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Growing server energy consumption is a significant environmental issue, and

mitigating it is a key technological challenge. Application-level energy

minimization strategies depend on accurate modeling of energy

consumption during an application’s execution. This paper presents a

theoretical and experimental study of the dpMMSPFA model in the field of

server energy consumption identification. The dpMMSPFA for classification of

hidden spaces uses latent variable support vector machines (LVSVM) to learn

discriminative subspaces with maximal marginal constraints. The factor analysis

(FA) model, the similarity preservation (SP) item, the Dirichlet process mixture

(DPM) model, and the maximal marginal classifier are jointly learned beneath a

unified Bayesian architecture to advance classification of predictive power. The

parameters of the proposed model can be inferred by the simple and efficient

Gibbs sampling in terms of the conditional conjugate property. Empirical results

on various datasets demonstrate that 1) max-margin joint learning can

significantly improve the prediction performance of the model implemented

by feature extraction and classification separately and meanwhile retain the

generative ability; 2) dpMMSPFA is superior to MMFA when employing SP item

and Dirichlet process mixture as prior knowledge; 3) the classification of

dpMMSPFA model can often achieve better results on benchmark and

measured energy server consumption datasets; 4) and the recognition rate

can reach as high as 95.79% at 10 components, far better than other models on

measured energy server consumption datasets.
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1 Introduction

The issue of energy consumption in data centers has

increased significantly in recent years due to the rapid growth

of ICT technology and infrastructure. Especially since the

outbreak of COVID-19 in 2020, the demand for digital

services for economic and social development has skyrocketed,

more and more consumer and commercial activities have turned

to online, and the digital and information technology sectors

have experienced tremendous growth. Omdia’s relevant statistics

shows that consumer data traffic from cellular networks and fixed

broadband will increase between 2018 and 2024 at a compound

annual growth rate of 29%, increasing from 1.3 million PB in

2018 to 5.8 million PB in 2024. The current ICT infrastructure,

which includes data centers, data center Internet, and Internet

access networks, is put to a great deal of pressure by this

development rate (Moises, 2021).

To meet the new demand, operators, cloud manufacturers

and Internet enterprises have upgraded and expanded their data

centers. While processing business load requires a lot of electric

energy, the data center also generates a large amount of indirect

carbon emissions. Global data centers’ power consumption,

including those in China, is expected to rise from 2% in

2020 to over 4% in 2025 (DC Cooling, 2021). The hassle of

high energy consumption has a serious impact on social security,

climate warming, air quality and reliability of power grid. With

the gradual depletion of traditional power sources and the

soaring price, the cost of maintaining operational data will

exceed the cost of purchasing system hardware. Therefore, the

optimization of server energy consumption of a cloud operating

system or a data center has become a greater essential problem in

the current technical environment.

The ordinary way of measuring energy is to directly measure

the electrical parameters of the server through the electrical

instrument to achieve the actual energy of the server

(Konstantakos et al., 2008; Rotem et al., 2012). However, this

physical measurement approach can solely obtain the actual

power, and it is impossible to analyze from these statistics

what causes the rise, drop or unexpected change of power.

Since the alternate of server energy consumption is bound to

be accompanied via the change of system resource usage, it is

necessary to design an identification model for energy usage,

which can accurately classify the server energy consumption

level, reflect the relationship between system resource utilization

and server energy consumption, analyze the influence of resource

utilization on energy consumption.

In brief overview, this paper proposes research on the

Dirichlet max-margin factor analysis similarity preservation

model (dpMMSPFA) for feature identification of server energy

consumption level. To ensure that energy consumption analysis

can be determined through high classification accuracy, this

research aims to provide a comprehensive energy

consumption feature recognition method that can meet the

needs of high accuracy. It also aims to provide theoretical

support and assist designers to control energy consumption

when constructing servers.

1.1 Themain contributions of the paper are
summarized as follows

1) A novel Dirichlet maximum marginal similarity preservation

factor analysis model (dpMMSPFA) that considers the FA

model, the SP item, the Dirichlet process mixture model, and

the LVSVMs is designed in a united Bayesian framework.

2) Extensive experimental analysis is conducted to validate the

proposed model using widely adopted UCI benchmarks to

evaluate generalization performance of the proposed

MMSPFA model.

3) To create and train the model in this study, 17 features relating

to server energy consumption are chosen and only 7.5% of all

collected server energy consumption data (small training size)

is used in training. The proposed approach is adjusted by

experiments on altering value of hyper-parameters to achieve

the best energy consumption feature recognition performance.

4) The proposed model is compared with other five models

(including two-stage model and joint model) in the

recognition ability of server workload (including “CPU

intensive tasks”, “I/O intensive tasks”, “Load intensive

tasks” and “Non-Loaded tasks”) under different energy

consumption characteristic dimensions.

1.2 The bright structure of the
accomplished paper is organized as
follows

1) Section 1: This section explains the essential research

significance of server energy consumption classification.

2) Section 2: The existing linear model and nonlinear model

(machine learning, deep learning and reinforce learning),

research on server energy consumption models and their

defects are introduced. The development status of

nonparametric Bayesian model is stated in this section.

3) Section 3: Four vital models underneath Bayesian framework

are described, along with factor analysis (FA) model,

similarity preservation supervision item (SP) model,

Dirichlet mixture process (DPM) and latent variable

support vector machine (LVSVM).

4) Section 4: The mathematical construction of the algorithm of

the model focuses on the Gibbs sampling inference method,

which lays an important foundation on the nonparametric

Bayesian classification model dpMMSPFA proposed in

Section 4. A Dirichlet max-margin factor analysis

similarity preservation model (dpMMSPFA classification

model) is proposed.
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5) Section 5: Through the conducted experiments of

dpMMSPFA model on UCI benchmark data and measured

server energy consumption data, it indicates that dpMMSPFA

model has notable identification performance and

generalization performance.

6) Section 6: This section summarizes the primary work of this

paper and the future research work of nonparametric

Bayesian model and energy consumption research in

intelligent hardware is envisaged and prospected.

2 Related work

2.1 Current research on server energy
consumption model

The general layout of the data center energy consumption

modeling and forecasting framework is shown in Figure 1. The

parts of the data center can generally be separated into three

levels: hardware, software, and applications. The server energy

consumption that will be studied in this research is not only

influenced by its hardware configuration, but also affected by its

operating system and various application types. There are two

types of server energy consumptionmodels, linear and nonlinear,

which have been applied to the research of server energy

consumption estimation.

Preliminary studies of prediction model for server energy

consumption were based on the linear model (Pöss and Nambiar,

2010; Davis et al., 2012; Davis et al., 2014). Subramaniam and

Feng, 2014 used the SPEC power benchmark to conduct tests on

seven heterogeneous servers and evaluated the accuracy of the

linear regression model based on CPU utilization (Kilper et al.,

2011). The findings demonstrated that not all servers exhibit a

linear relationship between power usage and server utilization

characteristics. Therefore, researchers started to think about

utilizing machine learning and deep learning nonlinear

models to develop server energy consumption models to boost

the precision of energy consumption forecasting and refine

management of energy consumption control.

Real-world data frequently have a multimodal distribution,

making it impossible for a straightforward classification/

regression algorithm to provide an acceptable criterion. The

dimensionality reduction techniques are categorized according

to whether or not they incorporate supervised content, and can

be essentially divided into two types, unsupervised and

supervised dimensionality reduction. Unsupervised

downscaling methods normally extract this characteristic

information that maintains the statistics structure, while

supervised downscaling techniques not solely extract low-

dimensional information representations, but also carry

certain a priori records (e.g., category information). In the

discipline of unsupervised dimensionality reduction, FA (Chen

FIGURE 1
The general layout of the data center energy consumption modeling and forecasting framework.
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et al., 2010; Shi et al., 2011; Du et al., 2012), PCA (Tharwat, 2016),

and other techniques have a vital and far-reaching status, and for

supervised dimensionality reductionmethods, LDA strategies are

widely valued and appreciated via researchers, experts and

scholars. Zhou et al. (2018) incorporated PCA dimension

reduction prior to applying the typical machine learning

energy consumption model. While this somewhat alleviates

the risk of instability and overfitting of prediction, it has

certain restrictions on the processing of energy consumption

data in general.

An energy consumption model FSDL based on feature

selection and deep learning was proposed (Liang et al., 2020).

In order to maximize the forecast accuracy of the energy

consumption model, this model combines feature selection

and deep learning techniques. This model is vulnerable to

overfitting, though. Lin et al. (2020) developed three power

consumption models based on BP neural networks, LSTM

neural networks, and Elman neural networks, respectively.

The prediction accuracy of the three power consumption

models under various task loads is compared. When the cost

of training and prediction accuracy are taken into account, ENN-

PM outperforms TW_BP_PM andML_STM-PM. As is common

knowledge, humans are adept at recognizing a novel object from

a relatively limited number of examples. In contrast, the deep

learning technology requires a large amount of data to train a

proper model. Especially when the number of neural network

layers increases, the model becomes more complex. It will take

more time and computing power to train the model to the

convergence stage as the number of parameters to be

optimized rises. The server energy consumption was

forecasted via Q-learning, B-ANN, MLP and other

reinforcement learning techniques (Shen et al., 2013; Li et al.,

2010; Islam et al., 2012; Moreno and Xu, 2012; Caglar and

Gokhale, 2014; et al., Tesauro et al., 2017). However, before

the training effect may truly improve, reinforcement learning

necessitates experience accumulation to a significant level.

Additionally, it can be easier to fall into local optimization

and not really achieve global optimization if the training

object receives rewards from the environment in an untimely

manner and the reward setting is unreasonable. This presents

another challenge for reinforcement learning in the field of server

energy consumption model.

2.2 The background for dpMMSPFAmodel

In light of the aforementioned restrictions and the fact that

the characteristics of server energy consumption datasets have

not been dealt with in depth, we made the decision to develop a

novel machine learning model.

Data interrelationship evaluation, data dimensionality

reduction, pattern classification, and characteristic description

are all frequently carried out using the method of factor analysis

(FA) (Chen et al., 2010; Shi et al., 2011; Du et al., 2012). In FA

models, implicit factors serve as representations of low-

dimensional observations of data in the hidden space. Even

though FA is an unsupervised dimensionality reduction

technique, it has the ability to not only reduce dimensions but

also to represent how subspace and original space are

reconfigured, with Bayesian inference used to implement the

FA model. Since FA is an unsupervised model and without a

priori data like label content, it can only characterize low-

dimensional observations (Chen et al., 2010; Shi et al., 2011;

Du et al., 2012). Many experts and academics have been

interested in the topic of how to introduce supervised content

of latent elements recently. Attempts have been made to include

discriminative supervised content as properly part of the input

elements (Lacoste-Julien et al., 2008; Jiang et al., 2011; Zhu et al.,

2012; Zhu et al., 2013), and a supervised K-SVD approach of label

consistency is proposed to train discriminative dictionaries for

dispersed coding (Jiang et al., 2011). K-SVD assembly

characterizes with each dictionary item to carry out the

discriminative supervised approach for dispersed encoding

during concordance learning (Jiang et al., 2011).

Thus, it seems that supervised content is very vital to boost

the predictive ability for classification model. Against this

background, our model determines to introduce label content

material of the original input data, referred to as similarity

preservation (SP) item. By introducing supervised content

material into FA, the proposed model not only keeps the

finest data description and characteristic extraction

capabilities, but also maximizes the priori predictive potential

of characterization content.

DP mixture (DPM) models have been introduced as

nonparametric Bayesian clustering algorithms for ME models

(Rasmussen and Ghahramani, 2001; Shahbaba and Neal, 2009;

Zhang et al., 2014). As an illustration, Shahbaba and Neal, 2009

created the dpMNL, a multi-metric Logit (MNL) nonlinear

model based on DP mixtures.

The foundation of recognition accuracy is the classification

model. The most classical representatives are support vector

machines and random forest (RF). Zoubin et al. (2015)

transformed the random forest classification model into β-

Bayesian posterior framework presents a new idea for creating

classifiers in Bayesian framework. Although β- Bayesian

posterior is not an actual Bayesian theoretical framework,

there is still promising. Support vector machines (SVMs), as a

traditional representative of classifiers (Upadhyay et al., 2021),

are capable to maximize the margins between different classes of

data. Data augmentation techniques characterize the latent

variables of SVMs as LVSVMs (Polson and Scott, 2011),

hence successfully inferring the further proposed Gibbs’

maximum marginal topic model (Zhu, et al., 2014) and fast

maximum marginal matrix decomposition (Xu, et al., 2013).

In this study, we accordingly construct the Dirichlet

maximum marginal similarity preservation factor analysis
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model (dpMMSPFA) with LVSVM, which mutually learns

discriminative subspaces, supervised content, clustering and

maximum marginal classifiers underneath a Bayesian

architecture. Therefore, hidden representations are authentic

and reasonable for supervised predictive recognition tasks.

Gibbs MedLDA (Zhu et al., 2012; Zhu et al., 2013) was

inferred via an efficient estimation algorithm, Gibbs sampling.

Similarly, the ambit of dpMMSPFA can acquire desirable

covariance underneath the motion of augmented variables.

Thus, the model dpMMSPFA can be estimated with simple

and effective Gibbs sampling for all parameters.

FIGURE 2
The classification system frame for dpMMSPFA.

TABLE 1 The training stage of dpMMSPFA model.

Sequence of
steps

Description

1 Data preprocessing for training data

2 Set all of the parameters in each sub-model to their
default values, and let i � 1, then start the sub-models
employing Gibbs sampling

3 Burn-in: extract samples from the conditional
posterior condition, i � i + 1

4 Return to step 2 if i< I0, otherwise continue

5 Collect all of the parameters T0 times and then end the
training phase afterwards

TABLE 2 The prediction stage of dpMMSPFA model.

Sequence of
steps

Description

1 Data preprocessing for the test data. We sample the
parameters of the test data x and estimate their
category labels based on the model parameters
obtained through Gibbs sampling collection

2 Take a sample of the test data’s latent variable s for T0

times

3 Take a sample of the test data’s cluster index z for T0

times

4 Calculate the test data’s likelihood values of the test
data for T0 times

5 Predict the test data’s category label y

Frontiers in Energy Research frontiersin.org05

Chen et al. 10.3389/fenrg.2022.1064464

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2022.1064464


3 Preliminaries for dpMMSPFA model

3.1 Factor analysis (FA)

The precise inner structural links between high dimension

observations and low dimension hidden variables can be

represented by factor analysis models (FA). By projecting the

high-dimensional observations into the low-dimensional space,

the factor analysis model is able to determine the potential low-

dimensional effective features of the data. Suppose there are N

column vectors x1, x2, x3,/, xN and each of them is a P

-dimensional vector. Let X � [x1, x2, x3,/, xN], and then the

original input observations X is generated as a linear

transformation of some lower K -dimensional hidden variable

S plus additive Gaussian noise ε. The transformation matrix D is

the load matrix with each column dk, k � 1,/, K. However, the

number of factors K is not known in advance and needs to be

determined earlier, therefore, the factor analysis generating

expression can be given as

XP×N � DP×KSK×N + εP×N (1)

FA is employed as an unsupervised archetypal model that does

not make use of implicit features with label content to describe the

initial observations of the data (Chen et al., 2010; Shi et al., 2011;

Du et al., 2012). In context of this, we provide an approach for

supervised data representation that, while simultaneously using FA

to represent original observations, successfully increases the

classifier’s predictive power by labeling content.

3.2 Similarity preservation (SP) item

The incorporation of supervised content to model learning

can significantly enhance the classifier’s overall performance. We

added the SP item to FA so that the extracted hidden variables

TABLE 3 Characteristics of datasets used in experiments.

Index Dataset Class Feature Training Test

1 Breast-cancer 2 9 200 77

2 German 2 20 700 300

3 Heart 2 13 170 100

4 Waveform 2 21 400 4600

5 Diabetes 2 8 468 300

6 Splice 2 60 1000 2175

FIGURE 3
Test accuracies of different models (A) Breast-cancer; (B) German; (C) Heart; (D) Waveform; (E) Diabetis; (F) Splice.
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could best characterize the original input data. This can

maximize the a priori prediction ability of labelling content.

Commonly, similarity is denoted by any symmetric positive

definite matrix. Jiang et al. (2011) successfully improved the

classifier’s recognition performance by relying it on label content.

In a similar vein, the similarity preservation item (SP) in our

suggested model yields label content illustration.

As shown in Eq. 2, we start from the cosine distance matrix.

lij � xTi xj
xi‖ ‖*‖xj‖ (2)

where i and j denote label content of column vector x.
The weight l of the similarity preservation items are defined

based on whether the data are in the same classification.

lij � l xi, xj( ) i � j
0, i ≠ j

{ (3)

An example of a sparse coding matrix U l is as follows.

l x1, x1( ) l x1, x2( ) 0 0 0 0 0
l x2, x1( ) l x2, x2( ) 0 0 0 0 0

0 0 l x3, x3( ) l x3, x4( ) l x3, x5( ) 0 0
0 0 l x4, x3( ) l x4, x4( ) l x4, x5( ) 0 0
0 0 l x5, x3( ) l x5, x4( ) l x5, x5( ) 0 0
0 0 0 0 0 l x6, x6( ) l x6, x7( )
0 0 0 0 0 l x7, x6( ) l x7, x7( )

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(4)

To find the best solution for the similarity preservation items,

we employed singular vector decomposition (SVD) of the matrix

U l. The generating phrase for similarity preservation can

therefore be stated as

UN×N � AN×KSK×N + φN×N (5)

3.3 Dirichlet process mixture model (DPM)

A Dirichlet process DP(G0, α) is the distribution in the

distribution (Ferguson, 1973). It is characterized by a baseline

distribution G0 and a positive scalar parameter α. Suppose that we

randomly draw a sample distribution G from a DP. Subsequently,

N random variables Θn}Nn�1{ are independently sampled from G.

G| G0, α{ } ~ DP G0, α( )
Θn|G ~ G, n � 1, ..., N (6)

DP mixtures (DPM) can be used in cluster community

problems where the kinds of clusters are uncertain

(Rasmussen and Ghahramani, 2001; Shahbaba and Neal, 2009;

Zhang et al., 2014). The DPMmodel can be expressed as Eq. 7, in

which Θn can parameterize the distribution of the input data xn.

G| G0, α{ } ~ DP G0, α( )
Θn G ~ G; xn| |Θn ~ p x|Θn( ), n � 1...N (7)

To describe the distribution of the stochastic variable G in

DP(G0, α), Antoniak, 1974 constructs a pioneering method that

is called “stick-breaking”. In the stick-breaking description, there

are two infinite kinds of independent stochastic variables: Θc{ }∞c�1
and υc{ }∞c�1 , in which Θc ~ G0 andυc ~ Beta(1, α). The stick-

breaking description of G can be expressed as

G � ∑∞
c�1
πc υ( )δΘc

πc υ( ) � υc ∏c−1
j�1 1 − υj( ) ∈ 0, 1[ ], ∑∞

c�1πc υ( ) � 1 (8)

DP, as a representative of the stick-breaking, has an

apparently discrete stochastic variable G consisting of an

infinite but countable number of independently sampled

atoms from G0 in Θc. At the same time, the stick-breaking

hyper-parameter α determines the average value of the stick-

breaking variables υc and then adjust the effective number of

different parameter values.

Based on the DP’s stick-breaking expression in Eq. 8, the

DPM is then be given as

υc|α ~ Beta 1, α( )
Θc|G0 ~ G0, c � 1, ...,∞
zn|π υ( ) ~ Mult π υ( )( )

xn
∣∣∣∣zn � c;Θc ~ p x|Θc( ), n � 1, ..., N (9)

where zn is the index of the cluster of the observation data xn,
π(υ) � (πc(υ))∞c�1 can be accquired by Eq. 8, andMult(π(υ)) is
a multinomial distribution over the mixture proportions π(υ).

To make for use of the advantage of the nonparametric

Bayesian method, as a supervised cluster model, dpMMSPFA is

developed on the basis of the truncated stick-breaking DPM in

this study.

3.4 Latent variable support vector
machine (LVSVM)

SVM is a powerful machine learning tool that has been

widely used in the field of pattern recognition, mainly due to

its great generalization ability. Given a labelled training set with

data vectors X � [x1, x2, x3,/, xN], xn ∈ RP, and their labels

y � (y1, y2, y3,/, yN), ∈ −1,+1{ }. It is defined as

min
η,ξn

1
2
‖η‖22 + C0∑N

n�1
ξn

s.t. ynη
T~xn ≥ 1 − ξn, ξn ≥ 0, n � 1, ..., N

(10)

where ~xn � [xn; 1] is the augmented feature vector, η is the

weighted coefficient and C0 is a positive tuning parameter.

The underlying discriminative objective is a linear hinge loss

function, max(1 − ynηT~xn, 0), which seems to lead to the

difficulty of traditional Bayesian analysis.
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In contrast to the conventional method, Polson and

Scott, 2011 suggested a hidden variable method based on

data augmentation technology to describe SVMs. With the

assistance of the augmentation technology, new parameter

information can be extracted from data samples and

expanded into the original data samples. Any type of

data can be expanded using data augmentation

technologies to deepen the knowledge of the original

information while also enhancing the data’s quality. By

including auxiliary variables, the approach can be dealt

with more easily. As a result of its widespread use in

dealing with non-conjugate models, data augmentation

has grown to be a highly powerful technique for

resolving non-conjugate issues.

The pseudo-posterior distribution of an SVM can be

expressed as a marginal distribution of a high-dimensional

distribution with augmented variables. Thus, the complete

pseudo-posterior distribution of the data can be written as

p η, λ
∣∣∣∣y( )

∝∏N

n�1λ
−1
2

n exp −
(λn − C0(1 − ynηT~xn))2

2λn

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠N η; 0, I( ) (11)

4 Methodology

4.1 dpMMSPFA model

As is mentioned above, for each column vector x of FA

model, it can be written as

xP×1 � DP×KsK×1 + εP×1 (12)

and for each column vector u of SP item, it can be written as

uN×1 � AN×KsK×1 + φN×1 (13)

FIGURE 4
Approximate posterior distribution on the number of clusters by dpMMSPFA (A) Breast-cancer; (B) German; (C) Heart; (D) Waveform; (E)
Diabetis; (F) Splice.
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In dpMMSPFA, the hidden variable s}Nn�1{ is clustered and it

can be supposed that each cluster of hidden variables are

subordinated to the Gaussian distribution:

sn
∣∣∣∣zn � c,Θc ~ NW sn; μc,Σc( ) (14)

where Θc represents the Gaussian distribution parameter of the

cth cluster, μc,Σc{ }. A joint normal-Wishart distribution is

employed as the conjugate prior of Θc, then it can be

expressed as

G0 � p Θc( ) � NW μc,Σc

∣∣∣∣μ0,W0, β0, υ0( ) (15)

On the basis of the DPM’s stick-breaking expression, FA

model, SP term and LVSVM, our the hierarchical dpMMSPFA

model is described as

dk ~ N dk; 0,Λdk( ); xn
∣∣∣∣sn,D ~ N xn;Dsn,Λφ( )

ak ~ N ak; 0,Λak( ); un

∣∣∣∣sn,A ~ N xn;Asn,Λε( )
sn
∣∣∣∣zn � c,Θc ~ p sn|Θc( ), n � 1, ..., N

υc|α ~ Beta 1, α( ); Θc G0 ~ G0; zn| |π υ( ) ~ Mult π υ( )( )
ηc, {λn}c∣∣∣∣{sn, yn, zn � c}Nn�1 ~ p ηc, {λn}c∣∣∣∣−( ), c � 1, ...,∞ (16)

We continue to add expressions and descriptions for

proposed dpMMSPFA model:

dk ~ N dk; 0,Λdk( ), Λdk � diag α−1k1 , . . . , α
−1
kP( ),

αkp ~ Gamma a0, b0( )
ak ~ N ak; 0,Λak( ), Λak � diag σ−1k1 , . . . , σ

−1
kN( ),

σkn ~ Gamma ~a0, ~b0( )
s ~ N s; 0,Λs( ) , Λs � diag β−11 , . . . , β−1K( ),

βk ~ Gamma c0, d0( )
ε ~ N ε; 0,Λε( ) , Λε � diag γ−11 , . . . , γ−1P( ),
γp ~ Gamma e0, f0( )
φ ~ N φ; 0,Λφ( ), Λφ � diag ω−1

1 , ...,ω−1
N( ),

ωn ~ Gamma ~e0, ~f0( ) (17)

where hyper-priors αkp ~ Gamma(a0, b0), σkn ~ Gamma(~a0, ~b0)
and ωn ~ Gamma(~e0, ~f0) are employed with (a0, b0), (c0, d0),
(e0, f0), (~a0, ~b0) and (~e0, ~f0) as the corresponding hyper-

parameters.where ηc and λn}c{ represent the weighted coefficient

and the augmented variables of the LVSVM classifier related to the

cth cluster. The complete pseudo-posterior of parameters can be

expressed as

p D,A, S, μc,Σc{ }Cc�1, Λdk{ }Kk�1, Λak{ }Kk�1, Z, v, η{ }Cc�1, λ,Λε,Λφ

∣∣∣∣X, y( )
� ∏C

c�1
∏N

n�1,zn�c
p zn|υ( )p xn|D, S,Λε( )p un

∣∣∣∣A, S,Λφ( )
× ∏C

c�1
∏N

n�1,zn�c
p sn

∣∣∣∣μc,Σc( )p μc,Σc( )p ηc( )ϕ yn, λn
∣∣∣∣sn, ηc( )p υ|α( )p α( )

× ∏K

k�1p dk

∣∣∣∣Λdk( )p Λdk( )p Λε( )p ak
∣∣∣∣Λak( )p Λak( )p Λφ( )

(18)
Here the posterior computation is implemented by a Markov

chain Monte Carlo (MCMC) algorithm based on Gibbs

sampling, where the posterior distribution is approximated by

a sufficient number of samples. Then, the conditional

distributions used in Gibbs sampling are shown as follows.

For sn: the conditional distribution of sn is

p sn|−( )∝N xn;Dsn,Λε( )N un;Asn,Λφ( )N sn; μzn,Σzn( )
×

1����
2πλn

√ exp − (λn + C0(l − ynηTzn~sn))2
2λn

~ N sn; μsn,Λsn( ) (19)

where the posterior mean is μsn � Λsn(DT
kΛ

−1
ε xn + AT

kΛ
−1
φ un +

Σ−1
zn
μzn + C0

(λn+C0−C0ynη0)
λn

ynηzn) and the covariance matrix isΛsn �
(DTΛ−1

ε D + ATΛ−1
φ A + Σ−1

zn
+ C2

0ηznη
T
zn
/λn).

For zn: the conditional distribution of zn is

zn ~ Mult κn( ), κn � κn1, . . . , κnC[ ]
κnc � p zn � c

∣∣∣∣μc,Σc, v, ηc, λn( )
∝ πcN sn; μc,Σc( ) exp( − λn + C0(l − ynηTc ~sn))2(

2λn
) (20)

TABLE 4 Server energy consumption level and corresponding range.

Server energy consumption
level

Range of energy
consumption (Watts)

Level 1 ≥0, <190

Level 2 ≥190, <250

Level 3 ≥250, <300

Level 4 ≥300, <350

Level 5 ≥350, <400

TABLE 5 Configuration of Inspur NF5280M5 server.

Definition Configuration

CPU architecture Intel(R) Xeon(R) Gold 5118 CPU@ 2.30GHz- 2 ×
12 Core

Memory size 12 × 32 GB

Disk size 2×1 TB SSD +1× 6 TB HDD

Network interface
card

82599 ES -3 × 2×10 - Gigabit SFA/SPF + network
connection

Operating system CentOS
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A Markov chain can be successfully created using the

conditional distribution given above. Samples from the

aforementioned conditional posterior distribution can be taken

from each iteration in the expressions (19) and (20) depending

on the initial conditions. The Markov chain is worked to run to

finish the burn-in phase during the training phase. And with regard

to Figure 2’s architecture diagram for the integrated recognition

system based on dpMMSPFA. The dpMMSPFA integrated

recognition scheme comprises two stages: the MMSPFA model

establishment phase, represented by the blue box in the diagram,

and the usage phase of dpMMSPFA model, represented by the red

box in the diagram. In the next section, we’ll go into more depth

about these two phases.

4.2 Model learning

The dpMMSPFA model establishment is a supervised

process, in which Gibbs sampling is used to infer model

parameters summarized in Table 1. We run this Markov

chain to finish the burn-in phase during the model

establishment phase.

4.3 Model prediction

While the dpMMSPFA model’s training phase is supervised,

the model’s prediction process is unsupervised shown in Table 2.

FIGURE 5
Similarity heatmap of sparse coding matrix represented by
cosine function.

TABLE 6 Characteristic parameters.

No Feature parameter Unit Description

1 Total-cpu-usage: usr % Percentage of programs in user’s space

2 Total-cpu-usage: sys % Percentage of programs in system’s space

3 Total-cpu-usage: idl % Idle percentage

4 Total-cpu-usage: wai % Percentage of CPU consumed waiting for disk I/O

5 Total-cpu-usage: hiq Times/sec Number of hardware interrupts

6 Total-cpu-usage: siq Times/sec Number of software interrupts

7 Dsk/total: read Bytes/sec Disk reading bandwidth

8 Dsk/total: write Bytes/sec Disk writing bandwidth

9 Net/total: recv Bytes/sec Network packet receiving bandwidth

10 Net/total: send Bytes/sec Network packet sending bandwidth

11 IO/total: read Blocks/sec Number of reading disk blocks

12 IO/total: write Blocks/sec Number of writing disk blocks

13 System: int Times/sec Number of hardware interrupts

14 System: csw Times/sec Number of context switches

15 Load-avg: 1 m / Average load of the system per minute

16 Load-avg: 5 m / Average load of the system every 5 min

17 Load-avg: 15 m / Average load of the system every 15 min
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In the aforementioned procedures, it is essential to set the data

sample so that all parameters are sampled T0 times and in

simultaneously.

The test data is pre-processed first, and the hidden

variable s and the cluster index z of x are sampled

unsupervised on the basis of their related posterior Eq. 21

and Eq. 22, respectively.

p s
∣∣∣∣D, z, μz,Σz( )∝N x;Ds,Λε( )N s; μz,Σz( ) (21)

z ~ Mult κ( ), κ � κ1, . . . , κC[ ]
κc � p z � c

∣∣∣∣μc,Σc, v, ηc, λn( )∝ πcN s; μc,Σc( ) (22)

All the collected samples are averaged from Gibbs sampler to

predict the label y of x as

FIGURE 6
The recognition effects on the hyper-parameters.
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FIGURE 7
Clustering results by dpMMSPFA.
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ŷ � sign
1
T0

∑T0

t�1 η
T
zt
~st( ) (23)

where st represents the tth sample of the hidden variable, which is

sampled with the tth gathered samples, zt represents the tth

sample of the cluster index which the test data belongs to and ηzt
represents the tth gathered SVM coefficients of cluster zt.

5 Experiments

5.1 Classifiers and parameters setting

This section compares our proposed dpMMSPFA model to

the following classification techniques and uses experimental

data to demonstrate how effective and predictive it is on certain

datasets. 1) PCA + SVM (Tharwat, 2016); 2) Kmeans + SVM

(Wu and Peng, 2017); 3) LVSVM (SVM) (Polson, 2011), 4)

dpMNL (Shahbaba and Neal, 2009), 5) MMFA, and 6)

dpMMSPFA. In the experiments, the LVSVM classifier is used

for PCA and Kmeans. The feature chosen and the classifier are

different since models (1)–(2) are two-stage models. In joint

approaches (5) and (6), LVSVM is employed, and the tuning

parameter C0 is picked from 0.001, 0.01, 0.1, 1, 10{ }.

5.2 UCI benchmark data

In this section, we perform experiments on Benchmark data

sets of varying size and difficulty, and for each we average the

accuracy over ten random splits. The benchmark data sets can be

found at either the University of California at Irvine (UCI) or the

Machine Learning Dataset Repository (Dua and Graff, 2022).

Table 3 summarizes the data information.

The average testing accuracy is displayed in Figure 3, with the

best results throughout many components explicitly shown for

each approach. The low-dimensional features that are extracted

using unsupervised approach PCA may not be sufficient for the

subsequent prediction task. Another two-stage model Kmeans,

which build SVMs with an ensemble of clusters, performs well

merely in some datasets. These two-stage models are unable to

produce adequate outcomes as a result. The robustness of MNL’s

classification performance is insufficient, making dpMNL less

effective than the unsupervised joint model MMFA. In contrast

to dpMNL and LVSVM, dpMMSPFA employs FA, which pulls

out more beneficial features from cluster, label, and classification

content using a unified Bayesian framework. MMFA is a

particular instance of dpMMSPFA that does not entirely

FIGURE 8
Boxplot of clustering effectiveness comparison.

FIGURE 9
Test accuracy on energy consumption classification under
different components.
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utilize the label content when there is just one cluster. As shown

in Figure 3, the suggested model dpMMSPFA works well in the

experiment and gets the maximum accuracy, especially when

working with multimodal datasets like the German, Heart, and

other similar cases. Figure 4 depicts the estimated posterior

distributions of the number of clusters by dpMMSPFA. We

can observe that, regarding the distribution of the data, the

number of clusters detected by the dpMMSPFA is more logical.

5.3 Server energy consumption data

The energy consumption grade is more valuable than the

specific energy consumption data. It influences both the choice to

purchase enterprise server assets and the decision to implement

energy-saving measures at various levels of energy consumption.

The 5 categories of energy consumption in this study, which

range from low to high, are represented by the numbers [1, 2, 3, 4,

5] listed in Table 4.

In this section, we introduce dpMMSPFA to the server

energy consumption level classification community. Results of

the experiment are presented in this subsection chiefly based on

measured Inspur NF5280M5 server. Table 5 displays the Inspur

NF5280M5 server configuration used in this study. The power

consumption is measured using an energy consumption tool

through which “CPU intensive tasks”, “I/O intensive tasks”,

“Load intensive tasks” and “Non-loaded tasks,” are produced,

accordingly. Underneath Linux, there is a testing tool named

“Stress”, a tool imposing a configurable amount of load on

system, which is designed primarily for people who would like

to test load systems and monitor on how these devices are

operating (Ulianytskyi, 2022).

Load characteristic parameters of the Inspur

NF5280M5 while it executes tasks under various loads are

summarized in Table 6.

Thermodynamic chart is a graphical representation of

pattern similarity, with each component value in the matrix

representing a different colour. The heatmap, the visualized

″U l″ introduced in Section 3, corresponding to 7.5% of the

collected server energy consumption data (training samples)

is used as supervised information to characterize the similarity

and distinction of data in the matrix, as shown in Figure 5. The

similarity between the training data gradually changes in

accordance with darkish black, darkish blue, blue, lake

blue, bluish green, green, yellowish green and mild yellow.

When the colour is darkish black on the diagonal of the

matrix, the similarity is 1. Furthermore, the comparison

data of two pairs are from different categories visualized

with bluish green, and the similarity is 0. We incorporate

the matrix category and similarity information represented by

this heatmap into the proposed dpMMSPFA model, which

aims to improve the model’s overall discriminant

performance.

Since the Gamma hyper-parameters, a0, b0, ~a0, ~b0, e0, f0, and
~e0, ~f0 may indirectly influence the inference of corresponding

parameters, the transformation matrix D and A, and the noise

matrix ε and φ, to evaluate the effect of those parameters, we

varied model hyper-parameters from {10−5,10−4,10−3,10−2,10−1,

100, 101,102} to evaluate their effects on recognition rate. In order

to achieve highest recognition ability on server energy

consumption dataset, we fixed them to suitable values

(a0 =100, b0 =10−1, ~a0 =10−2, ~b0 =10−3, e0 =10−1, f0 =10−2,
~e0 =10−2, ~f0 =1) based on the results provided in Figure 6. At

the same time, we discovered that high performance

identification rate can always be achieved when the

dpMMSPFA model automatically learns 6 or 7 clusters. This

finding also demonstrates the usefulness and rationality of

introducing the DPM model to cluster and group in our

proposed dpMMSPFA.

Here, we provided the samples’ clustering results with a

clustering number of 7 (samples have been processed by

z-score). Figure 7 depicts that the sample proportion of each

cluster is fairly uniform, and there are no instances whenever the

proportion of a particular partition is too high or low, showing

that the number of clusters that were automatically learned is

appropriate and avoids the flaws with conventional clustering,

such as overfitting. These results provide evidence to explain why

7 partitions can give remarkable energy consumption feature

recognition performance aforementioned in the experiments in

Figure 6.

The commonly used CH (Calinski-Harabaz) and SC

(Silhouette Coefficient) indexes (Zhang et al., 2021) were used

to evaluate the clustering effectiveness and are compared with the

clustering methods of Kmeans (Wu and Peng, 2017) and FCM

(Bezdek et al.,1984) through experiments. This was done to

further confirm the clustering effectiveness of dpMMSPFA

after the DPM model is introduced in this paper. The

clustering effect is often better the larger the CH and SC.

When the automatic clustering results are 6 and 7, we

continued to run the dpMMSPFA clustering effectiveness

experiment in accordance with the experiment in Figure 6.

We set the number of clusters from 2–10 at an interval of 1,

conducted cluster effectiveness evaluation statistics, and ensured

that the number of clusters is appropriate for Kmeans and FCM.

According to the experimental findings in Figure 8, the value of

dpMMSPFA is closer to 1 than that of Kmeans and FCM, which

means the effect is better and the volatility is lower than that of

FCM when using CH to assess the efficacy of clustering. The

effectiveness of clustering is assessed for SC. Overall, the

dpMMSPFA clustering results have a larger ratio of inter

group to intra group dispersion, and the effect is superior to

that of Kmeans and FCM. Despite the fact that under the SC

index, the volatility of dpMMSPFA is higher than that of FCM,

most SC indexes of dpMMSPFA exhibit superior clustering

outcomes than FCM. The clustering evaluation experiment

also proves that the excellent recognition performance of
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6 and 7 clusters in the experiment in Figure 6 is inseparable from

the effectiveness of the dpMMSPFA automatically clustering.

Figure 9 depicts the relationship between classification

performance and the number of features in the

aforementioned models. The experimental findings confirm

the continued effectiveness of our suggested dpMMSPFA. The

highest accuracy of 95.79% is achieved by dpMMSPFA when

10 extracted components are used. Due to the modest advantage

of dimensionality reduction, PCA + LVSVM outperforms all

LVSVM model in classification, but as dimensionality increases,

it falls short of dpMMSPFA’s classification performance. On the

other hand, while LVSVM, Kmeans + LVSVM and dpMNL

employ the original data as input features and the server-

consumed data contains some redundant material, they both

perform less effectively in terms of classification than

dpMMSPFA. Additionally, dpMMSPFA performs better than

two-stage separation models and has a relatively robust ability for

energy consumption classification. According to Figure 9,

MMFA has a greater classification prediction performance

than other classifiers but a poorer prediction performance

than dpMMSPFA most of the time. Joint learning used in a

joint architecture can therefore significantly enhance

categorization performance. Furthermore, it is crucial to

include SP elements and clustering in the joint architecture.

The outcomes also demonstrate that using additional

characteristics enhances classification performance which is

consistent with the theoretical dpMMSPFA framework. The

introduction of more and more redundant feature content,

however, led to a decline in classification performance, which

is why accuracy did not always rise as the number of features

increased.

6 Conclusion and future work

For the classification of energy consumption, we develop

the Dirichlet maximum marginal similarity preservation

factor analysis (dpMMSPFA) model. The Bayesian

statistical method and the maximal marginal criterion for

classifiers are merged into a single framework by the data

augmentation community. In the hidden space that FA

extracts, dpMMSPFA concurrently learns the underlying

structure of observation data, similarity preservation items,

clusters, and classifiers. In summing up it can be stated that

the usefulness and efficiency of our suggested dpMMSPFA

model have been verified by experiments on datasets of

measured server energy.

The Beta process is a crucial model in the nonparametric

Bayesian field in addition to the Dirichlet model. When the

classifier is given the original samples, it can nevertheless

produce stunning recognition results for highly complex,

multimodal, and dimensional data without the application of

any dimension reduction techniques. Imagine that in the future

research on energy consumption modeling, we unify the factor

analysis (FA), Beta process and hidden variable support vector

machine (LVSVM) beneath the framework of Bayesian theory.

The hope is that it will be remarkable potential to achieve to

produce enormously excellent recognition performance. For

the classifier underneath the nonparametric Bayesian

framework, except for the hidden variable support vector

machine (LVSVM), there is no nonparametric Bayesian

classifier with robust generalization ability. In fact, in the

classification model, the overall performance of random

forest (RF) is almost equal to that of SVM classifier, and it

can even produce higher classification performance for low

dimensional data. It deserves to be further studied the

transformation of the random forest classification model into

an actual random forest model underneath the nonparametric

Bayesian framework, which will be a huge leap for

nonparametric Bayesian models.

Additionally, as hardware has improved, a popular research

topic is the energy consumption model for offloading server

power to smart network interface cards (smart NIC), distributed

processing units (DPU), graphics processing units (GPU), field

programmable gate arrays (FPGA), and other hardware

resources. In the future, we shall find out more about and

explore the creation of an energy consumption model for

intelligent hardware units.
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