual for automotive

battery testing (United States Council for Automotive Research,

1996), the Protocol for Uniformly Measuring and Expressing the

Performance of Energy Storage Systems (Conover, 2016), the Global

Overview of Energy Storage Performance Test Protocols (Blair,

2021), and the Battery Test Manual for Electric Vehicles

(Christopherson, 2015a; Christopherson, 2015b), to name a few.

Standards for testing have also been developed outside of the U.S.,

for example the Chinese GB/T32960.2–2016 regulation and

European testing standards.

FIGURE 1
The four primary stages in the battery lifecycle, with experimental and data collection outcome goals described and processes in each phase
listed below.

FIGURE 2
Graphical representation of the primary stages in the battery lifecycle, defined in part by the differences in data collected at each phase.
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In addition to test protocol standardization, another

difficulty to standardization is that the battery data itself, and

methods of accessing it, are beholden to the formats and

conventions inherent to the brand of tester being used to

collect the data. Today it is common to walk into a battery

test lab and find two or more brands of testers. Each brand of test

hardware that collects battery data has its own methods,

conventions, and definitions for the collected data. For

example, the definition of signed current for charging and

discharging is inconsistent across tester companies, while

some hardware companies do not sign current at all. In the

calculation of capacity, some hardware companies calculate

capacity per charge or discharge state, while others simply

accumulate capacity over the entirety of the test.

The source of these variations in definition and convention

can be better understood through the origin of the commercial

hardware brands. The testers used broadly today in the research

and development phase of the battery lifecycle originated

regionally in small businesses with chemistry or application

specificity. For example, Arbin, Maccor, and Bio-logic

originated with research and development testing. Bitrode and

Digatron started in the lead-acid industry. Neware, PNE and

Toyo started as region-specific brands in Asia. Different tester

types have differing capabilities—Bio-Logic, for example, is

capable of extensive electrochemical testing methods that

other tester brands are not capable of. However, due to the

chemistry and region-specific development of the field of battery

testing, the conventions and definitions for the common traces

amongst the tester brands are lacking. In the past, this was less of

an issue, as the scale of battery testing was smaller, and

availability of hardware was more regionally dependent. A

current hindrance to innovation, traceability, and meaningful

comparison in the battery field is the standardization of the

battery data itself, the format of the data, and the definitions for

the traces within the data.

Publication overview

In the field of science and engineering, it is well accepted that

standardization and conventions are powerful tools that we have

as a community to enable rapid and clear communication of

concepts and results, accelerate time to innovation, and enable

establishment of best practices for a field of study. The realities of

battery development (large volumes of data from repeated

experiments that result in prohibitively large or complex sets

of data) create a data space that is fit for the insights that machine

learning and data science techniques can offer. Standardization

in both experimental protocols as well as data formats are

necessary prerequisites for broader collaboration and

comparison. These standardization practices must be flexible

enough to accommodate the some variability in data collection

methods, data formats, and experimental protocols.

In this publication, we strive to provide standardization and

conventions for the format and datafiles that result from battery

testing. We provide an open-access publicly available common

format, the Voltaiq Data Format (VDF), with defined

conventions and standards that battery data collected across the

lifecycle can be mapped to. Given that Voltaiq handles data across

every step of the battery lifecycle today, and that Voltaiq has worked

closely with dozens of customers and equipment vendors to

standardize formats over the last decade, we believe we are

uniquely qualified to present a format that is flexible enough to

handle the variations throughout the development process while

also maintaining the standards and conventions that enable us to

communicate more effectively across functions. Additionally, this

format has been used in industry for the better part of the past

decade to collect data in research and development, product

development, production, and in-field battery operation. As such,

the data format has accommodated variability across each of these

sub-processes in the battery lifecycle. In the following sections, we

provide an overview of the battery lifecycles that Voltaiq Data

Format has already been used in and discuss the variances in

data formats, collection methods, and volumes at each phase.

The goal of providing this standard data format is to provide a

convention across industry and academia. If data is mapped to this

format and the conventions within the format are followed, large

volumes of battery data can be collected and leveraged. To our

knowledge, this is the first release of a standard battery data format

that has been used extensively in the commercial battery

development space. This set of standardized data can be utilized

for innovation, collaboration,meaningful comparison, andwith data

science and machine learning techniques to provide insight into

some of the most challenging questions the community is

addressing today.

Results

Types of battery data

We have categorized the types of data collected for batteries

into three categories: time-series data, throughput data, and

metadata.

• time-series data is any data that is collected as a function of

time;

• throughput data is any data that is collected as a function of

some unit of throughput of the battery;

• metadata is data that is collected about the battery or about

the other data sources.

Time-series data is a sequence of data points ordered by time.

For example, current and voltage measurements are two types of

time-series data. Other examples of time-series data are discharge

capacity, temperature, or power. Measurements taken with
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auxiliary metrics such as thickness changes of the cell with

cycling, or temperature measurements of the cell or the cell

environment are also time-series data.

Throughput data is calculated as a function of a defined

measure of throughput; this unit of throughput varies based on

the application space or battery development phase. For example,

in the early cell development phase, performance metrics are

calculated as a function of ‘cycle’ where cycle is the unit of

throughput measure. In automotive applications, traditional full

charge and subsequent discharge is not always a useful unit for

throughput performance—instead, performance as a function of

a unit of ‘drive cycle’ is more appropriate (Lawder et al., 2014;

Tourani et al., 2014; Jafari et al., 2015; Baure and Dubarry, 2019).

In grid storage applications, duty cycles are developed which

match the energy provision the battery supplies for the grid

(Rosewater and Ferreira, 2016; Moy et al., 2021).

Metadata gives context to the time-series and throughput data as

the metadata is any data that describes the battery, time-series data,

or the throughput data in more detail. For example, the weight,

active material chemistries, manufacturing lot and date, or number

of cells in series or parallel would all be metadata applicable to

different phases of the battery lifecycle. Other metadata examples

include the operating conditions during testing, tester hardware,

software versioning, the test protocol, the operating system, the test

operator, and so forth. These are all pieces of information that

provide additional context to the time-series and throughput data.

Voltaiq data format

Working across much of the battery lifecycle, Voltaiq has

developed and provided open-access to a data format for battery

data collection which is structured enough to employ as a standard

across the industry but flexible enough to support the variability

inherent to the different phases of the battery lifecycle outlined in the

previous section. Voltaiq Data Format (VDF) is purposefully similar

to the data format a battery tester may write data, however, VDF

provides one standard set of definitions and conventions for the data

and the data format, therefore data collected with varying

conventions and formats may be mapped to VDF. As such, VDF

is designed to capture data from research and development all the

way through production. In-field data capture is an emerging space,

we propose here guidelines on how to modify Voltaiq Data

Formation for in-field data. Additionally, we open-source our

guidelines and invite the community to evolve the guidelines into

standards that can be adopted and accepted as best-practices across

the community.

Voltaiq Data Format files have two main sections, a header

and a body. The header consists of metadata and the body

consists of the time-series data. The throughput data can be

calculated from the time-series data with the conventions

outlined in the following sections. Example files can be seen

in the Supplementary Information Section S1.1.

The voltaiq data format requires the following formatting

• Datafiles are in CSV format with a “Tab” delimiter.

• Each datafile represents one and only one test—datafiles

will not contain data from multiple tests. However one test

can be written in multiple datafiles, if needed, due to file

size limitations.

• All datafiles have a unique file name.

• Certain metadata and time-series entries are required, as

they comprise the bare minimum entries needed to

calculate the full set of performance data. Other fields

are optional or recommended as specified below.

• The metadata section and the time-series section must be

separated by the string “[DATA START]”.

• Every time-series data column must have units defined.

• The number of data columns must be consistent

throughout a file and match the number of Data Header

columns.

Metadata header

Each datafile should begin with a specially formatted

Metadata Header which can be any number of lines, in

which each line contains a single “key:value” pair

representing one piece of metadata (with a “:” delimiter).

There are a set of required fields, but any quantity of

metadata fields can be included in the header, up to

1024 “key:value” pairs. Metadata associated with the testing

conditions is recommended to be included in the Voltaiq Data

Format datafile header, while a broader set of metadata is

recommended to be captured separately as discussed in the

subsequent section “Metadata File”. A list of recommended

metadata for the test file header is included in Table 1. The

termination of the header is indicated by a line containing

only the string "[DATA START]". Example files can be seen in

the Supplementary Information Section S1.1.

Large format energy storage systems are comprised of multiple

cells electrically connected in series and parallel configurations to

create a battery that can meet a performance requirement that a

single cell cannot meet alone. There are metadata headers, time-

series data, and metadata entries that are recommended specifically

for these large format energy storage systems composed of more

than one cell, as shown in Figure 4. For these systems, it is important

to specify the hierarchical relationship between the different

electrochemical components (cell, module, pack); for example, a

pack could have four modules, with each module consisting of

10 cells. In the above example, the convention in VDF is that the

highest hierarchical level is the pack, while the lowest hierarchical

level is the cell. Additionally, it is also important to specify the

electrical connection between components; for example, amodule of

10 cells could consist of two series connections of five parallel-

connected cells.
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TABLE 1 Exemplary Metadata header entries.

Metadata header Required Definition Convention

Start Time Required UTC timestamp for the start of this test. Either of
these formats is allowed

The VDF convention is that epoch is specified in milliseconds;
e.g. record 1577836800000 for 12 AM 1 Jan 2020 GMT. If
using the “Date and Time” Unit, record with ISO
8601 standard: (“yyyy-MM-dd’T’H:mm:ss’Z‴)

Integer (epoch) or String (Date and Time)

Absolute (date) time datapoint

Timezone Required The timezone where the test is being run. Either of
these formats are allowed

International timezone format (“America/
New_York")

UTC offset (“-4:00″)

Channel Number Recommended Which equipment channel number (or similar
identifier) was used to run this test

Tester ID Recommended An identifying string unique to the tester running
the test across the organization

Examples for this might be appending on a lab location to a
tester name: “SF_Maccor1” or “sf_xyz123” where xyz123 is the
serial number for the tester

Device ID Recommended An identifying string unique to the device/cell/pack
being tested across the organization

Format Version Recommended A version string that changes when the file format
(required column list, etc.) changes

Metadata Filenames Recommended A list of string filenames for any additional files
containing relevant metadata for the test

Procedure Name Optional Unique name of the tester protocol used to run the
test

Description Optional Non-unique description of the test

Nominal Capacity Optional The nominal capacity for the device being tested,
specified in “# Ah”

Units must always be included alongside measurement
metadata. Format is “{#} Ah”, where “#” is replaced with the
measurement. Supported units are specified in Supplementary
Information

Project Optional The project that the device being tested belongs to

Server Version Optional Version of Tester Server Software

Client Version Optional Version of Tester Client Software

Test Protocol ID Optional File name of the test protocol

Tester Calibration Date Optional UTC date for the tester calibration date for the test
hardware. Either of these formats is allowed

The VDF convention is that epoch is specified in milliseconds;
e.g. record 1577836800000 for 12 AM 1 Jan 2020 GMT. If
using the “Date and Time” Unit, record with ISO
8601 standard: (“yyyy-MM-dd’T’H:mm:ss’Z‴)

Integer (epoch) or String (Date and Time)

Absolute (date) time datapoint

Comment Optional Any comment on the test file

Pack Hierarchy Levels Required for large format
storage data

The number of hierarchy levels that exist within the
pack

The number of distinct electrochemical entities in the storage
system, for example a pack with modules composed of cells
would have ‘3’: cell, module, pack

Pack Hierarchy Naming
Schematic

Required for large format
storage data

Format in a high to low hierarchy The naming for each distinct electrochemical entry from high
to low hierarchy, comma separated. For example: “pack,
module, cell”

Number of
Components per
Hierarchy Level

Required for large format
storage data

Format in a high to low hierarchy The number of each entity, comma separated. For example,
1 pack, 9 modules per pack, 12 cells per module “1, 9, 12”

(Continued on following page)
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Time-series data

After the Metadata Header and the "[DATA START]" line,

the remainder of the file should contain a data header followed

by the time-series data in columnar, tab-separated format. The

minimum time-series data required in the file is Test Time,

Current, and Voltage; from these three traces, all other data

can be calculated or inferred alongside the metadata. For

example, the capacity can be calculated as the integral of

the current over time, the power can be calculated as the

voltage multiplied by the current. Where possible, we

recommend always including the measured value. The

complete list of time-series data traces are included in

Table 2. For any additional time-series data that are not

explicitly included in Table 2, the columns should be

included in the file as auxiliary traces, named “Aux. {Trace

Name}“, where {Trace Name} is replaced with a descriptive

name for the time-series data. Example files can be seen in the

Supplementary Information Section S1.2.

The data header for the time series data consists of a tab

separated row with entries according to the “Trace Name”

column in Table 2. Below the Trace Name row is a second

tab separated row with the units for the trace in that column. The

third row is then the raw data. The accepted traces are listed in

Table 2, the accepted units are listed in the Supplementary

Information Section S2.1.

In the case of the product development phase, modules

and packs are designed and developed into large format

storage systems as shown in Figure 4. Data is collected on

the pack, module, and cell levels and clear designation of the

origin of the measurement data needs to be specified in the

data. The origin for all of the individual measurements in

Table 2 should be specified in augmented trace names. For

instance, Voltages coming from cells 01, 05, and 11 would be

labeled as below:

“Cell01_Voltage”.

“Cell05_Voltage”.

“Cell11_Voltage”.

If there was an energy storage system with more than one

module in the configuration, the module would need to be

identified as well, labeled as below:

“Mod01_Cell01_Voltage”.

“Mod01_Cell05_Voltage”.

“Mod02_Cell11_Voltage”.

In general, each measurement should be labeled with a

mapping to the full configuration in the energy storage

system. The convention is to list the hierarchy from high to

low, as shown in the example above.

Also in the case of the product development phase, data

originating from the BMS may be recorded. This data is to be

treated as Auxiliary data and collected according to columns

named “Aux. {BMS Trace Name}“, where {BMS Trace Name}

should be the name of the data field as written by the BMS

system. We recommend that where users can specify their BMS

trace names, they include the configuration mappings written

above which clearly indicate the identification of the trace source,

for example “Mod01_Cell01_Voltage”.

Voltaiq metadata file

In many battery testing scenarios, the amount of metadata

that needs to be collected is on a larger scale than what is

reasonable to include within the header of the time-series data

TABLE 1 (Continued) Exemplary Metadata header entries.

Metadata header Required Definition Convention

Connection Type Required for large format
storage data

A string (ie. “Series” or “Parallel”). For multi
configurations, _s_p is acceptable. Format in a high
to low hierarchy

The connectivity for each electrochemical entity should be
specified in high to low hierarchy order. For instance 1, 3s3p,
4s3p

{Pack} Voltage Trace Required for large format
storage data

The name for voltage data traces for the pack level of
storage system hierarchy. A string formatted in a
high to low hierarchy, separated by commas

For example

Pack_Voltage, Mod01_Cell05_Voltage, Cell18_Voltage

{Pack} Current Trace Required for large format
storage data

The name for current data traces within a given level
of storage system hierarchy. A string formatted in a
high to low hierarchy, separated by commas

For example

Pack_Current, Mod01_Cell05_Current, Cell18_Current

{Pack} Temperature
Trace

Recommended for large
format storage data

The name for temperature data traces within a given
level of storage system hierarchy. A string formatted
in a high to low hierarchy, separated by commas

For example

Pack_Temperature, Mod01_Cell05_Temperature,
Cell18_Temperature

Sensor numbers can be augmented to the end of the trace
name. Temperature can be concatenated to “Temp”
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TABLE 2 Time Series data trace definitions, logical requirements, conventions, and supported units.

Trace
name

Required Definition Logical requirements Convention

Test Time Yes Float Sequential values within the test may not
decrease (i.e. values should be in ascending
order)

Time that has elapsed since the
start of the test

Current Yes Float The sign convention is positive for charge current and
negative for discharge current

Instantaneous value of current

Voltage Yes Float

Instantaneous value of voltage

Datapoint
Number

Recommended Integer Must start at 1 and strictly increase without
duplicates (e.g., 1,2,3,4 . . . )

If a test spans multiple datafiles, the datapoint number
is representative of the number belonging to the test
and does not start back to 1 at the start of a new
datafile

Datapoint number of the test

Cycle
Number

Recommended Long Must start with 1 and strictly increase by 1 each
cycle, without duplicates. There cannot be any
gaps or jumps

If a cycle column is not observed, the default
algorithm will look for the first charge datapoint after
any discharge datapoint as the boundary for a new
cycle

Cycle number of the test

Timestamp Recommended Integer (epoch) or String (Date
and Time)

Sequential values may not decrease (i.e. values
should be in ascending order)

VDF convention is that epoch is specified in
milliseconds; e.g. record 1577836800000 for 12 AM
1 Jan 2020 GMT.

Absolute (date) time datapoint If using the “Date and Time” Unit, record with ISO
8601 standard: (“yyyy-MM-dd’T’H:mm:ss’Z‴)

Step Type
Index

Recommended Long When a test procedure is set up, step types are
specified and numbered. A constant charge at a
specified value of current until a voltage limit is
reached is an example of a step type. This step type is
numerically indexed. Each step type index should
belong to one and only one step type

Test procedure step type
number

Step Time Recommended Float This value resets to zero anytime the Step Index
changes

Elapsed time since the start of
the current step

Sequential values within a step may not decrease (i.e.
values should be in ascending order)

Charge
Capacity

Recommended Float. Cumulative charge
capacity of the current cycle

Values must be greater than or equal to zero This value must reset to zero at the beginning of every
cycle (including beginning of the test), and should not
reset at step changes within a cycle

The sign convention for charge capacity is always
positively signed

Over a cycle, charge capacity accumulates. Sequential
values within a cycle may not decrease (i.e. values
should be in ascending order)

Discharge
Capacity

Recommended Float Values must be greater than or equal to zero This value must reset to zero at the beginning of every
cycle (including beginning of the test), and should not
reset at other step changes within a cycle

Cumulative discharge capacity
of the current cycle

The sign convention for discharge capacity is always
positively signed. Over a cycle, discharge capacity
accumulates. Sequential values within a cycle may not
decrease (i.e. values should be in ascending order)

(Continued on following page)
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testing file. This is specifically relevant to the research and

development and production phases. In these scenarios, we

recommend a metadata file in CSV format with metadata

collected on a per-device basis. This metadata file should be

linked to any testing file for that device through the metadata

header as outlined in Table 1. We have listed additional examples

of metadata that would be included in the metadata file in Tables

3, 4. The format should be as follows:

• Each row represents a separate device.

• Each column is labeled with the name of the metadata

entry at the top of the column.

• Following each metadata entry column, a separate column

is included explicitly specifying the units of measurement

for the subsequent metadata value.

Example files can be seen in the Supplementary Information

Section S1.2.

In-field data collection

Due to the emergence of in-field battery data collection, we

do not propose a full set of standards for in-field data collection.

We do however provide recommendations on how to augment

the above standards for in-field data. Additionally, we open-

source our guidelines and invite the community to evolve the

guidelines into standards that can be adopted and accepted as

best-practices across the community.

The collection of the time-series data should match the

conventions outlined for large scale energy storage systems in

the product development phase in the “Time-Series Data”

section. Namely, each battery time-series measurement should

be labeled with a mapping to the full configuration in the energy

storage system. The convention is to list the hierarchy from high

to low, i.e. pack number > module number > cell number. The

following additional guidelines for time-series in-field data are

below”.

• Datafiles are in CSV format with a “Tab” delimiter.

• Each datafile represents a continuous operating

period—datafiles will not contain data from multiple

operating periods. However one operating period can be

written in multiple datafiles, if needed, due to file size

limitations.

• All datafiles have a unique file name.

• Every time-series data column must have units defined

in the datafile or in an accompanied datafile that is

linked to the time-series data through filename or

metadata header.

TABLE 2 (Continued) Time Series data trace definitions, logical requirements, conventions, and supported units.

Trace
name

Required Definition Logical requirements Convention

Charge
Energy

Recommended Float.Cumulative charge
energy of the current cycle

Values must be greater than or equal to zero This value must reset to zero at the beginning of every
cycle (including beginning of the test), and should not
reset at other step changes within a cycle

The sign convention for charge energy is always
positively signed

Over a cycle, charge energy accumulates. Sequential
values within a cycle may not decrease (i.e. values
should be in ascending order)

Discharge
Energy

Recommended Float Values must be greater than or equal to zero This value must reset to zero at the beginning of every
cycle (including beginning of the test), and should not
reset at other step changes within a cycle.The sign
convention for discharge energy is always positively
signed.Over a cycle, discharge energy accumulates.
Sequential values within a cycle may not decrease (i.e.
values should be in ascending order)

Cumulative discharge energy
of the current cycle

Power Recommended Float.Instantaneous value of
Power

The sign of power should align with the defined sign
convention of current

Aux.
{Identifier}

Optional Float Any time series data not included in previous columns
can be recorded as Auxiliary traces, named
appropriately in {Identifier} An example would be
“Aux. Chamber Temperature”
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• The number of data columns must be consistent

throughout a file and match the number of data header

columns.

The metadata in Table 5 is recommended for in-field data

capture in the metadata header section of the time-series data file,

or in a separate file that is linked to the time-series data through

filename or metadata header.

Discussion

The battery lifecycle

Battery engineering in industry is cross-disciplinary in nature.

To bring a new technology to market in industry, the technology

goes through a series of steps spanningmultiple engineering teams,

time scales, and development processes. Figure 2 is a graphical

representation for moving from a cell to an electrified product,

representing the multiple cross-disciplinary phases. We have

broken up the battery lifecycle into four primary stages

representing sequential phases of development: Research and

Development, Product Development, Production, and Launch

and In-field. In Figure 3, we illustrate the relative volumes of

data collected at each stage represented in Figure 2. These phases

are, in part, defined by the differences in data collected at each

phase: structure, format, conventions, metadata, and auxiliary

data, as well as data volumes. Voltaiq Data Format has already

been leveraged in industry to standardize battery data collection in

each of these primary stages in the battery lifecycle. In each

subsequent section, we describe the data collected at each phase

and discuss how Voltaiq Data Format can be leveraged.

Research and development

In the Research and Development phase of the battery

development lifecycle, data is likely to be collected on the half-

or full-cell level as the basic chemistries of the active components in

the cells or design criteria on the cell level, such as form factor, are

being evaluated. The nature of the data is traditional electrochemical

measurements, such as time-resolved current and voltage and all of

the derivative measurements made from current and voltage such as

capacity, energy, power, etc. Additionally, measurements as a

function of throughput are made. In a cell, throughput is

generally defined by the throughput during a full charge and

discharge of a cell, considered a full ‘cycle’. This time-series data

is well captured by the conventions and standards outlined in the

“Time-Series Data” section.

The types of metadata collected in the research and

development phase are normally cell-specific, such as the

identity of the active materials, the dimensions of the cells

and internal structure, masses of active materials, safety

TABLE 3 Metadata to include in designated metadata file by battery
lifecycle phase.

Research & development Product development,
production
& manufacturing

Area Number of Cells in Series

Cell Mass Number of Cells in Parallel

Active Material Mass Pack configuration

Nominal Capacity Battery Size Factor (BSF)

Batch Number Max Charge Voltage (Pack)

Batch Name Gas Gauge Model Number

Batch Manufacture Date Gas Gauge Model Name

Supplier Part/Model Number Pack on Frame?

Supplier Part/Model Name Supplier Name (Pack)

Supplier Name Batch Manufacture Date (Pack)

Device Form Factor Module Number

Device Type Origin

Device Chemistry Installation Volume

Device Chemistry Common Name C/10 Capacity

Device Nominal Voltage C/10 Energy

Device Weight Keywords Cell

Device Length (without terminals) Lower Voltage Limit

Device Width (without terminals) Peak Current

Device Thickness (without
terminals)

Continuous Current

Device Diameter (without
terminals)

Peak Power

Device Volume Continuous Power

Initial OCV Gravimetric Energy Density

Initial ACIR Volumetric Energy Density

Max cell charge voltage Gravimetric Power Density

Cell thermal cut off Project Code Volumetric Power Density

Observed Li Plating Lower Temperature Limit

N/P Ratio Main thermal sensor

Radius of Pole

Length of Pole in x-direction

Length of Pole in y-direction

Length of Pole in z-direction

Housing Material

Housing Thickness

Housing Weight

Housing Polarity

Windingcore Mass

Jellyroll Mass

Number of jellyrolls

Number of windings

Electrode Manufacturing Equipment ID

Slurry Mixing Equipment ID

Charge Rate

Discharge Rate

CV Steps

Applied Pressure
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TABLE 4 Metadata to include in designated metadata file by cell
component.

Cathode Cathode ID

Cathode material

Cathode Mass

Cathode Area

Cathode Porosity

Cathode Carbon lot

Cathode Binder lot

Cathode type

Cathode Loading

Cathode Build date

Number of Cathode Layers

Cathode temperature during Compression

Cathode Water/Solvent ratio

Cathode slurry mixing time

Cathode Binder amount

Cathode edge vs. Center

Cathode Conductive Additive type

Cathode Conductive Additive amount

Cathode Conductive Additive Provider

Stoichiometry Cathode

Material current Collector Cathode

Thickness current Collector Cathode

Cathode Jellyroll Mass

Cathode complete coated area

Length of tab Cathode in x-direction

Length of tab Cathode in y-direction

Length of tab Cathode in z-direction

Number of tabs Cathode

Position of tabs Cathode

Length Cathode in x-direction

Length Cathode in y-direction

Start of Layer 1 Cathode

Length of Layer 1 Cathode in x-direction

Length of Layer 1 Cathode in y-direction

Start of Layer 2 Cathode

Length of Layer 2 Cathode in x-direction

Length of Layer 2 Cathode in y-direction

Thickness of coating Layer Cathode

Keywords Cathode

Anode Anode ID

Anode material

Anode Mass

Anode Area

Anode Porosity

Anode Carbon lot

Anode Binder lot

Anode Loading

Anode Build date

Number of anode Layers

(Continued in next column)

TABLE 4 (Continued) Metadata to include in designatedmetadata file by
cell component.

Anode temperature during Compression

Anode Water/Solvent ratio

Anode slurry mixing time

Anode Conductive Additive amount

Anode Binder amount

Anode edge vs. Center

Material current Collector anode

Thickness current Collector anode

Number of anode sheets

Anode Jellyroll Mass

Anode complete coated area

Length of tab anode in x-direction

Length of tab anode in y-direction

Length of tab anode in z-direction

Number of tabs anode

Position of tabs anode

Length anode in x-direction

Length in y-direction anode

Start of Layer 1 anode

Length of Layer 1 anode in x-direction

Length of Layer 1 anode in y-direction

Start of Layer 2 anode

Length of Layer 2 anode in x-direction

Length of Layer 2 anode in y-direction

Thickness of coating Layer anode

Keywords anode

Electrolyte Electrolyte ID

Electrolyte Material

Electrolyte Additive Material

Electrolyte Additive [wt%]

Actual Electrolyte Fill Mass

Electrolyte Fill Date

Electrolyte Filling Procedure

Separator Separator ID

Separator Base Film Material

Separator Coating Material

Separator Coating Particle Size

Separator Binder Type

Separator Solvent Type

Separator Batch Name

Separator Supplier Name

Separator Grade

Separator Base Film Thickness

Coating Separator anodeside

Coating Separator cathodeside

Keywords Separator

Length Separator in x-direction

Length Separator in y-direction
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considerations, and initial performance measurements such as

resistance or OCV. All of this metadata can be handled in the

VDF Metadata File. The linking of the aforementioned time-

series data to the metadata file is done through the metadata

header in the time-series data file. This linking allows for these

disparate measurements (time-series and metadata) to be linked

together electronically and handled at scale.

Auxiliary data collection at this phase consists of

measurements to better understand safety, chemistry

degradation methods, and changes of the actual cell with

aging. Electrochemical impedance spectroscopy (EIS),

temperatures of the cell or environment during testing, and

changes in cell dimensions with cycling are examples of the

types of auxiliary measurements and data collected in this phase

of battery development. These auxiliary measurements are

captured in the VDF “Time-Series Data” file.

The volumes of data collected within research and

development are small-to-moderate compared to traditional

‘big data’, but can still be cumbersome to process manually

depending on the scale of the program. The data generation

rate is less than a kb/min per cell. Additionally, the number of

cells tested per day at a typical R&D organization is on the order

of 50. Due to the exploratory nature of research and

development, the cleanliness of the data is generally quite low,

meaning that conventions, definitions, and standards to

experimental protocols and data collection are lacking. This is

an excellent opportunity for the data collected in this phase of

development to be written in or mapped to the Voltaiq Data

Format.

Product development

As we move to the Product development phase, the

nature of the product greatly impacts the data collected.

For the purposes of this publication, we focus on applications

that depend on a battery pack to operate, for example an

electric vehicle, power tools, grid scale storage, or consumer

TABLE 5 Exemplary Metadata header entries for in-field data collection.

Metadata header Required Definition

Logger ID Recommended for in-field data An identifying string unique to the in-field data logger

Device ID Recommended for in-field data An identifying string unique to the device/cell/pack/system being operated across the organization

{Application} ID Recommended for in-field data An identifying string unique to the application that the device is in. For instance, a vehicle ID or electronic ID.

BMS Hardware Version Recommended for in-field data Version of hardware collecting the in-field data

BMS Firmware Version Recommended for in-field data Version of software collecting the in-field data

FIGURE 3
Relative data volume generation rates per tested device (left axis in teal) and number of devices tested per day at a single organization (right axis
in red) for data collected at the four stages of battery lifecycle. Both the left and right axis are log scale.
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electronics. In these applications, during the product

development phase, the building out of the larger-format

storage system begins. This task no longer involves the

collection of data only from a single cell but focuses

additionally on collecting data from the larger system. The

components and environment are designed and engineered

such as the cell or module connectivity, thermal interface

materials, electrical connectors, contact system,

communication system, battery management system, and

housing as shown in Figure 4.

The cells, modules, environment of the system, and the

system itself all have sensors and time-resolved data streams

associated with them. Traditional electrochemical measurements

such as time-resolved current and voltage are still recorded,

however there are now multiple current and voltage

measurements per system, as each cell and module within the

system can be instrumented, as well as the pack itself, with

electrochemical data recorded for each component. The time-

series data for each of these instrumented components should be

recorded according to the same conventions for the data

recorded during the research and development phase. The

conventions for the signing of current, power, capacity, the

accumulation of capacity, should all remain the same as

outlined in the VDF conventions. This allows for the insights

gathered at the research and development phase to be readily and

meaningfully compared to the insights in the product

development phase. Additionally, since there are now multiple

module- and cell-level traces, it is important that each

measurement in the datafile is associated with the physical

structure of the energy storage system as outlined in the

Time-Series Data section. The convention is to label the

hierarchy for the trace from high to low, for example

“Mod01_Cell01_Voltage”.

Measurements as a function of throughput are also made for

large format systems, however, the concept of a traditional charge

and discharge cycle may not be applicable depending on the

application for the storage system. For instance, in the

automotive industry, drive cycles are used for throughput

measurements, while in grid storage, cycles representative of the

grid operation may be an appropriate throughput measurement.

That the frequency of data collection in this phase is normally

commensurate with the collection frequencies at the research and

development phases. The volumes of data are on the order of 100x

larger than data volumes collected in the research and

development phase per tested device though, as each system

has many more components being measured compared to the

research and development phase. For example, in a battery pack

for an automotive application in this phase, there can be on the

order of 4–24 battery modules per pack, each module with on the

order of 10–100 cells, as shown in Figure 4. For one single recorded

trace such as voltage, that is one trace per cell for 10 to 100 cells/

module. For 10 modules, 100x to 1,000x more data per individual

measurement trace, as illustrated in Figure 3. This results in on the

order of 100 s kb/min per device data recording rate. It is

noteworthy that every single cell per module in a pack may or

may not be instrumented for measurement.

The Battery Management System (BMS) is also developed

and finalized during this phase of development. The BMS is a

software system which operates the energy storage device and

environment in an intelligent manner to ensure the energy

storage system is safe and operates within safe operation

conditions. Additionally, the BMS is used to communicate the

state of the battery to the rest of the system, and to alert the end

user or the system on how to operate the storage system most

effectively. The BMS both takes in and produces data—for the

electrochemical data produced by the BMS, it can be treated

FIGURE 4
Diagram of a battery pack showing the pack and module components in a battery pack. Electronic connectivity between modules is shown in
orange wires. Chesky/shutterstock.com.
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effectively the same as the time-series data measurements in the

testing phases of product development.

The types of metadata collected in the product development

phase, distinct from the research and development phase, include

the electrical configuration of the pack such as number of cells

per module, number of modules per pack, series and parallel

configuration of cells or modules within the pack, environmental

variables such as the cooling system, type of coolant, pack

voltage, or specific energy. However, all this metadata is still

well captured in the VDFmetadata file format, where each row in

the file represents an energy storage device, each column defines

the metadata entry, and the subsequent column defines the units

of measurement.

Production

Once a system has finished development, and the commercial

organization is confident they can meet the requirements and

warranty conditions for the electrified product, production can

begin. Battery production is generally undertaken by a company

that specializes solely in producing batteries, as opposed to the

organization responsible for the electrified product or the

original equipment manufacturer (OEM). The scale of

production and subsequently the scale of the data are orders

of magnitude larger than any of the previous stages in the battery

lifecycle. Data collection rates per device per minute can be on the

order of 10,000x more than on the research and development

phase as shown in Figure 3 left axis. Once production ramps up, a

typical large battery manufacturer can produce over 5 GWh per

year, or several million cells per day, as shown on the right axis of

Figure 3.

In the production phase, cells, modules, and packs are produced.

We will only be commenting on the cell production phase. The data

that is collected in the cell production phase is notably different in

nature than that in the previous phases, reflective of the fact that the

outcome goals are different. In earlier phases, the primary outcome

is a deep understanding of the cell, battery, and system, across all

conditions relevant to operation of the electrified product. The goal

of gaining deep understanding of the system is to ensure that the cell

and technology selection, pack design, system and product designs

are selected and engineered to ensure a high quality, highly

performant, dependable, and safe product capable of

withstanding variable operation and environmental conditions

and capable of meeting warranty demands. In battery

production, in addition to the above goals, it is also critical to

mass produce the cell designed and developed in the previous phases

to the quality standards contracted between the manufacturer and

their OEM customers.Metrics important tomaintaining quality and

process stability during mass production of the cell are therefore

collected.

There are three broad processes in cell production: Electrode

Manufacturing, Cell Assembly, and Cell Formation, as shown in

Figure 5 (Liu et al., 2021). Time-series electrochemical data is

collected throughout the production process, typically as part of

in-line or sampled quality testing. However, much of the data is

collected at the ‘end of line’ (EOL) during or immediately after

the Cell Formation process, once the cell has been assembled. At

the end of the production line, standard electrochemical tests are

performed to evaluate the cell and ensure the cell meets the

required performance standards. The types of tests at EOL

generally consist of several carefully controlled, full charge-

discharge cycles, resistance or impedance testing, open circuit

voltage measurement, and storage testing (Wolter et al., 2012;

Weng et al., 2021). For the typical large battery manufacturer that

is producing several million cells per day, the amount of time-

series data that is generated and must be stored can easily require

hundreds of fields and millions of rows. The time-series data is

still collected in the same format and with the same conventions

as all of the previous phases in the battery lifecycle. This again

allows for meaningful comparisons of data across the lifecycle

and can enable rapid troubleshooting.

The metadata collected during the production process differs

from the metadata collected in the earlier phases of development,

reflecting the differing outcome goals of this process compared

to the previous lifecycle stages (Figure 1). In production,

metadata associated with each manufacturing process step in

Electrode Manufacturing, Assembly, and Formation (Figure 5)

is collected to be able to control, maintain, and troubleshoot

problems in the cell production process. Examples of metadata

collected at each phase of the production process are shown in

Figure 6. While this is not an exhaustive list of metadata, these

are the primary metadata categories related to mass production

of a cell. This metadata is often used to capture process

parameters, settings, and performance indicators. Due to the

large amount of equipment, instrumentation, and personnel

involved, it is necessary to generate large volumes of data to

power the key technologies of so-called Industry 4.0: data

analytics, artificial intelligence, and robotic equipment.

Typical data generation rates range from 0.1 to 1 mb/min

per device, depending on the choice and quantity of

instrumentation.

The conventions, data formats, and standardization practices

around metadata collection in cell production are not consistent

across the industry. There are some large manufacturers with their

own internal standardized practices, but there are many new battery

manufacturing plants in the planning or early construction and

commissioning stages, while standard operating procedures are still

lacking across the industry. This lack of standardization makes it

slow, difficult, and in some cases, incompatible to collaborate

between industry, academia, suppliers, and equipment vendors.

The metadata format outlined in Voltaiq Metadata File Section:

Metadata File provides a standard for how to capture this metadata.

Each row in the file represents an energy storage device, each

column defines the metadata entry, and the subsequent column

defines the units of measurement. Additionally, the set of metadata
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that is shared between battery production companies, OEMs,

materials suppliers, and other commercial stakeholders in the

battery lifecycle is not standardized, nor is the format in which

the data is shared. The set of metadata in Tables 3, 4 serve as a set of

standard metadata that can be requested and shared across

commercial entities. The format for the metadata sharing is

standardized and outlined in Voltaiq Metadata File Section.

The cells that are deemed to be good quality are then assembled

into a pack, either on-site at the existing batterymanufacturing plant

or at a secondary location. While there is additional metadata and

processes associated with pack assembly, we are not addressing this

explicitly in this publication. However, the same general metadata

collection process and standards apply, the identity of the metadata

entries merely change.

FIGURE 5
Three phases of processes involved in cell production.

FIGURE 6
Metadata associated with the three phases of processes involved in cell manufacturing.
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In-field use and monitoring

Once a product has been deployed to the field and is in the

end user’s hands, for many applications, the monitoring and

measurement of the battery continues. This is accomplished

through on-board systems which record data and send it

either wirelessly or over a wired network to large data storage

centers for further analysis. For the measurements taken from the

battery in the deployed application, sampling frequencies vary

from kHz to hourly. However, the battery data is included

amongst many other data traces describing other active

processes in the electrified product, and the data is recorded

at varying frequencies, or out-of-band. This results in

exorbitantly large data volumes, 1–5 mb/min of data generated

per device in the automotive industry (Wang et al., 2017). The

types of data included in in-field monitoring can be as descriptive

as cell-level or module-level data but can also only include pack-

level readings, depending on the configuration of the monitoring

system. There can be measurement data as well as calculated data

by the Battery Management System, such as the state of charge

(SOC), state of health (SOH), and current and voltages. In-field

data capture is an emerging space, we propose here guidelines on

how to modify Voltaiq Data Formation for in-field data in In-

field Data Collection section of the results. Additionally, we open-

source our guidelines and invite the community to evolve the

guidelines into standards that can be adopted and accepted as

best-practices across the community.

Conclusion

Standardization is powerful in solidifying conventions, methods,

and practices across a field of researchers and can accelerate processes

and insights from data. Within the battery field, there are variations

in data collection methods, conventions, and a lack of

standardization. The lack of conformity is well justified by the

widely varying chemistries, measurement equipment, use cases,

applications, practices, as well as the history of the

commercialization of the battery. Sets of experiments at varying

phases in the battery lifecycle have differing outcome goals and

therefore protocols vary, resulting in differences in collection

standards. However, open-access comparison of data,

reproduction of scientific findings, conversations about best

practices, and innovation at an unprecedented scale are all needed

in present-day commercialization of the lithium-ion battery.

Adherence to a convention on data format can aid in traceability

of materials, supply chain, cells, and products. Information transfer

across the battery lifecycle chain can be established through

standardization of data formats, standard definitions, and

standard sets of metadata shared across the lifecycle. Some of the

most pressing questions in battery development and engineering can

be further elucidated by data science and machine learning

techniques, which are deeply dependent on standardization in

data format and conventions in the underlying data. In this vein,

we have published and provided open access to our standard data

format, the Voltaiq Data Format, which we have found to

meaningfully accommodate data collected across each phase of

battery development we have outlined here. This standardization

is the first step towards enabling open-access comparisons of data

collected across the battery lifecycle and can enable the battery field to

innovate quicker and leverage the powerful techniques of data science

and machine learning more readily.
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