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In recent years, with the rapid development of renewable energy, the

penetration rate of renewable energy generation in the active distribution

network (ADN) has increased. Because of the instability of renewable energy

generation, the operation stability of ADN has decreased. Due to the ability to

cut peak load and fill valley load, battery energy storage systems (BESSs) can

enhance the stability of the electric system. However, the placement and

capacity of BESSs connected to ADN are extremely significant, otherwise, it

will lead to a further decline in the stability of ADN. To ensure the effectiveness

of the BESSs connected to the grid, this work uses the fuzzy kernel C-means

(FKCM)method for scene clustering. Meanwhile, a multi-objective optimization

model of BESS configuration is established with the objective of BESS

configuration cost, voltage fluctuation, and load fluctuation, and solved by

non-dominated sorting genetic algorithm-II (NSGA-II). In this work, the grey

target decision method based on the entropy weight method (EWM) is used to

obtain the optimal compromise solution from the Pareto non-dominated set.

Moreover, the proposed method is tested and verified in the extended IEEE-33

node system and the extended IEEE-69 node system. The results show that the

BESSs configuration scheme obtained by NSGA-II can effectively reduce the

fluctuation of voltage and load, and improve the stability of ADN operation.
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1 Introduction

With the continuous development and progress of society and technology, traditional

energy sources based on fossil fuels have become difficult to meet the needs of human

society. Nowadays, thermal power generation is still the main way for people to obtain

electric energy. However, the harmful gases emitted by the combustion of fossil fuels have

become a problem, and the combustion of fossil fuels is aggravating environmental

pollution and global warming (Company, 2021; Zandalinas et al., 2021). At present,
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energy storage and environmental pollution issues have become

two serious challenges to the sustainable development of society.

It is urgent to reduce carbon emissions and build a new type of

power system with renewable energy sources as the main body

(He et al., 2021; Dong et al., 2022).

The new power grid with photovoltaic and wind energy as

the main energy structure has the advantage of a flexible power

supply, so it is a better solution to the power supply problem of

the grid (Bin et al., 2019; Li et al., 2022a). However, photovoltaic,

wind power has obvious characteristics of randomness, volatility,

and intermittency, its intermittency, and volatility will harm the

quality of the power supply. And photovoltaic, wind power needs

to go through the power electronic equipment to achieve energy

control and does not have the power grid frequency, voltage

regulation, and other functions. Renewable energy also has the

characteristics of dispersion, when the renewable energy to a high

penetration rate into the grid will aggravate the impact caused by

the volatility, such as voltage deviation, power loss, etc. (Hu et al.,

2022; Xiao and Pan, 2022).

Distributed generation (DG) and energy storage systems

(ESSs) play an important role in power grids with high

renewable energy generation penetration rates (Wu et al.,

2021a; Shi et al., 2022). On the one hand, as an

independent power supply compatible with the

environment on the user side, DG can meet the peaking

demand of the power system and supply power to remote

users, and commercial and residential areas, it also can save

transmission investment and reduce transmission losses. On

the other hand, because the DG is mostly renewable energy

generation, its output has obvious randomness and

intermittency, which affects the voltage stability of the

active distribution network (ADN), changes the direction of

the ADN power flow, and causes the system power flow to be

random. When large-scale renewable energy generation access

to ADN will cause power flow and voltage over-limit, change

the voltage characteristics, and reduce the stability of ADN.

Furthermore, the role of DG in ADN is mostly used as a

backup power supply, which is easy to cause the voltage and

frequency of the ADN to drop and exceed the limit during the

power switching process. Even so, DG is still considered by

many energy and power system experts as the main way to

increase the utilization of renewable energy and improve the

stability and flexibility of ADN (Yang et al., 2021; Wu et al.,

2022).

ESSs can effectively solve various energy supply and demand

balance problems and improve energy utilization efficiency

through their peak-shaving and flexible energy management

capabilities. Meanwhile, the ESSs can effectively solve serious

problems such as power flow reverse and voltage over-limit

which occur in the ADN after DG access, and ensure the

normal operation of the distribution network (Li et al., 2018).

Battery energy storage systems (BESSs), which use batteries as

energy storage carriers, have become a hot topic of current

research due to their high energy density, fast response time,

and modularity (Das et al., 2018; Wu et al., 2021b). BESS can

effectively solve various supply-demand imbalance and power

quality problems by using high energy density to cut peaks and

fill valleys on the network and using high power density to

smooth out random power fluctuation (Liu et al., 2016; Zheng,

2018; Ren et al., 2019; Yang et al., 2020).

After the ESSs are connected to the ADN, the operating

state of the ADN and the ability of peak cutting are affected by

the access mode, location, and capacity. In recent years, many

scholars have studied the planning of ESSs, however, most of

the research models are single-objective models, and these

models are difficult to consider the stability of the network and

the economics of energy storage at the same time. Reference

(Yan et al., 2013) established an optimal value assessment

model of BESSs with net income as the objective function. The

reference (Su et al., 2016) established a planning model for the

location and capacity of distributed power and energy storage

devices with the cost input of ADN as the objective function.

Literature (Lee and Chen, 1995) constructed an energy storage

planning model with the cost of electricity purchased by

customers as the objective function. Reference (Ghatak

et al., 2019) established an energy storage planning model

with battery storage life as the objective function and

quantified the battery characteristic parameters by

combining three characteristics of battery discharge depth,

discharge rate, and effective discharge volume. In reference

(Chen, 2020), an energy storage planning model has been

established with the objective function of accurately tracking

real-time meteorological conditions, and an improved logistic

regression model was used to evaluate the impact of real-time

numerical meteorological conditions on the device. All the

above research models are single-objective planning models,

which do not consider the coupling problem between ESSs

planning and network operation conditions. The reference

(Fu et al., 2022) established a multi-objective optimal

configuration model with the economic benefits of ESSs

and voltage quality as the optimization objectives.

However, the voltage quality does not fully reflect the real

operating condition of the network after accessing ESSs.

Therefore, building a multi-objective optimal allocation

model for ESSs can not only fully exploit the potential of

ESSs, but also achieve a better balance between the economic

benefits of ESSs and network stability.

In most papers, the multi-objective optimization problem is

weighted into a single objective problem by the weighting method.

However, it is difficult to guarantee the objectivity of the planning

scheme solved by thismethod. In this regard, some studies used a bi-

level planning model to solve the different problems of BESSs

location and capacity sizing (Li et al., 2022b). The reference

(Meng et al., 2021) proposed a bi-layer BESSs planning scheme

considering renewable energy and load uncertainties. The optimal

solution of this model can solve the problem of objectivity in the
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single-objective model, but the two-layer model is complex, and

difficult to obtain the optimal solution. ESSs location and capacity

sizing is a high-dimensional, multi-objective, complex constraints

problem. The solution process of traditional planning methods is

complex and easy to fall into local optimum. Therefore, it is very

important to establish a Pareto-based multi-objective model. This

model can well adjust the balance between various optimization

variables in multi-objective optimization problems and ensure that

the results have good objectivity.

This work is based on the non-dominated sorting genetic

algorithm-II (NSGA-II), which shows a high optimization

performance under several standard function test

environments. The main content of this work is as follows:

(1) Amulti-objective planning optimal location and capacitymodel

based on the Pareto of BESSs is establishedwith three objectives,

and NSGA-II is used to solve this multi-objective model;

(2) The clustering algorithm is used to cluster the daily load,

wind power, and photovoltaic (PV) output curves of the

whole year, and the typical scenarios are obtained based on

the combination of time series characteristics. Simulation

calculations are performed in different typical scenarios to

obtain the sum of each objective function throughout the

year;

(3) The simulation based on the extended IEEE-33 node system

and the extended IEEE-69 node system verifies that the

proposed method can effectively obtain the optimal BESSs

configuration method.

2 Battery energy storage systems
configuration model

2.1 Objective function

In this work, the total investment operating cost of the BESSs,

the total load fluctuation of ADN, the total voltage fluctuation of

ADN, and the BESSs configuration optimization model based on

Pareto can be established as follows:

min F x( ) � min F1,{ F2, F3} (1)
whereF(x) consists of objective functions F1, F2, F3{ }, which are the
total investment operating cost of the BESSs, total load fluctuation of

ADN, and total voltage fluctuation of ADN; x represents the decision
space consisting of the optimal installation node location, capacity,

and hourly power optimization variables of BESSs and HESSs.

2.1.1 Total investment operating cost
The research object of this work is the ADN that has been built,

so the total investment cost of BESS can be described as follow:

minF1 � min cTCC + cOM − Isub + cc + Id( ) + cab + closs + cCE( )
(2)

where cTCC and cOM are the investment cost, operation cost and

maintenance cost of BESS respectively; cc, Id and Isub represent

the electricity purchase cost, electricity sales revenue, and

government subsidies respectively; cab, closs and cCE represent

the wind power and solar power abandonment cost, the cost of

ADN loss, and the cost of carbon emissions from peak shaving of

conventional power sources.

(1) Equivalent investment cost

cTCC � cinv ·NBESS +∑NBESS

n�1 a · PBESSs,n + b · EBESSs,n( )[ ] · r · 1 + r( )y
1 + r( )y − 1

(3)

where cinv represents a fixed investment construction cost of

one BESSs; NBESS represents the number of BESS installed;

EBESSs,n and PBESSs,n represent the configuration rated capacity

and rated power of the n th BESS respectively; a and b

represent the power cost of BESS and the capacity cost

under different charging rates respectively; y represents the

service life of BESSs. In this work y is 15 years; r represents the

discount rate, which value is 6.332%.

(2) Operation and maintenance cost

cOM � ∑NBESS

n�1 a · PBESSs, n + b · EBESSs, n( )[ ] · εOM (4)

where εOM represents the coefficient of operation and

maintenance. εOM takes 5% in this work.

(3) Government subsidies

ccha � ∑Md

m�1Dm · ∑NBESSs

n�1 ∑T

t�1 εp t( ) · Pc,n t( )( )[ ] (5)

Idis � ∑Md

m�1Dm · ∑NBESSs

n�1 ∑T

t�1 εs t( ) · Pd,n t( )( )[ ] (6)

Idis � ∑Md

m�1Dm · ∑NBESSs

n�1 ∑T

t�1 ρ · Pdis,n t( )( )[ ] (7)

whereMd represents the number of scenarios;Dm represents the

number of days corresponding to scenario m; εp(t) and εs(t)
represent the electricity purchase and sale prices of BESSs in

period t, respectively; Pc,n(t) and Pd,n(t) represent the charging
and discharging power of the n th BESSs in period t, respectively;

T represents the dispatching cycle, which is taken 24 h. ρ

represents the operating subsidy given by the government for

the electricity sales of BESSs.

(4) Wind and solar abandonment cost

cab � ∑Md

m�1Dm · ∑T

t�1 Pwind t( ) + PPV t( ) − Pc/d t( )−( ∣∣∣∣Pload t( ) − Ploss(t))] · δ[
(8)
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where Pload(t), Pwind(t) and PPV(t) represent the load demand,

wind power output, and PV output at time t, respectively; Pc/d(t)
represents the charge/discharge power of BESSs in period t;

Ploss(t) represents the line loss of power in t period; δ

represents the cost of wind and solar abandonment on the

renewable energy side of the ADN.

(5) Cost of power loss

closs � ∑Md

m�1Dm · ∑NBESSs

n�1 ∑T

t�1 εs t( ) · Ploss t( )( )[ ] (9)

(6) Cost of carbon emissions from peak shaving of conventional

power sources

cCE � ∑Md

m�1Dm · ∑T

t�1Pgrid t( ) ·∑P

p�1 Up · up( )[ ],
if/Pgrid t( )> 0

(10)

where Pgrid(t) represents the amount of electricity purchased

from the ADN at time t; P represents the number of pollutant

types;Up represents the pollutant p discharge penalty coefficient;

up represents the emission penalty price of pollutant p.

2.1.2 Total load fluctuation of active distribution
network

minF2 � min∑Md

m�1Dm · ∑T

t�1



















FL t( ) − FL t − 1( )( )2

√[ ] (11)

where FL(t) represents the equivalent load power at time t.

2.1.3 Total voltage fluctuation of active
distribution network

minF3 � min∑Md

m�1Dm · ∑Nnodes

j�1 ∑T

t�1 Vj t( ) − VRated

∣∣∣∣ ∣∣∣∣[ ] (12)

whereVj(t) represents the voltage per unit value of j th node at time

t; VRated represents the node-rated voltage, which is 1p.u.

3 Constraints

3.1 Node voltage

Ui
min ≤Ui ≤Ui

max (13)

where Ui
max and Ui

min represent the maximum and minimum of

the node voltage respectively.

EBESSs
min ≤EBESSs ≤EBESSs

max (14)
where,EBESSs

max and EBESSs
min represent the maximum and minimum of

the installed capacity of the BESSs, respectively.

3.2 Installation node

NBESSs
min ≤NBESSs ≤NBESSs

max,/NBESS,1 ≠ NBESS,2 (15)

where NBESSs
max and NBESSs

min represent the maximum and minimum of

the location of the BESSs installation node, respectively.

3.3 Wind and solar abandonment

Ra �
∑Md

m�1Dm · ∑T
t�1 Pwind t( ) + PPV t( ) − Pc/d t( ) − Pload t( ) − Ploss t( )( )[ ]∑Md

m�1Dm · ∑T
t�1 Pwind t( ) + PPV t( )( )[ ]

(16)
Ra ≤Ra,max (17)

where Ra represents the rate of wind and solar

abandonment, which can be calculated by Eq. 16; Ra,max

represents the maximum rate of wind and solar

abandonment.

4 Non-dominated sorting genetic
algorithm-II for optimal battery
energy storage systems placement
and sizing

4.1 Non-dominated sorting genetic
algorithm-II

NSGA-II has diverse populations and high-accuracy

optimization results. Firstly, the algorithm uses a fast non-

dominated sorting method to classify the population into

different ranking levels. Secondly, the crowding distance

between individuals with the same ranking level is

calculated, and individuals with a larger crowding distance

are selected. The results can be evenly distributed in the

target space, thus maintaining the diversity of the population.

Finally, the optimal solution in the Pareto

solution set is effectively saved by the elite strategy (Wu

et al., 2014).

(1) Non-dominated solution set ranking

The non-dominated solution in the population can be

determined by calculating the value of the objective

function. According to the non-dominated level of each

individual in the population, the whole population is sorted

hierarchically.

(2) Calculate the crowding distance
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To further select individuals at the same non-dominated

level, the crowding distance between individuals needs to be

calculated.

Ld � Ld + fn i + 1( ) − fn i − 1( )[ ]
fn

max − fn
min( ) (18)

where Ld represents the crowding distance; fn(i + 1) and

fn(i − 1) represent the nth fitness value of the (i + 1) th

and (i − 1) th individual at the same level, respectively;

fn
max and fn

min represent the maximum and minimum

value of the nth fitness function.

Then through the binary tournament selection method, two

individuals are randomly selected, and the individuals with

higher non-dominated levels can enter the next population. If

the level is the same, choose the more crowded population.

(3) Elite strategy selection method

The simulated binary method is used to cross and

polynomially mutate the population. Finally, the parent

population and offspring population are combined to form a

new population. The above steps should be repeated until the

maximum number of iterations is reached, and output the Pareto

optimal solution set.

4.2 Pareto solution set processing

In the process of NSGA-II algorithm optimization, the Pareto

solution set will be continuously updated and put into a limited scale

storage pool. When the algorithm iteratively obtains a new non-

dominated solution, it needs to compare it with the non-dominated

solution set in the storage pool, and then determine whether the new

non-dominated solution is liberated into the storage pool. The

judgment process is as follows (Faramarzi et al., 2020):

(1) If the new solution dominates the storage pool, it is replaced

with the new solution;

(2) If the new solution is dominated by at least one solution in

the storage pool, the new solution is discarded;

(3) If there is no dominant relationship between the new

solution and the storage pool, the new solution is

liberated into the storage pool.

TABLE 1 The basic principles and procedures of NSGA-II.

1: Input the real-time electric power system data;

2: Initialize the parameters and population;

3: Calculate the objective function value f(k) of all the searching individuals by Eqs 2,
3, 4, 5, 6, 7, 8, 9, 10, 11, 12;

4: Determine the non-dominated solution

5: IF pop(i).DominatedCount = 0;

6: ELSE q.Rank = k+1;

7: END;

8: Calculate the crowding distance;

9: Updating the Pareto front;

10: [~, RSO] = sort ([pop.Rank]);

11: [~, CDSO] = sort ([pop.CrowdingDistance],’descend’);

12: For Gen = 1: Genmax;

13: the population crossover, mutation operation to produce offspring
populations;

14: Merger of parent and offspring populations;

15: According to steps (4)–(12), the non-dominated solutions are selected
for the merged population, the crowding degree is calculated, and the Pareto front is
updated;

16: Select the appropriate individuals to form the new population;

17: End

18: Judge whether the decision variables exceed the upper and lower bounds,
and verify the energy storage charging and discharging power;

19: Output the location and capacity of BESSs.

FIGURE 1
The flowchart diagram of the NSGA-II used for BESSs.
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To increase the diversity of solutions, when the number of

non-dominated solutions in the archive set is higher than the

upper limit, the redundant solutions must be removed. In this

work, we use the crowded distance ranking method to select a

densely distributed set of non-dominated solutions and eliminate

redundant solutions by the roulette wheel method.

4.3 Multi-objective gray target decision
based on entropy weight method

A multi-objective gray target decision based on the

entropy weight method (EWM) is designed. Firstly, the

evaluation indexes of each solution are set to build the

sample matrix, and the decision matrix can be built by

normalizing the sample matrix. Then, the weights of

evaluation indexes of all Pareto non-dominated solutions

and their distances from the target are obtained based on

EWM and their distances from the target, and the solution

with the closest distance to the target is determined as the best

compromise solution for the BESS optimal allocation scheme

(He et al., 2021).

(1) Establishing the sample matrix

FIGURE 2
Typical diurnal curves of load, wind and PV power. (A) Spring. (B) Summer. (C) Autumn. (D) Winter.

TABLE 2 Main parameters of ADN.

ADN parameters Value

ADN base capacity 10MVA

Total load power (3.715 + j2.3) MVA

Wind power No. 1, No. 2, and No. 3 active power 0.75 MW

Photovoltaic No.1 Active Power 2.5 MW
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To evaluate the similarity and equilibrium of each solution,

this method adds two indicators in the sample matrix. One is the

Euclidean distance (ED) between each solution and the ideal point,

and the other is the Mahalanobis distance (MD) between each

solution and the equilibrium point. Therefore, the sample matrix

of effects containing five evaluation metrics can be expressed as:

Z � vkg( )
n× m+2( ) � F,E,M[ ] �

F1
1 / F1

m E1 M1

F2
1 / F2

m E2 M2

/
Fn
1

1
/

/
Fn
m

/
En

/
Mn

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ (19)

where E and M denote the ideal point distance matrix and

equilibrium point distance matrix of all solutions, respectively.

The ED between the k th solution and the ideal point can be

calculated by Eq. 20, and the MD between the k th solution and

the equilibrium point can be calculated by Eq. 21.

Ek �














∑m+2

g+1 Fk
g − Pg( )2√

(20)

Mk �

























∑m

g�1 Fk
g − ug( )T∑−1

Fk
g − ug( )√

(21)

where Pg denotes the ideal point of the g th objective; ug
represents the average of all solutions under the g th

objective; ∑−1 is the covariance matrix.

(2) Design of decision matrix

According to the principle of rewarding good and punishing

bad, the following operator is designed:

qg � 1
n
∑n

g�1X
k
g (22)

where Xk
g represents the evaluation index of the k th solution at

the g th objective.

Then the decision matrix is established, as follows:

V � vkg( )
n× m+2( ) �

qg − Fk
g

max max
1≤ k≤ n

Fk
g{ } − qg, qg − min

1≤ k≤ n
Fk
g{ }{ }

(23)
The target is identified in the gray decision region formed by

the decision matrix as follows:

v0g � max {vkg 1≤ k≤ n| } (24)

(3) Grey target decision based on EWM

First, the target weight of the k th scenario under the g th

objective can be calculated by Eq. 25

FIGURE 3
Topology of the extended IEEE-33 node test system.

TABLE 3 BESSs optimal configuration scheme.

BESS No.1 BESS No.2

Node number Rated capacity/MW·h Rated power/MW Node number Rated capacity/MW·h Rated power/MW

17 0.1 0.51 16 0.1 0.67

TABLE 4 Comparison before and after BESSs configuration.

Before BESSs
configuration

After BESSs
configuration

Daily voltage fluctuation/p.u 12.58 7.7316

Daily load fluctuation/MW 6.604 4.1099

The total cost of BESSs/$ −1.92e+03
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wk
g �

Fk
g∑n

k�1Zk
g

, if Fk
g ≥ 0 (25)

Next, the entropy values of the g targets can be calculated as

follows:
EVg � 1

ln n
∑n

k�1 wk
g · lnwk

g( ), if EVg > 0 (26)

Among them, the smaller the entropy value of the indicator

tends to contain more information, so the entropy weight is larger.

The entropy weight of the g th target is calculated as follows.

wg � 1 − EVg∑m+2
g�1 1 − EVg( ) (27)

Then, the distance of each solution to the target can be

calculated as follows:

MDBk � vk − v0
∣∣∣∣ ∣∣∣∣ � 


























∑m+2

g�1wg Fk
g − ug( )T∑−1

Fk
g − ug( )√

(28)

Finally, the target distance of each solution is sorted, and the

solution closest to the target is selected as the best decision. The

specific process of Table 1 NSGA-II solving the optimization

problem of BESSs is shown in Figure 1. The basic principles and

procedures of NSGA-II are as follows:

5 Fuzzy kernel C-means-based scene
clustering

Themost well-known and commonly used clusteringmethods

are the K-means (Kanungo et al., 2002) clustering algorithm and

FIGURE 4
Optimization results of network obtained by NSGA-II in the
extended IEEE-33 node test system. (A) Node voltage level. (B)
Average node voltage. (C) Load level.

FIGURE 5
BESSs charge and discharge power in a day under IEEE-33
node system.
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the fuzzy C-means (FCM) clustering algorithm (Pal and Bezdek,

1995), (Askari, 2021). The K-means is simpler and more efficient,

with the advantages of fast convergence and low linear complexity,

but it is not applicable when the data set size is large and is sensitive

to the initial clustering center. Moreover, its membership degree is

either 0 or 1, which is a hard classification. In contrast, the

membership degree of the FCM takes any value in the range of

[0,1], and the criterion function is differentiable, which can The

FCM clustering algorithm has any value in the range of [0, 1], and

the criterion function is differentiable so that it can accurately

cluster data with the non-convex distribution. To avoid the

influence of non-uniform sample distribution on clustering

results, this work uses a fuzzy kernel C-means (FKCM)

clustering algorithm based on the Mercer kernel function to

cluster ADN source-load scenarios.

The clustering principle of the FKCM clustering algorithm in

the feature space is to minimize the weighted distance squared

between a sample and its clustering center squared sum, which is

described as follows:

Jm U, v( ) � ∑c

i�1 ∑n

k�1 u
m
ik‖ Φ xk( ) −Φ vi( ) ‖2,/i � 1, 2, . . . , c;

k � 1, 2, . . . , n

(29)
where m represents a constant whose value is greater than 1; c

and n are the numbers of clusters and the number of samples;

xk represents the k th sample; vi represents the center of the i

th cluster; umik represents the membership degree function of

the k th sample in the i th cluster, which satisfies the 0≤ umik ≤ 1
and 0<∑n

k�1uik < 1; U represents the membership degree

matrix.

The typical days of wind power and photovoltaic in each

season can be obtained by the FKCM clustering algorithm,

and then the clustering results of typical days in each season

are combined. Therefore, there are a total of 36 source-load

combination scenario sets in the four seasons (for example,

spring wind power output 1, spring photovoltaic output 2,

and spring load can be combined into one scenario set).

Although various ADN operation scenarios can make the

planning results more reasonable, it will significantly

increase the solution time of the configuration model.

FIGURE 6
Topology of the extended IEEE-69 bus system.

TABLE 5 BESSs optimal configuration scheme.

BESS No.1 BESS No.2

Node number Rated capacity/MW·h Rated power/MW Node number Rated capacity/MW·h Rated power/MW

60 0.1 0.44049 62 0.1 0.54119

TABLE 6 Comparison before and after BESSs configuration.

Before BESSs
configuration

After BESSs
configuration

Daily voltage
fluctuation/p.u

36.7 28.605

Daily load
fluctuation/MW

6.604 4.1559

The total cost of BESSs/$ −1.2e+03
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FIGURE 7
Optimization results of network obtained by NSGA-II under the extended IEEE-69 node test system. (A) Node voltage level. (B) Average node
voltage. (C) Load level.

Frontiers in Energy Research frontiersin.org10

Su et al. 10.3389/fenrg.2022.1073194

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2022.1073194


Therefore, this paper uses the probability distribution

method to reduce the large number of operation scenarios

generated based on the FKCM clustering algorithm, and

finally fits out the source-load scenarios of four seasons.

First, the probability of each scenario in each season can be

calculated as follows:

ρm � Dm∑M
m�1Dm

(30)

whereM represents the total number of all scenes in each season;Dm

represents the number of days the m th scenario occurs during the

season.

Then, based on the probability distribution of each scenario, the

typical scenarios of each season are fitted to obtain four scenarios of

spring, summer, autumn, and winter considering source-load

uncertainty. The scenario fitting for each season is as follows:

PF � Pwind,F, PPV,F, Pload,F[ ] � ∑M

m�1ρm · Pm

Pm � Pwind,m, PPV,m, Pload,m[ ]{ (31)

where PF represents the fitted source-load timing power set;

Pwind,F, PPV,F and Pload,F represent the wind power, photovoltaic

output, and load power of the season after fitting, respectively. Pm

represents the source-load sequential power set for scenario m;

Pwind,m, PPV,m, Pload,m represent the wind power, PV output, and

load power in m scenarios, respectively.

FIGURE 8
BESSs charge and discharge power in a day under the
extended IEEE-69 node test system.

TABLE 7 Pareto optimization results of the model obtained by two algorithms.

Test system Objective function Value NSGA-II MOPSO

IEEE-33 The total cost of BESSs/$ Maximum −1.72e+03 −22.63

Minimum −1.97e+03 −4.45e+03

Mean −1.87e+03 −2.34e+03

Best compromise solution −1.92e+03 −2.41e+03

Daily voltage fluctuation/p.u Maximum 7.8422 11.9381

Minimum 7.6614 7.7188

Mean 7.7310 9.6892

Best compromise solution 7.7316 9.8524

Daily load fluctuation/MW Maximum 4.8069 15.4393

Minimum 3.4900 4.6473

Mean 3.9242 8.9457

Best compromise solution 4.1099 6.3323

IEEE-69 The total cost of BESSs/$ Maximum −841.37 −25.07

Minimum −1.35e+03 −1.74e+03

Mean −1.11e+03 −1.13e+03

Best compromise solution −1.20e+03 −1.63e+03

Daily voltage fluctuation/p.u Maximum 32.6083 34.1636

Minimum 26.6522 29.1366

Mean 28.4256 31.3895

Best compromise solution 28.605 30.417

Daily load fluctuation/MW Maximum 5.2573 14.2594

Minimum 3.9684 8.6910

Mean 4.3019 10.9530

Best compromise solution 4.1559 11.0400

The bold values represents a better result.
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The fitted wind, photovoltaic, and load curves of four typical

scenarios in spring, summer, autumn, and winter are shown in

Figure 2.

6 Case studies

In this work, the extended IEEE-33 node test system and the

extended IEEE-69 node test system are used to prove thatNSGA-II

can get the correct BESSs configuration scheme. And this scheme

can effectively improve the voltage quality problem in ADN caused

by the high renewable energy generation penetration rate. Table 2

shows the main parameters of the ADN.

6.1 IEEE-33 node test system

The extended IEEE-33 node test system topology is shown in

Figure 3. Wind power No. 1, No. 2, and No. 3 are connected at

nodes 8, 24, and 17, respectively, and PV is connected at node 31.

Table 1 shows the main parameters of ADN.

Table 3 shows the specific configuration scheme of BESSs.

Table 4 shows the numerical changes of specific indicators in

ADN before and after the access of the BESSs configuration

scheme obtained by NSGA-II. By comparing the data in

Table 4, after accessing BESSs, specifically, daily

voltage fluctuation decreased by 4.8484 p. u. (the

improvement rate is 38.54%), and the load fluctuation

decreased by 2.4941 MW (the improvement rate is

37.77%). The total cost of BESSs is $-1.92e+03,

which means a profit of $ 1.92e+03 a year after BESSs

configuration. Moreover, Figure 4 compares the changes of

three technical indicators of the ADN before and after

the access of BESSs. As shown in Figure 4A, after BESSs is

connected to the active distribution network, the

node voltage level generally has an upward trend (at 1p.u.

nearby). Meanwhile, it can be seen from Figure 4B that

the average voltage fluctuation of nodes in the

FIGURE 9
The Pareto front distribution obtained by NSGA-II. (A) The Pareto front distribution based on the extended IEEE-33-node test system. (B) The
Pareto front distribution based on the extended IEEE-69-node test system.
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ADN decreases in 1 day. This means that BESSs can

effectively improve the voltage quality of ADN. At last

Figure 5 shows the charge and discharge power of BESSs

in a day.

6.2 IEEE-69 node test system

The extended IEEE-69 node test system topology is shown in

Figure 6. Wind power No. 1, No. 2, and No. 3 are connected at

nodes 24, 34, and 44, respectively, and PV is connected at

node 64.

Table 5 shows the specific configuration scheme of BESSs.

By comparing the data in Table 6, after accessing BESSs,

specifically, the daily voltage fluctuation decreased by

8.095 p. u. (the improvement rate is 22.058%), and the

load fluctuation decreased by 2.4481 MW (the

improvement rate is 37.07%). Moreover, Figure 7

compares the changes in three technical indicators of the

ADN before and after the access of BESSs. The total cost of

BESSs is $ -1.2e+03. Figure 7 shows the three technical

indicators before and after the access of BESSs. In

Figure 7A, the node voltage level of node 57-node 65 has

been greatly improved, and the curve in Figure 7B also shows

that the voltage fluctuation of ADN has been effectively

reduced after BESSs access. It can be concluded that by

installing BESSs in the ADN, the power quality in the

ADN has been improved, and the revenue can be

$1.2e+03. And Figure 8 shows the charge and discharge

power in a day under the extended IEEE-69 node system.

6.3 Comparison of algorithms

In this section, we use multi-objective particle swarm

optimization (MOPSO) as a comparison algorithm to verify

the superiority of NSGA-II. Table 7 shows the result obtained

by two algorithms.

By comparing the results in Table 7, it can be seen that

NSGA-II has the smallest daily voltage fluctuation and

daily load fluctuation except for the total cost of BESSs.

Meanwhile, the cost results obtained by the two algorithms

are not much different. Therefore, it can be concluded that

NSGA-II can obtain a more reasonable Pareto non-dominated

solution set and provide the best candidate for decision

makers.

6.4 Discussion

Figure 9 shows the Pareto front distribution obtained by

NSGA-II in the simulation experiments based on the extended

IEEE-33 node test system and the extended IEEE-69 node test

system. It can be seen from Figure 9 that the NSGA-II can obtain

a widely distributed Pareto front. This proves the effectiveness

and powerful optimizing ability of NSGA-II algorithm.

To verify the rationality of the EWM-based grey

target decision, this work uses the method in Reference

(Hu et al., 2014) to map the a th objective function

corresponding to the b th non-dominated solution to

the two-dimensional plane of (a ×i). The equation is as

follows:

FIGURE 10
The Pareto front of the parallel coordinate system under the extended IEEE-33 node system and the extended IEEE-69 node system. (A) Pareto
front after mapping under the extended IEEE-33 node system. (B) Pareto front after mapping under the extended IEEE-69 node system.
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Li,a � K
fb,a − fa

min

fa
max − fa

min
(32)

whereK is a random parameter; fb,a represents the a th objective

function of the b th non-dominated solution.

Figure 10 shows a two-dimensional plane (a ×i) mapped

the Pareto front of the extend IEEE-33 node system and the

extended IEEE-69 node system through the high-

dimensional Cartesian coordinates. The abscissa is the

optimized objective function, and the ordinate is the

mapped objective function value. The objective functions

are connected by a virtual line. The optimal compromise

solution of the grey target decision based on EWM is

represented by the red solid line. It can be seen that the

compromise solution is in a reasonable range, which can

avoid a greater preference for a certain goal due to

subjective weight. And the distribution of the non-

dominated solution set is more extensive, which

indicates that NSGA-II algorithm has excellent

optimization ability.

It should be noted that at 1 p.m. of Figure 4C and 1 and

2 p.m. of Figure 7C, the load level of the ADN with BESS

drops to a very low level. This is because when configuring

BESSs, the cost of configuring BESSs is considered an

important factor. At 1 and 2 p.m. every day, it is in the

peak load period. At this time, the load of the ADN increases,

and the BESSs will deliver more electricity to the ADN to

obtain more benefits while ensuring the stability of the ADN.

The net load PL of the ADN can be calculated by Eq. 33. As

shown in Eq. 33, the increase of electric energy transmitted by

BESSs to ADN will lead to a decrease in the net load level of

the ADN.

PL � Pload − Pwind − PPV + PBESSs (33)

where Pload, Pwind and PPV represent the load demand, wind

poaxwer output, and PV output; PBESSs represents the power of

BESSs, and its value is negative when it outputs electricity to

the ADN.

7 Conclusion

To deal with the low stability of the ADN caused by the high

proportion of renewable energy generations, this work proposes a

configuration method of a Pareto multi-objective battery ESSs

based on NSGA-II to improve the stability of the ADN. The main

contributions of this work are:

(1) The clustering algorithm based on FKCM is used to cluster

the load and wind-solar output, and four clustering scenarios

are obtained.

(2) The grey target decision based on EWM is used to obtain the

optimal compromise solution from the Pareto front, to get

rid of the unreasonable favoritism caused by weighting

multiple objectives with subjective weights.

(3) The extended IEEE-33 node system and the extended IEEE-

69 node system are used for simulation experiments. The

experimental results show that NSGA-II can balance the

economy of BESSs configuration and stabilize the power and

voltage levels of the ADN. Therefore, the BESSs

configuration scheme obtained by the method described

in this work is effective and can improve the stability of

ADN operation.

In practice, the scale of ADN is large and more constraints

need to be considered, which is a great challenge to the

performance of the algorithm. At the same time, the

heuristic algorithm has strong randomness, and the best

compromise solution obtained each time is different.

Therefore, it is more subjective to select the final solution

from multiple optimal compromise solutions. However,

compared with traditional optimization methods, heuristic

algorithms do not require accurate models and a large

amount of data. The algorithm structure is simple and

efficient, which greatly improves the calculation speed and

efficiency, and it is easier to obtain the global optimal

solution, making the configuration of ESSs more reasonable.

Therefore, considering the accuracy, effectiveness and time cost

of the algorithm, the heuristic algorithm has more advantages

than other traditional methods.

In future research, the NSGA-II algorithm will be applied to

the BESSs planning problem considering the demand side

response and the optimization problem of the electricity-

hydrogen hybrid ESSs.
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