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With the ever-increasing growth of energy demand and costs, process

monitoring of operational costs is of great importance for process

industries. In this light, both financial budget management and local

operational optimization supposed to be guaranteed properly. To achieve

this goal, a support vector machine recursive feature elimination (SVM-RFE)

method together with clustering algorithm was developed to extract features

while serving as importance measurements of each input variable for the

sequential prediction model construction. Then, the four variants of

autoregressive and moving average (ARMA), i.e., ARMA with exogenous input

(ARMAX) based on recursive least squares algorithm (RLS), ARMAX based on

recursive extended least squares algorithm (RELS), nonlinear auto-regressive

neural network (NARNN) and nonlinear auto-regressive neural network with

exogenous input (NARXNN), were applied, respectively, to predict the costs

incurred in the daily production for process industries. The methods were

validated in the Benchmark Simulation Model No.2-P (BSM2-P) and a practical

data set about steel industry energy consumption from an open access

database (University of California, Irvine (UCI)), respectively. The nonlinear

model, NARXNN, was validated to achieve better performance in terms of

mean square error (MSE) and correlation coefficient (R), when used for multi-

step prediction of the aforementioned datasets with strong nonlinear and

coupled characteristics.
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1 Introduction

In recent decades, smart industrial concept or industry

4.0 has gained popularity as an initiative to upgrade

traditional manufacture to an intelligent facility with the help

of artificial intelligence and machine learning. However, smart

concept is always focusing on quality control through

instrumentations and controllers, without sufficiently focusing

on energy consumption management or operational costs

reduction prediction (Ansari et al., 2011). Operational costs

reduction, such as minimizing dosage costs, optimizing energy

consumption, subsequent optimizing control or operational

strategies, can intuitively promote green production of process

industries, thereby helping enterprises or sectors achieve

sustainable manufacture. With the globalization, the

continuous growth trend in energy consumption received

significant attentions. As the largest energy end-use sector,

industrial currently accounts for nearly 40% of total global

final energy consumption (International Energy Agency,

2021). Moreover, energy consumption accounts for a large

proportion of total costs in most industrial processes (Han

et al., 2018). Excessive energy consumption usually implies

more environmental pollutions and more production costs

due to the environmental regulations. Therefore, given the

potentials to improve industrial energy efficiency, substantial

research on energy-efficiency indicators has been proposed to

support energy-intensive enterprises and governments to assess

energy consumptions and optimize management (Chan et al.,

2014; Li and Tao, 2017).

Specifically, constructing energy consumption or operational

costs prediction models can help and support decision-making

about costs management properly. The motivation behind

establishing a predictive model is essentially to make a model

able to reflect and mimic the true system characteristics as closer

as possible. In general, two types of approaches are typically used

for modeling. One is mechanistic model, also known as the

white-box approach, in which the mechanism of the system is

completely clear and the model construction generally depends

on the specific physical, chemical, biological and other behaviors

of a process. Such a model is intuitively explainable but difficult

to be generalized to other fields. Jia et al. (2018) established an

energy consumption model based on motion-study for activities

related to equipment and operators, showing the effectiveness of

the approach in a case study. Also, Altıntas et al. (2016)

combined mechanistic and empirical models to optimize the

machine operations in a milling process. This model was used to

estimate the theoretical energy consumption in the milling

process of prismatic parts with satisfactory prediction

accuracy. In fact, to construct mechanism-based simulation

models, a certain number of input data associated with the

predicted targets are required, and then assumptions about

the distribution of corresponding parameters or features

related to these inputs are usually made relying on the prior

knowledge (Hsu, 2015). However, most industrial processes are

difficult to derive a specific mechanistic model, because of

extremely nonlinear, coupled, multivariate characteristics and

even combination of physical, chemical and biological reactions.

The data-driven modeling approach, called the black-box

approach, is another way to address the above issues. The data

using for prediction validation usually have similar patterns to

those exhibited in the historical data. Data-driven methods has

gained popularity since the past decades. This is mainly because

data-driven methods can achieve better performance without

process mechanisms compared to mechanistic models if the

sufficient historical data sets are collected (Wei et al., 2018).

With respect to the different types of data, data-driven models

can be generally classified into linear and nonlinear forecasting

models (Xiao et al., 2018). The ARMA model and its variants, as

typical linear models, are one of the most popular methods in

time series forecasting, especially for linear and stationary time

series scenarios. Even though non-stationary data can be solved

by resorting to de-seasoning and de-trending strategies, ARMA

could still fail for most of cases (Juberias et al., 1999). Non-

linearity in data can be approached by resorting to the nonlinear

ARMA properly (Kun and Weibing, 2021). An autoregressive-

based time varying model was developed to predict electricity

short-term demand, while the performance of the original model

depends a lot on the updated coefficients (Vu et al., 2017). The

aforementioned variants mainly focused on autoregression and

took other correlated variables unusefulness for granted. Fang

and Lahdelma (2016) applied the ARMA model to predict

heating demand by combining weather variations, social

components and other exogenous factors, and the results

showed that the proposed method outperformed the model

only considering weather components. In the actual industrial

process, the predicted targets are influenced by other exogenous

variables besides themselves. Therefore, ARX and ARMAX were

proposed to improve ARMAmodel by incorporating the impacts

of exogenous variables into the time series model, and have been

studied by academic communities such as meteorology, finance,

etc (Huang and Jane, 2009; Silva et al., 2022). Recently, with the

rapid development of artificial intelligence, artificial neural

network techniques were broadly used to tackle with

nonlinear problems (Liu et al., 2020; Deng et al., 2021). They

perform much better than linear time series model especially

when the input data is kept current or the model functions at

more than one-step-ahead prediction (De Gooijer and

Hyndman, 2006). Therefore, the neural network model is

dominant data-driven model that has been widely applied in

modeling and predicting (Han et al., 2018). In order to cater for

working in various circumstances and conditions, diverse neural

network structures and algorithms were continuously developed.

The network type and the optimization algorithm of

undetermined parameters also need to be selected

appropriately for different purposes (Car-Pusic et al., 2020).

Shi et al. (2021) designed a model based on convolutional
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neural networks to predict coal and electricity consumption

simultaneously, and this model also eliminated the negative

effects of the coupling between variables. Kahraman et al.

(2021) proposed a data-driven method based on the deep

neural network, which provided a highly accurate prediction

performance for energy consumption of industry machines. The

NARXNN adopted in this study is a neural network that

combines autoregression and exogenous input series, and this

model has the additional advantage of handling nonlinear time

series compared to the ARMAX model.

In general, models with exogenous inputs outperform those

using autoregressive methods directly, especially for real

industrial processes. However, inappropriate input selection

may lead to many problems such as overfitting or

collinearity (Wu et al., 2020; Liu et al., 2021). Therefore, the

selection of features is a critical step before modeling. Principal

component analysis (PCA) is one of the most extensively used

methods for feature reconstruction, which is able to refine new

features by mapping the original high-dimensional vector space

onto a new low-dimensional space. However, the use of this

method requires to ensure that the collected data must follow

Gaussian distributions and also the new features generated by

PCA are difficult to interpret. Feature ranking methodologies,

as another type of feature selectionmeans, are mainly composed

of filter-based, wrapper-based, and embedded methods. These

methods rank the importance of each individual feature

according to the scores of diverse feature subsets and are

effective in interpretability problems (Guyon and Elisseeff,

2003). SVM-RFE, as an embedded method based on

backward elimination, was firstly proposed by Guyon et al.

(2002) for feature ranking of binary classification. In this study,

based on this approach together with clustering algorithm, the

feature importance of continuous labels can be derived, and

then exogenous inputs can be chosen.

The main objective of this research is to develop energy

consumption and operational costs prediction models by using

variants of ARMA models to optimize management of process

industries. The accuracy of the methodologies was validated in

two case studies. Different from the traditional ways for energy

prediction, the proposed methods are able to make multiple steps

ahead prediction, thus supporting energy consumption and

operational costs analysis over a short-term period. This will,

in turn, facilitate the controller manipulations and management

behaviors in advance if the demand from markets changes. Also,

due to the collaboration with SVM-RFE in the proposed method,

useful features can be well refined and interpreted by the

importance measurement.

The rest of the paper is organized as follows. The methods of

predictive modeling and input feature selection are briefly

introduced to provide the basic knowledge in Section 2. The

dataset performance, prediction performance analysis and

discussion of the two cases are presented in Section 3. The

conclusions are finally drawn in Section 4.

2 Methods and materials

2.1 The autoregressive and moving
average with exogenous input model

The ARMAmodel is usually suitable for short-term forecasts

of time series data, and is widely applied in business, economics,

engineering and other areas (Box et al., 2008). The ARMA is

usually formulated as the following equations:

ρ(B)yt � τ(B)at , (1)
Where,

ρ(B) � 1 − ρ1B − ρ2B
2 −/ − ρpB

p,

τ(B) � τ0 + τ1B + τ2B
2 +/ + τqB

q,

yt is the output of the model at time t, and at is random

shocks, such as white noise of Gaussian distribution. B is defined

as the backward shift operator, i.e., yt−1 � Byt. When ρ(B) � 1,

the ARMA model can be degenerated into the MA model.

Similarly, when τ(B) � 1, the model will become AR model.

It is worth noting that AR and MA models are both special cases

of an ARMA model. [ρ1/ρp, τ0, τ1/τq] represents the weight
value of the items corresponding to [yt−1/yt−p, at, at−1/at−q].
Parameters, [ρ1/ρp, τ0, τ1/τq], are unknown and need to be

estimated by using the collected data. In this paper, RLS and

RELS algorithms are used for parameter identifications. The RLS

is used to minimize the cost function as follows:

J(θ) � ∑t
i�1
[yi − φi

Tθ]2, (2)

Where,

φi � [yi−1,/, yi−p, ai, ai−1,/, ai−q]T,
θ � [ρ1,/, ρp, τ0, τ1,/, τq]T,

The RLS algorithm for estimating parameter θ can be

expressed as (Ding, 2010):

θ̂t � θ̂t−1 + Ptφt[yt − φt
Tθ̂t−1], (3)

Pt � Pt−1 + Pt−1φtφt
TPt−1

1 + φt
TPt−1φt

, (4)

Where P0 � p0Ip+q+1, Pi(i � 1,/, t) ∈ R(p+q+1)×(p+q+1) are the

covariance matrix and Ip+q+1 is an identity matrix of the order

p + q + 1. p0 is assumed as a large positive number, e.g.,

p0 � 106. θ̂t is the estimated value of θ at time t. On the basis

of RLS, RELS additionally take into account innovation

[et−1,/, et−r]. The innovation in this study indicates the

difference between the real value and the predictive, where

e � y − φTθ. The general form of ARMA-RELS can be

extended as shown in Eq. 5.

ρ(B)yt � τ(B)at + c(B)et, (5)
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Where,

c(B) � c1B + c2B
2 +/ + crB

r,

The sets of other parameters also need to be updated,

φi � [yi−1,/, yi−p, ai, ai−1,/, ai−q, ei−1,/, ei−r]T,
θ � [ρ1,/, ρp, τ0, τ1,/, τq, c1,/, cr]T,

P0 � p0Ip+q+r+1, Pi(i � 1,/, t) ∈ R(p+q+r+1)×(p+q+r+1), while
the recursive form that is used to estimate the parameter θ

remains unchanged.

However, aforementioned ARMA models omit the

interference of exogenous variables on the prediction results.

The ARMAX method was proposed to tackle this nuisance. The

ARMAX model takes into account not only the effects from the

historical series of output itself, but additionally the effects of

exogenous inputs. The general expressions for ARMAX-RLS and

ARMAX-RELS can be presented as Eqs 6, 7, respectively.

ρ(B)yt � τ(B)at + σ(B)ut, (6)
ρ(B)yt � τ(B)at + σ(B)ut + c(B)et, (7)

Where,

σ(B) � σ0 + σ1B + σ2B
2 +/ + σjB

j,

ut is the exogenous inputs set. This set of exogenous inputs is

possibly multidimensional, whose dimensionality depends on the

number of input variables selected. The method used in this

research to determine the input variables is described in Section

2.3. On the other hand, the formulations of the two parameter

estimation algorithms, RLS and RELS, for the ARMAXmodel are

basically consistent with the ARMA model, respectively.

However, mainly due to the effect of the additional ut, some

parameters are updated accordingly on the original basis as

follows:

φi � [yi−1,/, yi−p, ai, ai−1,/, ai−q, ui, ui−1,/, ui−j, ]T,
θ � [ρ1,/, ρp, τ0, τ1,/, τq, σ0, σ1,/, σj]T,

P0 � p0Ip+q+j+2, Pi(i � 1,/, t) ∈ R(p+q+j+2)×(p+q+j+2) for

RLS and,

φi � [yi−1,/, yi−p, ai, ai−1,/, ai−q, ei−1,/, ei−r, ui, ui−1,/, ui−j, ]T,
θ � [ρ1,/, ρp, τ0, τ1,/, τq, c1,/, cr, σ0, σ1,/, σj]T,

P0 � p0Ip+q+r+j+2, Pi(i � 1,/, t) ∈ R(p+q+r+j+2)×(p+q+r+j+2)

for RELS. Then, p, q, r and j are calculated by the Akaike

Information Criterion method as shown in Eq. 8.

AIC(p, q, r, j) � −2 ln(L) + 2Q, (8)

Where Q is the number of parameters, L is the likelihood

function. The optimal order of model is the {p, q, r, j} value

satisfying the minimum AIC. Accordingly, due to the

introduction of lag r, iterative k-step ahead prediction can be

formulated as Eqs 9, 10.

ρ̂(B)ŷt+k|t � τ̂(B)at+k|t + σ̂(B)ut+k|t +∑r
i�k
ĉiet+k−i, 1≤ k≤ r, (9)

ρ̂(B)ŷt+k|t � τ̂(B)at+k|t + σ̂(B)ut+k|t, k≥ r, (10)

Where [ρ̂, τ̂, σ̂, ĉi, ŷt+k|t] are the corresponding estimated values

of [ρ, τ, σ, ci, yt+k]. If k≤ 0, ŷt+k|t � yt+k, meaning that the

FIGURE 1
Two kinds of neural network structure, where z−1 is the unit time delay. (A) Nonlinear auto-regressive neural network. (B) Nonlinear auto-
regressive neural network with external input.
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estimated output of the prediction model is equal to the real

value.

Both RLS and RELS algorithms are simple but powerful to

estimate unknown parameters without needing to calculate

matrix inversion during iterative learning. These make them

suitable for online model identification. RELS is actually a direct

extension of RLS, aiming to reduce the influence of colored noise

by adding residuals to the information vector φ and the

parameter vector θ. Compared to the standard least squares

method, RLS and RELS algorithm improve the identification

performance of time series model at the expense of higher

computational complexity.

2.2 The nonlinear auto-regressive neural
network model

Time series data derived from real industrial processes

usually exhibit strong nonlinearity and high dynamics, which

renders the monitoring of such data unsuitable if using linear

models. Therefore, nonlinear methods based on neural

networks are highly recommended for

modeling such dataset. The standard NARNN is formulated

as follows:

ŷt � N(yt−1, yt−2,/, yt−dy), (11)

Where ŷt is the estimation of the output by a specific neural

network at the t moment, [yt−1, yt−2,/, yt−dy] is the time series

dataset, dy is the maximum output-memory order and N (·)
means a specific neural network. The distinction between

NARNN and ordinary neural networks for multi-step

prediction is that several observed data have to be replaced by

the estimate of the network, so that Eq. 11 can also be

reformulated as follows:

ŷt � N(ŷt−1, ŷt−2,/, ŷt−s, yt−s−1,/, yt−dy), (12)

Where [ŷt−1, ŷt−2,/, ŷt−s] are estimates of the output over the

time period from t − s to t − 1, respectively, s is the number of

delay steps for autoregression, and [yt−s−1,/, yt−dy] are the

observations from time t − dy to time t − s − 1. The structure

of NARNN is presented as Figure 1A.

The NARNN model is primarily concerned with historical

series of the target variables as shown in Eq. 12. The information

carried by exogenous inflow data is ignored in this modeling

process, and then NARXNN model is proposed to make use of

this information. The NARXNN can be formulated as follows:

ŷt � N( ŷt−1, ŷt−2,/, ŷt−s, yt−s−1,
/, yt−dy, xt−1,/, xt−dx

), (13)

Where [xt−1,/, xt−dx] is a matrix consisting of exogenous input

variables, the dimension of x depends on the quantity of exogenous

FIGURE 2
SVM-RFE combined with clustering algorithm for sequential feature ranking.
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input variables, and dx is the maximum delay index of exogenous

input variables. The structure of NARXNN is different from

the NARNN slightly, mainly with the addition of

several extra inputs. The structure of NARXNN is presented as

Figure 1B.

The two neural networks, NARNN and NARXNN, update

weights in each layer by using the Bayesian regularization

backpropagation algorithm (MacKay, 1992). Training

samples are shown as following set,

D � {(�x1, �y1), (�x2, �y2),/, (�xN, �yN)}, where �xi(i � 1, 2,/, N)
and �yi(i � 1, 2,/, N) represent the input and output of the

neural network, respectively. Given a neural network, called

M, let g(x;w,M) be the response of networkM with respect

to the input x, and w denotes the weight of network. The

optimal parameters can be achieved by minimizing the

quadratic cost function:

ED � ∑N
i�1
[g(�xi;w,M) − �yi]2. (14)

The objective function is extended from F � ED to F �
αED + βEw to prevent the overfitting. The regularization term

Ew is denoted as:

Ew � ∑
n

ω2
n. (15)

Note that α and β are unknown parameters of the objective

function F. When α is larger, the accuracy of the model to the

training samples is enhanced, and similarly when β is larger, the

generalization ability of the model is enhanced. The Bayesian

regularization generally treats the network weights as random

variables and the detailed methods for estimating the values of

weightsw, α and β can be found in (Dan Foresee and Hagan, 1997).

NARNN and NARXNN are variants of ARMA together with

neural network, combing both the dynamic and recurrent

properties. Both methods do not require strict stationarity of

the target time series. On the other hand, it is should be noted

that NARXNN needs more reasonable computational cost

(Cadenas et al., 2016).

2.3 The selection of features

Feature selection is of vital importance to improve the

performance of the model, especially whose predictions

depend on a number of extrinsic inputs to some extent.

Excellent choices of inputs not only help to provide accurate

FIGURE 3
Operational cost index (OCI) over 50 days.

TABLE 1 Exogenous input variables related to OCI and descriptions.

Variables Description Units

t Time of simulation day

SF Fermentable substrate g COD.m-3

SI Soluble inert organic matter g COD.m-3

SPO4 Phosphate g.m-3

XI Particulate inert organic matter g COD.m-3

Qin Influent flow rate m3.day-1

SNa Sodium g.m-3

*COD, chemical oxygen demand.
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results, but also speed up calculations and reduce the number of

sensor installations, all of which lead to operational cost savings.

The SVM-RFE combined with clustering method proposed in

this study ranks the features of the continuous processes based on

backward elimination.

The first thing worth noting is that the support vector

machine classifier achieves the distinction between two classes

by searching for the optimal hyperplane in a high-dimensional

space (Rakotomamonjy, 2003). For the binary classification

problem with training data set {X,Y}, where X ∈ Rn are the

features and Y ∈ {−1, 1}, there exists a hyperplane or decision

function of the following form.

f(X) � 〈w,Φ(X)〉 + b, (16)

Where Φ(X) refers to the mapping relationship from features X
to the high dimensional space. The parameters (w, b) are

determined by minimizing the weights and the distance of

each misclassified data to the hyperplane, before which the

features X need to be normalized. The optimization problem

can be written as:

min
w,ξ

1
2
‖w‖2 + C∑m

k�1
ξ2k, (17)

ykf(xk)≥ 1 − ξk

s.tyk ∈ Y , xk ∈ X for ∀k

Where C is used as a penalty factor to weigh the importance of

misclassification. SVM-RFE compares the impact of different

remaining subsets on the classification by backward elimination

of features, with the aim of preserving the subset of features that are

most beneficial to the classification. The ranking of features is

achieved through multiple iterations of elimination in the above

work until the remaining feature subset is empty, and the criterion

of elimination at each step for a given feature i can be expressed as:

Rc(i) �
∣∣∣∣����w(i)����2∣∣∣∣, (18)

Where  denotes the weight difference between the previous

subset and the one whose ith feature is eliminated. The feature

that minimizes Rc will be removed after one round of loops, which

means that the remaining feature subset has the least difference in

classification performance from the feature subset containing the

removed feature. It is worthmentioning that SVM-RFEwas widely

used in feature selection for binary classification problems, while it

was rarely used in continuous classification problems.

In practical industrial processes, the variation in feature values

often leads to continuous variation in the output. This begs a

question that needs to be addressed. When each output point is

treated directly as a separate label, the volume of the feature set

corresponding to each label is so small that each feature set does

not have the ability to characterize a specific label. Therefore, such

continuous processes cannot be directly classified as a multi-label

feature classification problem. In order to rank the features for this

type of data, this study proposed SVM-RFE combined with

clustering algorithm, as shown in Figure 2.

The successive outputs are first clustered to form new classes,

and thus similar outputs can be grouped into homogeneous classes

to enhance the differences between the new classes, e.g.,

{y1, y2,/, yn} → {L1, L2,/, Lm}, n≫m. The features

corresponding to the same type of label are also merged into

the same group, e.g., {x1, x2,/, xn} → {X1, X2,/, Xm}, n≫m.

In this way, the original problem is successfully transformed into a

FIGURE 4
Importance of each variable to OCI with different number of clusters.
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multi-label feature classification problem. When SVM is used for

multi-classification problems, it is usually transformed into a series

of binary classification problems that are handled separately and

then summarized for the final result. The new data set

{(X1, L1), (X2, L2),/, (Xm, Lm)} is partitioned using the so-

called the one-versus-all method, and subsequently the features

are individually ranked using SVM-RFE. The final summary of the

ranking results for each group is Rm×v as shown in Eq. 19.

R � ⎛⎜⎜⎜⎜⎜⎜⎝ R1

..

.

Rm

⎞⎟⎟⎟⎟⎟⎟⎠ � ⎛⎜⎜⎜⎜⎜⎜⎝ r11 / r1v
..
.

1 ..
.

rm1 / rmv

⎞⎟⎟⎟⎟⎟⎟⎠, (19)

Where Ri(i � 1,/, m) represents the ranking of the features

that distinguish {Xi, Li} from the rest of dataset using SVM-RFE

and the order, ri1 to riv, is decreasing according to the importance

of the v optional features. For the ranking matrixR, this research

considers that the importance index of the same column is

consistent, which unifies the weights assigned to the same

column. Then the final ranking of all features, {r1, r2,/, rv},
can be obtained by counting the frequency of each feature in each

column.

In the final step, the model is trained by sequentially

increasing the number of exogenous inputs to the model,

depending on the importance of the features. Then, the

appropriate training set is obtained by comparing the model

test results under the AIC criterion. SVM-RFE combined with

clustering algorithm migrates the feature ranking method for

binary classification problems to a new application scenario and

solves the problem of feature ranking for continuous processes.

This approach implements feature selection while keeping the

original data of the features intact and visually explaining the

input variables selection.

FIGURE 5
Prediction results of OCI for the last 7 days over four steps ahead. (A) Prediction results of the ARMAX-RLS model. (B) Prediction results of the
ARMAX-RELS model. (C) Prediction results of the NARNN model. (D) Prediction results of the NARXNN model
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3 Case studies

3.1 Performance evaluation index

In this study, MSE and R are used as the performance

evaluation metrics of the model, which can be calculated as

follows:

MSE � ∑n
t�1(y(t) − yet(t))2

n
, (20)

R � ∑n
t�1(y(t) − �y)(yet(t) − �yet)�������������∑n

t�1(y(t) − �y)2√ ���������������∑n
t�1(yet(t) − �yet)2√ , (21)

Where y and yet refer to the true values of the system output

and the estimated values of the prediction model, respectively;
�y and �yet are the mean values of y and yet. n is the total number

of evaluation samples. The smaller the MSE, the smaller the

error of the model. R is in the range of [0, 1], the closer it is to 1,
the better the performance of model.

3.2 Operational cost index from
wastewater treatment processes

3.2.1 Data processing
The data for the case study in this section mainly came

from the wastewater treatment platform, BSM2-P Simulink

simulation model, which adds the phosphorus treatment

process based on BSM2. The actual collected inflow

parameters (e.g., Qin: influent flow, SF: readily

biodegradable substrate) were input into the simulation

platform, and OCI was calculated every 15 min according

to Eq. 22 based on the data collected from the simulation

model.

OCI � 3SP + AE +ME + PE + EC +max(0, HE − 7MP)

+24MT − 6MP, (22)

FIGURE 6
Prediction residual of OCI for the last 7 days over four steps ahead.

TABLE 2 Comparison of the Prediction Performance on OCI over four
steps ahead.

Models MSE R

ARMAX-RLS 502.6552 0.9886

ARMAX-RELS 527.8635 0.9879

NARNN 219.4406 0.9946

NARXNN 108.0847 0.9974

TABLE 3 Exogenous input variables related to the steel plant and
descriptions.

Variables Abbreviations Units

Lagging current reactive power Lag.CRP kVarh

Leading current reactive power Lead.CRP kVarh

tCO2(CO2) tCO2 ppm

Lagging current power factor Lag.CPF %

Leading current power factor Lead.CPF %
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Where SP is the sludge production for disposal, AE is the aeration

energy, ME is the mixing energy, PE is the pump energy, EC is

external carbon addition, HE is the heating energy for increasing

the temperature of the anaerobic digester, MP is the methane

production, and MT is the metal salt to be added. A total of

50 days of data are illustrated in Figure 3, which has significant

non-linearity. It should be noted that the reason for the negative

OCI is that the methane produced in the water treatment process

has a certain compensation for the operating cost.

After the data of OCI and influent data were obtained,

additional preparation for feature selection was required in

addition to outlier removal and normalization. The

operational cost of WWTP is closely related to the parameters

of influent, but excessive parameters are not conducive to the

further selection of features, so more preprocessing of the input

data is required. Specifically, the selection of features practically

implies exploring the correlation between exogenous inputs and

target variables. The dataset with no or little change has little

influence but will increase the subsequent computation, so that

variables related to this kind of data need to be eliminated. Such

problem can be solved by excluding feature arrays with variance

less than a certain threshold. Furthermore, variables with strong

linear correlation would make the SVM-RFE’s judgment of

importance seem unreasonable. Therefore, some correlation

analysis methods, such as Pearson correlation analysis, need

to be used to isolate the variables with strong linear

correlation before using SVM-RFE. The variables

{t, SF, SI, SPO4, XI, Qin, SNa} were finally selected in this study

as the alternative input features for predicting OCI, and

further ranked by using SVM-RFE combined with clustering

algorithm. Table 1 shows the full overview of these variables.

To test the reliability of the method under different number

of clusters, the diverse number of OCI clusters was set and the

importance of each variable based on different number of clusters

is presented in Figure 4. The results indicate that changes in the

number of clusters over a wide range have some but little effect

on the importance of exogenous variables, such that there is no

change in the importance ranking of the variables. The

decreasing ranking of variables importance is

{SF, Qin, XI, SI, SPO4, SNa, t}, where the importance indicators of

SF andQin, SI and SPO4 are similar, respectively. It is worth noting

that the importance of t behaves unusually at a clustering number

of 1000, which is caused by the fact that the number of clusters is

close to the raw data labels. As mentioned earlier, in order to

accurately identify feature importance, classes with significant

differences need to be generated by clustering.

Generally, the model prediction accuracy will improve

somewhat as the number of exogenous variables increases,

but the rate of improvement is limited when the number of

selected variables reaches a specific value. Fewer variables can

be selected from alternative variables set to save computational

power and avoid overfitting. Finally, according to the AIC

criterion, SF and Qin were chosen as exogenous input

variables in this study case.

3.2.2 Results and discussion
The OCI values for each time period were calculated using

the data collected in the BSM2-P simulation model. A total of

4,799 samples from 50 days were retained. The sample set was

split, with the data of the first week being the training set and the

remaining as the testing set. Each model was applied to predict

OCI over four steps ahead.

FIGURE 7
Operational cost index data for 50 days.
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Figure 5 shows the prediction performance of four ARMA

variant models on the last week of OCI values and compares

them with the test set, respectively. As shown in Figures 5A,B, the

ARMAX models based on two different algorithms are similar in

overall prediction performance. Under relatively stable

conditions, the predicted values of ARMAX model are in

good agreement with some original data with linear

characteristics. However, comparing the peak locations

marked in Figures 5A,C, the ARMAX model has slightly

worse performance. This mainly results from the fact that the

linear model is not competitive for data predictions with

significant nonlinearity. On the other hand, although the

RELS algorithm takes into account the effect of residual

information, the performance does not improve significantly

compared to RLS. This is due to the limited effect provided

by the residuals of the previous moment during the nonlinear

change phase of the data.

Compared to the ARMAXmodel, the prediction values of the

NARNN model displayed in Figure 5C are more in line with the

real values. However, there are still deviations, as shown in the

half-day period after the 46th day. The NARXNN model fits the

real data better at the locations of the peaks, troughs, as well as

under the other linear conditions as shown in Figure 5D. The

residual distribution of the prediction results for the four variants

is plotted in Figure 6. The NARXNN model produces a smaller

span of error, which indicates the better prediction performance

of the model.

It is worth noting that the training of the neural network

model has strong randomness. This can be solved by trials and

errors. To well illustrate the performance of the proposed

method, the results of NARNN and NARXNN are listed in

Table 2, average values of which were calculated from the

prediction more than 10 times. As can be seen from Table 2,

the results are as follows: Compared with ARMAX-RLS,

ARMAX-RELS and NARNN model, MSE of the NARX model

is reduced by 78.50%, 79.52%, 50.75%, respectively, and R is

improved by 0.89%, 0.96%, 0.28%. Based on the above results, it

can be observed that NARXNN model has a better performance

in predicting the wastewater treatment cost index.

3.3 Energy consumption from a full-scale
steel plant

3.3.1 Data processing
The real data in this subsection, concerning energy

consumption in the steel industry, were taken from University

of California, Irvine (UCI). The data were collected from

DAEWOO Steel Co., Ltd. in Gwangyang, South Korea. Energy

consumption information for the industry is stored on the Korea

Electric Power Corporation’s website (pccs.kepco.go.kr), and

daily, monthly and annual data are computed and displayed.

Figure 7 presents the data of energy consumption for every

15 min over a total of 50 days.

Obviously, the energy consumption data in this case are

more non-linear due to the fact that they are collected directly

from the actual steel plant. This data set even contains some

coarse data or outliers, and exhibits significant dramatics over

FIGURE 8
Importance of each variable to the energy consumption with different number of clusters.
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time. The data performance varied obviously at different time

intervals, particularly from the 5th to the 7th day, the

processes were stable relatively, while the stable processes

changed completely from the 20th to the 21st day and from

the 45th to the 50th day. The data from the 10th to the 15th

day, the 15th to the 20th day and the 21st to the 27th day also

changed completely with different fluctuating trends, all of

which added the difficulty in the sequential modeling and

predicting.

Table 3 lists the alternative exogenous variables provided in

the data source file that present continuous numeric variation.

Similarly, as mentioned earlier, the selection of model inputs is

essential before building models with exogenous inputs. This

work is based entirely on data relationships without considering

the mechanism. The linear correlations between the variables in

Table 3 were first examined by the Pearson correlation analysis,

and there was a strong linear relationship between Lead. CRP and

Lead. CPF. After removing Lead. CPF, the remaining four

variables were analyzed for importance in this study case and

the results are shown in Figure 8. It is noticeable that Lead. CRP

and tCO2 have significantly higher importance indicators than

the other two variables, and therefore Lead. CRP and tCO2 were

identified as exogenous input variables for the prediction model

of energy consumption in steel plant.

3.3.2 Results and discussion
The dataset was split, with the first 7 days of data used as the

training set and the remaining data used as the test set to evaluate

the performance of each model for four steps ahead prediction.

The prediction performance of the four variants of the ARMA

model is shown in Figure 9, and in general, the prediction

performance on real data all deteriorates compared to the

prediction on the simulated data in the last study case. The

main reason for this occurrence is still that the steel plant data set

contains the rough data, as well as its own strong nonlinearity

and sharp changes over time.

FIGURE 9
Prediction results of energy consumption over four steps ahead. (A) Prediction results of the ARMAX-RLS model. (B) Prediction results of the
ARMAX-RELS model. (C) Prediction results of the NARNN model. (D) Prediction results of the NARXNN model
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Nevertheless, in this study case, the neural network models

perform much better than the general time series models.

Specifically, the difference between the prediction results of

two ARMAX models is small, and both have the tendency

that the predicted data obviously cannot track the true data

with high oscillation, as shown in the dashed rectangular box in

Figure 9A. The predicted data from ARMAX-RELS are less

overshooting compared to ARMAX-RLS when the energy

consumption data change rapidly from a declining state to a

flat state, as can be seen in the comparison of Figures 9A,B. On

the contrary, two autoregressive neural network models perform

much better in these issues.

As shown in Figures 9C,D, the results predicted by the two

autoregressive neural network models oscillate less between the 44th

and the 49th day, and the data performmore smoothly. However, the

NARXNNmodel has a higher prediction accuracy than other models

for parts with steep variations, such as the rising or falling edges

indicated by the triangle symbol in the figure. Different from the

NARXNN model, NARNN model performs even worse than

ARMAX in these regions indicated by the triangle symbol,

showing the positive impact of introducing exogenous inputs on

the prediction results. Although the prediction for smooth data in the

period from the 44th to the 49th day is slightly inferior to that of the

NARNN model, the NARXNN still performs better overall.

The results are tabulated in Table 4 as follows: Compared with

ARMAX-RLS, ARMAX-RELS and NARNN model, MSE of the

NARX model is reduced by 28.46%, 18.85%, 45.36%, respectively,

and R is improved by 6.40%, 1.79%, 14.02%. Based on the above

results, it can be observed that NARXNN model has a better

performance in predicting the energy consumption from a full-

scale steel plant. It is worth noting that the performance of the

NARNN model is quite different from that in the previous study

case, which ismainly due to the lack of intervention from exogenous

inputs. It is difficult for the general neural network model to predict

the practical data with complex characteristics such as strong

nonlinearity, strong volatility, and outliers in this case.

4 Conclusion

Process monitoring of operational costs can benefit for the

operational costs reduction and other financial budget

management in industries. This paper provides a comparative

analysis on the performance of four ARMA model variants

(i.e., ARMAX-RLS, ARMAX-RELS, NARNN and NARXNN),

using operational costs and energy consumption predictions as

a baseline for real applications. In addition, a method based on

SVM-RFE combined with clustering algorithm was developed to

extract useful features that are important for the construction of

the above-mentionedmodels and to provide a way tomeasure and

explain how important the corresponding features are.

The analysis of the data and the evaluation of the

prediction results lead to the following conclusions: The

two time series models, ARMAX-RLS and ARMAX-RELS,

have acceptable prediction performance under conditions

where the data exhibit stable patterns. But if the predicted

data have strong nonlinearities as well as irregular changes,

two ARMAX models can only meet the minimum prediction

needs. Compared to the other three variants, the NARXNN

model achieves the most accurate prediction results in both

study cases, due to the help of the neural network for

nonlinear data prediction on the one hand and the choice

of exogenous inputs on the other.

In future research, themethod of feature selectionwill be further

explored and the interpretability of the method will be enhanced.

Another aspect is that predictivemodels will be further incorporated

into control strategies for costs reduction in industrial processes.
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