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based on new load with time
delay characteristics
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With the development of modern communication technology and the large

number of new controllable loads connected to the power grid, the new

controllable loads with flexible regulation characteristics can participate in

the emergency frequency stability control. However, the communication state

differences and spatial distribution characteristics of controllable load will

affect the actual effect of frequency control. In this paper, an emergency

frequency control method based on deep reinforcement learning is proposed

considering the response time of controllable load shedding. The proposed

method evaluates response ability for emergency control of controlled loads

through load response time, controllable load amount and controllable load

buses. Then, the controllable load with smaller response time is cut out

preferentially to ensure rapid control, and the Markov Decision Process (MDP)

is used to model the emergency frequency control problem. Finally, Rainbow

algorithm of Deep Reinforcement Learning (DRL) is used to optimize the

emergency frequency stability control strategy involving controllable load

resources. The formation of emergency load shedding instruction is directly

driven by high-dimensional operation state data after power grid failure, so

that, the aim ofminimizing the economic cost is achieved under the constraint

of system stability. The effectiveness of the proposed method is verified in the

IEEE 39-bus system.

KEYWORDS

new controllable load, load delay characteristics, emergency frequency control, deep

reinforcement learning, rainbow algorithm

1 Introduction

With the massive access of renewable energy and the interconnection of large-scale
systems, the power grid has changed into a complex dynamic system, and it is difficult
to establish accurate mathematical models for it (Fan et al., 2022; Ren et al., 2022). The
increase of new energy penetration and the access of more electronic power equipment
have brought new risks to the stability of frequency. When the power imbalance between
the source and load occurs, it may lead to regional power outage and system collapse
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(Cao et al., 2021b,a; Wen et al., 2020). On the other hand,
there are massive flexible loads on the load side, such as
electric vehicles and temperature-controlled air conditioners
(Zhang et al., 2022), which, in combination with modern
communication technology, can be controlled when the system
is in an emergency state. It can improve the flexibility and
economy of the emergency frequency control of the power
system. Therefore, it is of great significance for the stability of
power grid that the new controllable load participates in the
emergency frequency stability control.

At present, controllable load participation in the emergency
frequency stability control has become one of the hot research
topics in power system. Reference (Xu et al., 2018) proposed
the comprehensive contribution index of interruptible load
according to the total amount of load excision and the user
excision, and obtained the load reduction strategy through
optimization. In addition, the large proportion of controllable
load and rapid continuous regulation capacity are used
to improve the refinement of emergency control on the
premise of ensuring safety and stability (Li and Hou, 2016).
Some researchers cooperatively optimized the decentralized
emergency demand response to obtain the optimal emergency
frequency stability control strategy (Wang et al., 2020). However,
the above research on the participation of controllable load in
emergency frequency control only considers the basic indicators
such as the total amount of the load shedding, the controllable
load bus and the cost, and considers that the load removal is
instantaneous. However, in practice, due to the differences in
communication states and response speeds of controllable loads,
different loads have different delay characteristics, which will
produce different control effects. However, the influence of load
delay characteristics on emergency frequency control is not
considered in the above conferences.

In order to solve the problem of emergency frequency
control in power system, current research methods mainly
include response driven and event driven.The former calculated
the load shedding amount and its action rounds offline/online
according to the frequency deviation and frequency change
rate of the inertia center. The latter usually carries out pre-
control after monitoring the fault event to prevent the further
expansion of the impact. The response-driven emergency
frequency control will adjust the load reduction and action
rounds in advance according to a certain operation scenario
of the system (Terzija, 2006; Banijamali and Amraee, 2019;
Li et al., 2020), which may be deviated from the actual operation
scenario and affect the control effect. Most of the studies on
event-driven load shedding are based on the optimization of
the mathematical model of the power system (Xu et al., 2017,
2016), and the effect of load shedding strategy is closely
related to the accuracy of the system model. The new power
system has a high degree of nonlinearity and uncertainty, and
it is difficult to establish an accurate mathematical model,

which poses a challenge to obtain an accurate load shedding
strategy.

In recent years, Machine Learning (ML) has been applied
to power system stability control. It does feature mining based
on data and does not need accurate mathematical model. In
reference (Singh and Fozdar, 2019), support vector machine was
used to evaluate the stability of the power system, and the optimal
load shedding scheme was obtained according to the evaluation
results. The extreme learning machine can also be used to train
the load shedding predictionmodel offline and predict the actual
load shedding online (Dai et al., 2012). The above traditional
ML algorithm model is simple and relies too much on expert
experience. Its control effect is affected by the size and quality of
knowledge database, resulting in poor adaptability of the control
effect of the model.

Combined with deep learning technology, DRL can
realize high-dimensional feature extraction and direct learning
of complex action space. Meanwhile, Deep Learning Q
Network (DQN) and other algorithms improve the scalability
and robustness of DRL, making it suitable for solving
control problems of large-scale systems (Mnih et al., 2015;
Schulman et al., 2017). Double DQN algorithm is used to
effectively screen out the line breaking faults which can
easily lead to power grid instability, and formulate emergency
stability control measures (Zeng et al., 2020). In conference
(Liu et al., 2018), it obtained the optimal shedding strategy to
ensure the transient stability of power grid throughDoubleDQN
and Dueling DQN model analysis. In addition, DRL algorithm
was also used to optimize the emergency frequency control
strategy, and a variety of regulation methods were aggregated to
reduce the stable frequency fluctuation (Chen et al., 2021). The
above emergency control strategy is used to shed the whole line
directly from the substation, without considering the influence
of the new controlled load and its delay characteristics on the
emergency control effect. At the same time, the stability and
robustness of some algorithms are poor, and it is difficult to
ensure the control effect of the model. Rainbow algorithm
is based on DQN and it integrates a variety of improved
algorithms. The model has superior stability and robustness,
and has been widely used in the field of control and decision
making (Hessel et al., 2017). Therefore, Rainbow algorithm
is adopted in this paper to optimize the control strategy for
emergency control involving controllable load considering delay
characteristics.

In order to solve the above problems, this paper proposes
an emergency frequency control method based on deep
reinforcement learning Rainbow algorithm that considers the
delay characteristics of the controlled load. According to
the different delay characteristics, the new controllable load
resources are modeled and aggregated to form an emergency
control process in which the new controllable load is graded, and
the load with smaller control delay is preferentially removed to
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ensure rapid removal. Finally, the deep reinforcement learning
Rainbow algorithm model is used to optimize the emergency
frequency control strategy, suppress the frequency drop depth
of the system, reduce the deviation of the stable frequency, and
reduce the control cost as much as possible.

2 Emergency frequency control with
new controllable load participation

2.1 Mathematical description of power
grid emergency frequency stability
control

In frequency stability analysis of power systems, the
frequency of each generator oscillates around the inertial center
of the system. When the system is stable, the frequency of each
generatorwill eventually approach the center of inertia frequency
of the system. The center of frequency inertia fCOI is defined as
follows:

fCOI =
m

∑
j=1
(Hj fj)/

m

∑
j=1

Hj (1)

wherem is the number of generators,Hj and fj are the inertia
time constant and frequency of generator bus j.

Due to the complexity of components in large power
systems, the emergency frequency control problem is the highly
nonlinear optimal decision problem.The mathematical model is
adopted:

min F = |ftem − ftem.set| + λ
m

∑
j=1

Pslj (2)

xt = g(xt,yt,dt,at) (3)

0 = h(xt,yt,dt,at) (4)

xmin
t ≤ xt ≤ x

max
t (5)

ymin
t ≤ yt ≤ y

max
t (6)

amin
t ≤ at ≤ a

max
t (7)

where ftem is the center stable value of the frequency inertia,
ftem. set is the preset frequency inertia of the center steady-state
threshold,Pslj is the load shedding amount of bus j, λ is theweight
coefficient, xt is the state variable of the power grid, such as the
angle and angular velocity of the generator rotor, yt is the output
variable of the power grid, such as the voltage of each bus, at is the
control variable of the power grid, such as the emergency control
to cut off generators or loads, dt is a disturbance or fault that may
occur in the power grid.

2.2 The aggregate modeling of new
controllable load with delay
characteristics

New power loads are constantly being integrated into new
power systems, and demand-side loads are becoming more and
more diversified, such as typical new loads such as electric
vehicles, temperature-controlled air conditioning and intelligent
buildings. These new loads have strong controllability, large
volume and obvious time and space distribution characteristics,
which can participate in emergency frequency stabilization
control.

For different loads, the load amount is different, and their
delay characteristics are different. In this paper, delay time refers
to the time required from the decision of the control center to cut
off the load from the main network, including the decision time
of the control center, communication time and load response
time. The delay time ti of load bus i can be described as:

ti = ti,dec + ti,down + ti,res (8)

where ti,dec is the decision time shedding the load i for the control
center, ti,down is the time required for the communicationmodule
to send the command to load i, ti,res is the response time of load
i.

The difference of the delay characteristics of controllable
loads affects the effect of emergency frequency control, which is
one of the important factors for the participation of controllable
loads. Different from the traditional load, the time and space
distribution characteristics of the controllable load slows down
its control speed. Then, the drop depth of system frequency
is increased. The spatial location of the load is dispersed, and
the load granularity is small, so it is difficult to adjust by the
traditionalmethod. For different loads, it is necessary to establish
models according to the location, the amount and the delay
time of controllable loads. The modeling results are shown
in Table 1.

In actual control, because the single load amount of the new
load is small and the loads is numerous, modeling only the single

TABLE 1 Modeling results of controllable load with delay
characteristics.

Controllable load location Load amount Delay

Electric vehicle 1 1− 1 P1−1 t1−1
Electric vehicle 2 1− 2 P1−2 t1−2
… … … …
Electric vehicle n 1− n P1−n t1−n
Smart Building 1 2− 1 P2−1 t2−1
Smart Building 2 2− 2 P2−2 t2−2
… … … …
Smart building m 2−m P2−m t2−m
Other loads other other other
… … … …
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load with delay characteristics will lead to too large amount of
resource data, which is difficult to deal with. In order to optimize
the strategy more conveniently, the modeled controllable loads
should be aggregated, that is, it should be graded according to the
control delay, and the controllable loads of the same level should
be aggregated. At the same time, in order to ensure the security,
the delay time of this stage is taken as the maximal actual control
delay of this stage of load. Although thismethod has some errors,
it can reduce the difficulty ofmodel building under the premise of
considering the influence of load delay characteristics.Therefore,
the aggregate modeling process of controllable load is shown in
Figure 1.

After aggregation, a hierarchical aggregate controllable load
of multiple buses is formed. The model is also composed of load
location, load amount and load delay time. The result is shown
in Table 2.

2.3 The process of emergency frequency
control with new controllable load
participation

In order to uniformly control the new controllable load with
spatial distribution and delay characteristics, the controllable
resource control process should be divided into uplink and

TABLE 2 Results of controlled load aggregation.

location Aggregate controllable
loads

Load amount Delay

Bus 1

level 1 controllable load P11 t11
level 2 controllable load P12 t12
… … …
level n controllable load P1n t1n

Bus 2

level 1 controllable load P21 t21
level 2 controllable load P22 t22
…… …… ……
level n controllable load P2n t2n

… … … …

downlink parts, and the control center and controllable load
resources should be connected.The controllable resource control
process starts with the control center, including the upstream
controllable load aggregation modeling results, power grid
fault perception and downlink control instructions. The control
process is shown in Figure 2.

After modeling the new controllable loads of different buses
with delay characteristics, the modeling results are sent to the
control center. According to the information of controllable load
resources, the control center is trained off-line to obtain the
emergency frequency stability control model which can adapt to
the current load state.

FIGURE 1
Controllable load aggregation modeling process.
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FIGURE 2
Emergency control process diagram of controllable load
resources.

The control center monitors the power grid operation data
in real time through the power grid fault perception. Once fault
information or abnormal operation state of the power grid is
found, the power grid operation state data will be put into
the off-line training model to obtain the load shedding control
instruction. After that, it transmits information through the
control instruction deliverymodule to issue control actions to the
controllable load resources on the demand side.The controllable
load resources in each area complete the load shedding action
response through the corresponding control components.

Thenew emergency control considering the controllable load
resources is to implement cluster control on the controllable
load before the traditional load shedding initial action, so as to
avoid the whole line shedding caused by the traditional UFLS
device. Therefore, the initial action of the new controllable load
should take precedence over the traditional load shedding device,
that is, the action frequency threshold of the controllable load
control should be greater than the traditional initial action
frequency threshold. When the system has power shortage,
the method can quickly remove part of the new controllable
load, achieve the purpose of load shedding in advance to
restore the system frequency, without touching the traditional
load shedding device. By controlling the aggregated new
controllable load resources, the frequency recovery goal is
achieved and the economy is higher than that of the traditional
UFLS.

3 Deep reinforcement learning
rainbow algorithm

The basic framework of Rainbow algorithm is the DQN
algorithm. Therefore, this section first briefly introduces the

DQN algorithm, and then explains the improvements and
advantages of the Rainbow algorithm used in this article on its
basis.

3.1 Deep learning Q network algorithm

TheDQN algorithm uses deep neural networks to effectively
extend the traditional tabular Q learning algorithm, which is a
typical deep reinforcement learning algorithm. When training
with the traditional Q learning method, it is necessary to use
the Q table to record the status, action and corresponding Q
value of each training sample, and the high-dimensional state
and control action will cause the Q table to be too large and
difficult to save. In order to solve the problem that it is difficult to
deal with high-dimensional state space and control action set, the
neural network is used to achieve direct prediction of Q values
in the DQN method. This enables Q function to directly use the
observed continuous states as input variables, which improves
the ability of DQN to deal with complex problems. The process
of using neural network to update Q value in DQN method can
be described as:

Q(st,at;θt) = Q(st,at;θt) + α(rt + γmaxat+1Q(st+1,at+1;θ
−)

−Q(st,at;θt)) (9)

where Q (st ,at ; qt) is the Q value function for evaluating the
action at taken by the neural network under state st , θt is the
neural network parameter of the evaluation network, rt is the
immediate reward value of the action, θ− is the neural network
parameters of the target network, α is the learning rates, γ is the
attenuation coefficient.

The target network is the stage replica of the evaluation
network in the learning process. The two neural networks
complete the iteration of Q value together, which makes the
iteration process more stable and improves the convergence of
the algorithm. After the iteration of Q value, DQN trains the
evaluation network according to the difference of Q value before
and after the iteration, which is called time difference deviation,
and the expression is shown as follows:

H = rt + γmaxat+1Q(st+1,at+1;θ
−) −Q(st,at;θt) (10)

The loss function L (θt) during the training of evaluation
network is:

L(θt) =H2 (11)

In order to improve the learning efficiency of DQN, two
methods are usually adopted: experience replay and regular
target network correction. First of all, neural network training
requires independent input samples, while Markov decision
process can only produce continuous procedural samples. To
this end, DQN sets up an experience playback mechanism to
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shuffle the procedural samples, and specially stores the historical
experience data and learns from it repeatedly, so as to update
the policy. In addition, in order to avoid the divergence of
neural network caused by unstable training, DQN adopts the
method of target network, that is, it sets two independent neural
network models: target network and evaluation network, which
have the same structure but different parameters. The evaluation
network constantly learns new samples to update parameters,
which is fast, while the target network parameters are updated
periodically by replication evaluationnetwork parameters, which
is slow.This method can effectively improve the stability of DQN
algorithm training.

3.2 Rainbow algorithm

Although the traditional DQN algorithm can also solve the
problem of emergency frequency control strategy, sometimes
there are some problems such as poor generalization effect
and difficult convergence of the model. These problems are
mainly caused by the shortcomings of the algorithm itself,
which is difficult to be improved by adjusting parameters
and model design. Using its improved Rainbow algorithm
can effectively accelerate the training process, and make the
emergency frequency control strategy more stable and effective,
so as to solve the above problems.

The Rainbow algorithm used in this paper is based on
DQN and integrates three types of improved algorithms:
priority playback cachingmechanism,DoubleDQNandDueling
DQN.

3.2.1 Priority playback caching mechanism
In the DQN algorithm, the playback cache mechanism

uniformly filters data from the cache pool and is used to
evaluate the training of the network. However, it fails to measure
the quality of samples, resulting in some important data not
being selected quickly, which makes the training efficiency of
the evaluation network low. There is a large gap between the
output value of some data and the target value, which makes it
difficult to train the network successfully. Therefore, the priority
of its filtering should be increased. The priority playback cache
mechanism determines the probability of sampling according to
the time difference deviation of each sample. In order tomake the
sample access more efficient, the algorithm also introduces sum-
tree structure to store the sample and its corresponding priority,
which is shown as:

Psum,t ∝ |rt + γmaxat+1Q(st+1,at+1;θ
−) −Q(st,at;θt)|

ω (12)

where Psum,t is the probability that the sample will be sampled,
ω the influence degree of time difference deviation on sampling
probability.

In the priority playback cache mechanism, M experience
samples are selected from the experience pool according to the

priority to train the neural network. The loss value is used
to determine the degree of priority learning. The larger the
error is, the larger the space for the prediction accuracy to
rise, and the higher the priority of the sample is, as shown in
Figure 3.

In fact, using a priority playback cache mechanism not
only changes the process of filtering data, but also changes the
method of parameter update. Therefore, it not only changes
the distribution of selected data, but also changes the training
method of the network. The priority playback cache mechanism
extracts samples with larger time difference deviation more
frequently, reduces the number of samples needed to evaluate
the convergence of the network, significantly speeds up the
convergence speed of the algorithm, and improves the learning
efficiency of training.

3.2.2 Double deep learning Q network
Since the argmax function is included in the calculation

formula of Q value, the estimation of Q value of DQN algorithm
is often higher than the real value. If such overestimation is
uniform, it will not affect the final optimal decision. However, the
distribution of such overestimation in the environment is often
complex and uneven, so different degrees of overestimation will
lead to the final decision can only converge to the suboptimal
solution instead of the optimal solution.The algorithm ofDouble
DQN is proposed to solve this overestimation problem, which is
an extension of DQN.

The difference between Double DQN and traditional DQN
algorithms is mainly reflected in the estimation of the value of
the next state. In DQN, the value estimation of the next state
is done independently by the target Q network, and the target
network outputs theQ value obtained by each action, and applies
the action with the largest Q value to update formula. Double
DQN uses two existing neural networks to improve the iterative

FIGURE 3
Schematic diagram of priority playback caching mechanism.
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FIGURE 4
Schematic diagram of Dueling DDQN.

rules for Q values, with the time difference bias H expression:

H = rt+1 + γt+1Q(st+1,argmaxat+1Qθ (st+1,at+1) ;θ−)

−Q(st,at;θt) (13)

3.2.3 Dueling deep learning Q network
DuelingDQNmakes a change in the upper layer of the neural

network output layer and divides the original output Q value
into two parts, one is the value evaluation of the state and the
other is the value evaluation of different actions. Two parts share
parameters at the front end of the neural network, and only
perform shunt when calculating their respective values.The state
valueV(st) in the first part represents the value of the state, while
the action dominance value A(st,at) in the second part removes
the influence of the state and calculates the value of each action
separately. The final output Q value can be calculated as:

Q(st,at) = V(st) +A(st,at) (14)

Dueling DQN provides a more accurate grasp of the
environment by assessing the state and action separately, making
decisions more realistic, as shown in Figure 4.

4 Emergency frequency control
model based on deep reinforcement
learning

When Rainbow algorithm is applied to the emergency
frequency control of the power system, the emergency
load shedding instructions can be directly generated by
high-dimensional state data of power system, which avoids
the disadvantages of traditional methods such as complex

optimization and poor application effect. The power system
emergency frequency control problem is formulated as MDP
process, which has the elements of state, action and reward.
In the process of MDP, the agent perceives the current system
state and performs actions on the environment according to
strategies, so as to change the state of the environment and get
instant payoff. The accumulation of instant payoff over time is
called reward. Thus, the MDP process combines the state space,
action space and reward function of the emergency frequency
control problem into a closed-loop whole. The MDP process of
deep reinforcement learning algorithm is designed according
to the mathematical model of the problem. The state control,
action space and reward function correspond to each part of the
mathematical model of the emergency control. Therefore, this
paper introduces the mathematical description of emergency
frequency stability control.

4.1 State space

In MDP, the state st represents the feedback of the
environment to the agent, that is, the impact of the action of the
previous step on the environment. This paper believes that the
frequency stability of the power system is closely related to the
active power of the generator, the load power and other factors,
so the state space st is defined as:

st = s
t
1 ∪ s

t
2 ∪ s

t
3 ∪ s

t
4 (15)

{{{{{{
{{{{{{
{

st1 = {f
t
1 f t2 ⋯ f tm }

st2 = {(df/dt)
t
1 (df/dt)

t
2 ⋯ (df/dt)

t
m}

st3 = {P
t
e1 Pte2 ⋯ Ptem}

st4 = {P
t
l1 Ptl2 ⋯ Ptln}

(16)

where fi
t is the frequency of generator bus i at time t, (df/dt)i

t

is the frequency change rate of generator bus i at time t, Pei
t is

the electromagnetic power of generator bus i at time t, Plj
t is the

active load of the load bus j at time t.

4.2 Action space

For power system emergency frequency stabilization
problems, the action is defined as removing a certain amount
of load on multiple controllable load buses. At each action
moment, the control action on each controllable load bus is
defined as 0 (the controlled load is not shed) or 1 (a controlled
load of σ amount is shed). Therefore, the action space is discrete,
the dimensionality is 2n, where n is the number of load buses
participating in emergency control.
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4.3 Reward function

After an action is performed in a power system simulation
environment, the model receives an immediate reward value to
evaluate the corresponding state-action group at this time. For
emergency frequency control problems, a larger reward value
should be given if the action performed stabilizes the system
frequency within the allowable range, keeps the system transient
frequency nadir above the threshold, and shed less controllable
load.

In order to quickly restore the system frequency to the
allowable range, if the value of the frequency inertia center is
still lower than the specified threshold in a certain period before
the end of the simulation process, a large penalty value can be
obtained. If the time does not reach the above moment, in order
to keep the minimum frequency of the system higher than the
threshold and remove less controllable load, the reward function
consists of the following four parts:

1) The frequency inertia center deviation value of the system
after the action;

2) The controllable load amount of shedding;
3) The penalty for crossing the threshold at the lowest point of

the center of frequency inertia;
4) Invalid action penalty for removing unloaded buses.

Thus, the reward function rt at time t can be defined as:

rt =
{{
{{
{

−200, if(t > Ttem) and (f (t) < ftem.set)

λ1Δf (t) − λ2
n

∑
j=1

Pslj −H1 −H2, otherwise
(17)

H1 = {
−100, if(f (t) < fmin.set)
0, otherwise

(18)

H2 = {
−100, if(Pljt = 0) and (Pslj ∈ at)
0, otherwise

(19)

where Ttem is the value at a certain moment before the end of
the simulation process, ftem. set is the steady-state threshold of
the frequency inertia center, Δf (t) is the deviation value of the
frequency inertia center at time t, Pslj is the excision amount
of load bus j, λ1 and λ2 are the coefficients of each part of the
reward function, fmin. set is the threshold of the lowest point of
the transient process frequency inertia center, H1 is the penalty
when the lowest point of the system frequency inertia center is
less than the preset threshold, H2 is the penalty when the load
bus has been reduced to zero in the previous time step, and it still
chooses the load shedding action.

The reward function design of deep reinforcement learning
should combine the priori experience knowledge and automatic
parameter search. Firstly, the priori experience about the
emergency control problem is used to determine the approximate
range of the coefficients of each part of the reward function.

Secondly, once its rough range is determined, the model is
automatically selected randomly in the range. The combination
of selected parameters is used to train the model, and the
combination with the best performance is selected as the
coefficient of the reward function.

This reward function can quickly restore the system
frequency to the allowable range, and the lowest frequency in the
recovery process should not be lower than the threshold at the
same time. It also ensures that the total amount of load shedding
is small, and improve the economy.

5 Case study

In order to verify the effectiveness of the proposed method,
Python and BPA simulation software are used to jointly build
a deep reinforcement learning environment of IEEE 39-bus
system, and Rainbow algorithm is used to solve the example.
Tensorflow1.15 is used to build deep neural network in Python.
The operating platform is Intel Core I5-11400H CPU, 16.00GB
RAM, and RTX 3050.

5.1 Case data

In this paper, BPA is used to generate the failure scenario
of IEEE 39-bus system. The generator model adopts the 6-order
model. The load model is a mixed load model composed of
constant impedance model and induction motor, both of which
account for 50%. The failure scenario is that a generator loses
part of the power, resulting in a certain power difference in the
power system. The total simulation time is 40 s, and each cycle
wave is a sampling point. In order to simulate fault states of
different system and get enough samples, at the beginning of the
simulation, one of the 10 generators is randomly selected to lose
0.5 p.u to 1 p.u of active power output. This random selection of
fault location and fault size can improve the generalization ability
of model. IEEE 39-bus topology is shown in Figure 5. In this
paper, bus 3, 8, and 20 are considered as controllable load bus
participating in emergency frequency control.

In IEEE 39-bus system, the deep reinforcement learning state
space is composed of the frequency deviation, frequency change
rate, active power output of 10 generators and the remaining
controllable load buses participating in load shedding, with a size
of 33 dimensions.The action space is composed of the combined
excision actions of three loads. The control action at each load
bus is defined as 0 (the controlled load is not shed) or 1 (the
controlled load of 50 MW amount is shed), and the size of the
action space is 8 dimensions.

5.1.1 Two-stage action
Emergency frequency control is divided into two stages:

emergency control action process and recovery action process.
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FIGURE 5
Topology of IEEE 39-bus.

When the center of inertia of the system frequency is lower
than 49.5Hz, the initial emergency control action starts, and
then the time interval of each action is 0.5 s. Continuing operate
until the frequency change rate of the center of inertia of the
system is positive, that is, when the center of frequency inertia
begins to rise, enter the second stage. In the second stage,
the recovery action is performed with an interval of 5 s each
time, and the action is continued until the frequency stability is
reached.

5.1.2 Graded shedding polymerization load
Considering the different delay characteristics of the new

controllable load, the load is divided into three levels according
to the delay time.The delay time within 100 ms is level 1 load, the
delay time between 100 and 200 ms is level 2 load, and the delay
time between 200 and 300 ms is level 3 load. After aggregation
modeling, the controllable load ratio of each bus and the load
ratio of different delay levels are shown in Table 3.

For loads of the same delay level, the actual control delay is
calculated according to the maximum value, so as to ensure that
the actual frequency drop depth is less than or equal to the ideal

TABLE 3 Proportion of different grades of load.

Load bus
number

Controllable
load ratio

Level 1
load ratio

Level 2
load ratio

Level 3
load ratio

3 0.82 0.35 0.4 0.25
8 0.91 0.35 0.35 0.3
20 0.77 0.4 0.3 0.3

frequency drop depth and avoid frequency instability. Therefore,
after aggregation, it is considered that the actual delay of level 1
load is 100 ms, level 2 load is 200 ms, and level 3 load is 300 ms.
In each bus, the delay is shed in ascending order.

In this paper, the delay difference of less than 100 ms is small,
and the influence on the control effect can be ignored.Therefore,
the load delay is divided into three levels. If the delay level is
too coarse, the delay difference within the same level cannot be
ignored. If the delay level is too fine, the strategy optimization is
too complicated and unnecessary.

5.2 Model training process

In this paper, different experimental scenarios are set to train
the proposed Rainbow algorithm. The size of the input layer of
the neural network is 33 dimensions, which is the same as the
dimension of the state space, and there are two 64-dimension
hidden layers in the middle. The size of the output layer is 8
dimensions, which is the same as the dimension of the action
space, and the activation function adopts ReLU.

During training, the strategy of ɛ-greedy search action is
adopted to balance the relationship between exploration and
utilization. It can prevent the agent from falling into the local
optimal solution or not getting the optimal solution. Policy
selection is defined as:

a = {
argmaxaQ (s,a) , ε ≤ ε0

random, ε > ε0
(20)

Where ɛ is the random number evenly distributed within the
interval [0,1], ɛ0 is the fixed value of the specified greedy policy,
satisfying 0 ≤ ɛ0 ≤ 1.

The ɛ0 is small in the initial stage, which encourages DQN
to explore more different load increase situations in the early
stage of training, so as to avoid the problem of local optimum
caused by insufficient exploration. With the progress of training,
the value of ɛ0 increases continuously and stabilizes at 0.95 finally,
which requires DQN to learn and utilize the explored excellent
strategies more in the later training period.

The training process of reinforcement learning model is the
process of learning to obtain the maximum reward value. The
reward change process in the training of this paper is shown in
Figure 6.

As can be seen from Figure 6, at the beginning of training,
the agent randomly selects actions to explore the environment,
because the data cache pool is not full and the ɛ0 is small.
Therefore, the reward value at this stage is low and there is
obvious oscillation. When the data cache pool is full, the model
starts to train, the reward increases with the training, and the
effect of load shedding strategy gradually becomes better. After
about 700 rounds of training, the reward reaches a high value,
and then the change is small, and the model is basically trained.
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FIGURE 6
Change of reward value during training.

In order to further show the process of model
training, it is shown in Figure 7 that the change process
of each round of shedding action step in the training
process.

As can be seen from Figure 7, at the early stage of training,
the effect of load shedding is not ideal because the optimal
strategy is not explored, so there are many action steps in
each round. After training, the well-trained agent only needs
to take a few actions in each round to achieve the stability
condition.

5.3 Rainbow model test results

After the training, in order to test the robustness and
adaptability of the Rainbow agent, it was tested in different
scenarios. The test scenario is that one of the 10 generators
loses 0.5 p.u to 1 p.u of active power output, and the load level
is randomly selected as 90%, 95%, 100%, 105%, or 110%. The
frequency control strategies for the three scenarios are shown in
Table 4.

As can be seen from Table 4, for various scenarios tested,
the amount of load shedding is basically equal to the amount

FIGURE 7
The number of excised movements in each training round.

of power gaps, and the well-trained model can basically
avoid overcutting or undercutting of load when applied
online.

In order to further verify the superiority of the method, this
paper compares the load shedding scheme obtained by the deep
reinforcement learning Rainbow algorithm and the traditional
UFLS algorithm, and Figure 8 shows the dynamic recovery
process of frequency inertia center after the action of the two
algorithms in scenario 2.

As can be seen from Figure 8, traditional UFLS is driven
by multiple frequency stages, and the shedding action starts
too slowly and is fixed, resulting in slow frequency recovery.
However, Rainbow algorithm can effectively reduce the system
frequency drop depth and speed up the process of frequency
recovery. Within 10–60 s, the system frequency using Rainbow
algorithm is much higher than that using UFLS, and the
frequency recovery speed is accelerated. At the same time,
when Rainbow algorithm is used, the lowest frequency of the
system is around 49.4Hz, while the lowest frequency of the
traditional UFLS algorithm is 49.3 Hz. It can be seen that the
load shedding strategy in this paper can effectively improve
the dynamic frequency nadir of the system and improve the
frequency stability of the system.

TABLE 4 Frequency control strategy in three scenarios.

Scenario
number

Load
level (%)

Failed
bus

Power
gaps (MW)

Total amount of
load shedding (MW)

Stage 1 load
shedding (MW)

Stage 2 load
shedding (MW)

Stage 3 load
shedding (MW)

1 95 31 380 350 50 150 150
2 100 33 535 550 200 200 150
3 110 31 440 450 100 200 150
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FIGURE 8
Curve of frequency inertia center after action of UFLS and
Rainbow algorithm.

5.4 Effect comparison of different deep
reinforcement learning algorithms

In order to comprehensively compare the effect of the
proposed algorithm with other DRL algorithms, Rainbow
algorithm is compared with various improved DQN algorithms.
Figure 9 shows the reward change process during training of
different DRL algorithms.

As can be seen fromFigure 9, the traditional DQNalgorithm
is basically stable after 600 rounds of training, but its algorithm
has poor optimization ability, and the reward value obtained

FIGURE 9
Reward value for DQN and its improved algorithm.

is lower than that of its improved algorithm. After using the
improved Double DQN and D3QN algorithms, the model
converges after 700 rounds, and the training effect is improved
compared with the DQN algorithm, and a better control
strategy can be calculated. The Rainbow algorithm in this paper
converges after about 800 rounds of training, at which point
the model reward value exceeds that of other algorithms. As a
result, the Rainbow algorithm is able to obtain higher reward
values than other algorithms, and although the training time
is longer, it obtains a better control strategy at the expense of
this.

Meanwhile, in order to verify whether Rainbow algorithm
maintains its superior performance in the test scenario,
this paper randomly tests four different algorithms for 100
times, and the test scenario is the same as that in 5.3. The
distribution of reward value obtained in the test is shown
in Figure 10.

As can be seen from Figure 10, the reward value obtained
by DQN and Double DQN fluctuates greatly in the random
test scenario, and the overall reward is low. It indicates that the
model fails to find the optimal strategy at this time, and the
generalization ability is poor, and the effect is poor for some test
scenarios. The reward value of D3QN algorithm in the test is
significantly higher than that of the previous two, but there is still
a certain gap compared with Rainbow algorithm in this paper.
Rainbow algorithm with successful training can obtain good
reward values in various test scenarios and obtain the optimal
action strategy.

Compared with other DRL algorithms, Rainbow algorithm
can make the system frequency return to stable state faster, and
minimize the total load shedding amount at the same time.
In order to show the test improvement effect more intuitively,

FIGURE 10
The distribution of reward values of different algorithms.
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FIGURE 11
Frequency distribution at the time of system stability in different
test scenarios.

Figure 11 shows the distribution of frequency inertia center
values of system at a certain time before the end of simulation
process after the implementation of random test strategy.

As can be seen from Figure 11, the model trained by the
deep reinforcement learning algorithm can basically restore the
system frequency above 49.8 Hz under various test scenarios,
ensuring the stability of the system. However, compared with
other traditional DQN algorithms, Rainbow algorithm can
make the stable frequency deviation smaller, which reflects the
superiority of Rainbow algorithm.

6 Conclusion

Considering the complexity and uncertainty of frequency
stability of the new power system, and the feasibility of the
new controllable load participating in the emergency control,
this paper established a new controllable load participating in
the emergency frequency stability control method based on
Rainbow algorithm. Through the design of different operation
scenarios for experimental verification, the conclusion is as
follows.

1) In this paper, it comprehensively evaluates the response
delay time of the new controllable load, and classifies and
aggregates the controllable load according to the different
delay time. At the same time, the simplified model makes
the controllable load more accurate and effective when
participating in the emergency control, and avoids the error
of shedding effect due to the communication difference and
spatial distribution of the controllable resources.

2) The emergency frequency control algorithm based on deep
reinforcement learning can effectively maintain the balance
between the system frequency stability and the emergency
control cost. By designing the reward function, the model
can learn the effective control strategy with the minimum
control cost. It avoids the shortcomings of the traditional
algorithm such as easy over-cutting, under-cutting and poor
economy. In this paper, Rainbow algorithm improved by
DQN algorithm is adopted to avoid the shortcomings of
traditional UFLS method, such as slow control speed, slow
frequency recovery and excessive frequency drop. At the
same time, comparedwith otherDRL algorithms, the strategy
obtained by the proposed algorithm ismore excellent and the
stable frequency deviation is smaller.

3) In the subsequent study, the random fluctuation of system
load will be added to simulate a more realistic power
system environment and test the generalization ability of
this method. In addition, Rainbow algorithm adopted in this
paper can only deal with discrete action space. It is hoped
that deep reinforcement learning algorithm based on policy
gradient can be applied to emergency frequency control in
subsequent studies, and its ability to deal with continuous
action space can enablemore controllable loads to participate
in emergency control.
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